]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
disk: part_efi: resolve endianness issues
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * Problems with CONFIG_SYS_64BIT_LBA:
10 *
11 * struct disk_partition.start in include/part.h is sized as ulong.
12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13 * For now, it is cast back to ulong at assignment.
14 *
15 * This limits the maximum size of addressable storage to < 2 Terra Bytes
16 */
17 #include <asm/unaligned.h>
18 #include <common.h>
19 #include <command.h>
20 #include <ide.h>
21 #include <malloc.h>
22 #include <part_efi.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
67
68 static inline int is_bootable(gpt_entry *p)
69 {
70 return p->attributes.fields.legacy_bios_bootable ||
71 !memcmp(&(p->partition_type_guid), &system_guid,
72 sizeof(efi_guid_t));
73 }
74
75 #ifdef CONFIG_EFI_PARTITION
76 /*
77 * Public Functions (include/part.h)
78 */
79
80 void print_part_efi(block_dev_desc_t * dev_desc)
81 {
82 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
83 gpt_entry *gpt_pte = NULL;
84 int i = 0;
85 char uuid[37];
86 unsigned char *uuid_bin;
87
88 if (!dev_desc) {
89 printf("%s: Invalid Argument(s)\n", __func__);
90 return;
91 }
92 /* This function validates AND fills in the GPT header and PTE */
93 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
94 gpt_head, &gpt_pte) != 1) {
95 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
96 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
97 gpt_head, &gpt_pte) != 1) {
98 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
99 __func__);
100 return;
101 } else {
102 printf("%s: *** Using Backup GPT ***\n",
103 __func__);
104 }
105 }
106
107 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
108
109 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
110 printf("\tAttributes\n");
111 printf("\tType GUID\n");
112 printf("\tPartition GUID\n");
113
114 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
115 /* Stop at the first non valid PTE */
116 if (!is_pte_valid(&gpt_pte[i]))
117 break;
118
119 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
120 le64_to_cpu(gpt_pte[i].starting_lba),
121 le64_to_cpu(gpt_pte[i].ending_lba),
122 print_efiname(&gpt_pte[i]));
123 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
124 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
125 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
126 printf("\ttype:\t%s\n", uuid);
127 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
128 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
129 printf("\tguid:\t%s\n", uuid);
130 }
131
132 /* Remember to free pte */
133 free(gpt_pte);
134 return;
135 }
136
137 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
138 disk_partition_t * info)
139 {
140 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
141 gpt_entry *gpt_pte = NULL;
142
143 /* "part" argument must be at least 1 */
144 if (!dev_desc || !info || part < 1) {
145 printf("%s: Invalid Argument(s)\n", __func__);
146 return -1;
147 }
148
149 /* This function validates AND fills in the GPT header and PTE */
150 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
151 gpt_head, &gpt_pte) != 1) {
152 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
153 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
154 gpt_head, &gpt_pte) != 1) {
155 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
156 __func__);
157 return -1;
158 } else {
159 printf("%s: *** Using Backup GPT ***\n",
160 __func__);
161 }
162 }
163
164 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
165 !is_pte_valid(&gpt_pte[part - 1])) {
166 debug("%s: *** ERROR: Invalid partition number %d ***\n",
167 __func__, part);
168 free(gpt_pte);
169 return -1;
170 }
171
172 /* The ulong casting limits the maximum disk size to 2 TB */
173 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
174 /* The ending LBA is inclusive, to calculate size, add 1 to it */
175 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
176 - info->start;
177 info->blksz = dev_desc->blksz;
178
179 sprintf((char *)info->name, "%s",
180 print_efiname(&gpt_pte[part - 1]));
181 sprintf((char *)info->type, "U-Boot");
182 info->bootable = is_bootable(&gpt_pte[part - 1]);
183 #ifdef CONFIG_PARTITION_UUIDS
184 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
185 UUID_STR_FORMAT_GUID);
186 #endif
187
188 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
189 info->start, info->size, info->name);
190
191 /* Remember to free pte */
192 free(gpt_pte);
193 return 0;
194 }
195
196 int test_part_efi(block_dev_desc_t * dev_desc)
197 {
198 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
199
200 /* Read legacy MBR from block 0 and validate it */
201 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
202 || (is_pmbr_valid(legacymbr) != 1)) {
203 return -1;
204 }
205 return 0;
206 }
207
208 /**
209 * set_protective_mbr(): Set the EFI protective MBR
210 * @param dev_desc - block device descriptor
211 *
212 * @return - zero on success, otherwise error
213 */
214 static int set_protective_mbr(block_dev_desc_t *dev_desc)
215 {
216 /* Setup the Protective MBR */
217 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
218 memset(p_mbr, 0, sizeof(*p_mbr));
219
220 if (p_mbr == NULL) {
221 printf("%s: calloc failed!\n", __func__);
222 return -1;
223 }
224 /* Append signature */
225 p_mbr->signature = MSDOS_MBR_SIGNATURE;
226 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
227 p_mbr->partition_record[0].start_sect = 1;
228 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
229
230 /* Write MBR sector to the MMC device */
231 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
232 printf("** Can't write to device %d **\n",
233 dev_desc->dev);
234 return -1;
235 }
236
237 return 0;
238 }
239
240 int write_gpt_table(block_dev_desc_t *dev_desc,
241 gpt_header *gpt_h, gpt_entry *gpt_e)
242 {
243 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
244 * sizeof(gpt_entry)), dev_desc);
245 u32 calc_crc32;
246 u64 val;
247
248 debug("max lba: %x\n", (u32) dev_desc->lba);
249 /* Setup the Protective MBR */
250 if (set_protective_mbr(dev_desc) < 0)
251 goto err;
252
253 /* Generate CRC for the Primary GPT Header */
254 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
255 le32_to_cpu(gpt_h->num_partition_entries) *
256 le32_to_cpu(gpt_h->sizeof_partition_entry));
257 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
258
259 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
260 le32_to_cpu(gpt_h->header_size));
261 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
262
263 /* Write the First GPT to the block right after the Legacy MBR */
264 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
265 goto err;
266
267 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
268 != pte_blk_cnt)
269 goto err;
270
271 /* recalculate the values for the Backup GPT Header */
272 val = le64_to_cpu(gpt_h->my_lba);
273 gpt_h->my_lba = gpt_h->alternate_lba;
274 gpt_h->alternate_lba = cpu_to_le64(val);
275 gpt_h->header_crc32 = 0;
276
277 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
278 le32_to_cpu(gpt_h->header_size));
279 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
280
281 if (dev_desc->block_write(dev_desc->dev,
282 le32_to_cpu(gpt_h->last_usable_lba) + 1,
283 pte_blk_cnt, gpt_e) != pte_blk_cnt)
284 goto err;
285
286 if (dev_desc->block_write(dev_desc->dev,
287 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
288 goto err;
289
290 debug("GPT successfully written to block device!\n");
291 return 0;
292
293 err:
294 printf("** Can't write to device %d **\n", dev_desc->dev);
295 return -1;
296 }
297
298 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
299 disk_partition_t *partitions, int parts)
300 {
301 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
302 ulong start;
303 u32 last_usable_lba = (u32)le32_to_cpu(gpt_h->last_usable_lba);
304 int i, k;
305 size_t efiname_len, dosname_len;
306 #ifdef CONFIG_PARTITION_UUIDS
307 char *str_uuid;
308 unsigned char *bin_uuid;
309 #endif
310
311 for (i = 0; i < parts; i++) {
312 /* partition starting lba */
313 start = partitions[i].start;
314 if (start && (start < offset)) {
315 printf("Partition overlap\n");
316 return -1;
317 }
318 if (start) {
319 gpt_e[i].starting_lba = cpu_to_le64(start);
320 offset = start + partitions[i].size;
321 } else {
322 gpt_e[i].starting_lba = cpu_to_le64(offset);
323 offset += partitions[i].size;
324 }
325 if (offset >= last_usable_lba) {
326 printf("Partitions layout exceds disk size\n");
327 return -1;
328 }
329 /* partition ending lba */
330 if ((i == parts - 1) && (partitions[i].size == 0))
331 /* extend the last partition to maximuim */
332 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
333 else
334 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
335
336 /* partition type GUID */
337 memcpy(gpt_e[i].partition_type_guid.b,
338 &PARTITION_BASIC_DATA_GUID, 16);
339
340 #ifdef CONFIG_PARTITION_UUIDS
341 str_uuid = partitions[i].uuid;
342 bin_uuid = gpt_e[i].unique_partition_guid.b;
343
344 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) {
345 printf("Partition no. %d: invalid guid: %s\n",
346 i, str_uuid);
347 return -1;
348 }
349 #endif
350
351 /* partition attributes */
352 memset(&gpt_e[i].attributes, 0,
353 sizeof(gpt_entry_attributes));
354
355 /* partition name */
356 efiname_len = sizeof(gpt_e[i].partition_name)
357 / sizeof(efi_char16_t);
358 dosname_len = sizeof(partitions[i].name);
359
360 memset(gpt_e[i].partition_name, 0,
361 sizeof(gpt_e[i].partition_name));
362
363 for (k = 0; k < min(dosname_len, efiname_len); k++)
364 gpt_e[i].partition_name[k] =
365 (efi_char16_t)(partitions[i].name[k]);
366
367 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
368 __func__, partitions[i].name, i,
369 offset, i, partitions[i].size);
370 }
371
372 return 0;
373 }
374
375 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
376 char *str_guid, int parts_count)
377 {
378 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
379 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
380 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
381 gpt_h->my_lba = cpu_to_le64(1);
382 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
383 gpt_h->first_usable_lba = cpu_to_le64(34);
384 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
385 gpt_h->partition_entry_lba = cpu_to_le64(2);
386 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
387 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
388 gpt_h->header_crc32 = 0;
389 gpt_h->partition_entry_array_crc32 = 0;
390
391 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
392 return -1;
393
394 return 0;
395 }
396
397 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
398 disk_partition_t *partitions, int parts_count)
399 {
400 int ret;
401
402 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
403 dev_desc));
404 gpt_entry *gpt_e;
405
406 if (gpt_h == NULL) {
407 printf("%s: calloc failed!\n", __func__);
408 return -1;
409 }
410
411 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
412 * sizeof(gpt_entry),
413 dev_desc));
414 if (gpt_e == NULL) {
415 printf("%s: calloc failed!\n", __func__);
416 free(gpt_h);
417 return -1;
418 }
419
420 /* Generate Primary GPT header (LBA1) */
421 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
422 if (ret)
423 goto err;
424
425 /* Generate partition entries */
426 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
427 if (ret)
428 goto err;
429
430 /* Write GPT partition table */
431 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
432
433 err:
434 free(gpt_e);
435 free(gpt_h);
436 return ret;
437 }
438 #endif
439
440 /*
441 * Private functions
442 */
443 /*
444 * pmbr_part_valid(): Check for EFI partition signature
445 *
446 * Returns: 1 if EFI GPT partition type is found.
447 */
448 static int pmbr_part_valid(struct partition *part)
449 {
450 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
451 get_unaligned_le32(&part->start_sect) == 1UL) {
452 return 1;
453 }
454
455 return 0;
456 }
457
458 /*
459 * is_pmbr_valid(): test Protective MBR for validity
460 *
461 * Returns: 1 if PMBR is valid, 0 otherwise.
462 * Validity depends on two things:
463 * 1) MSDOS signature is in the last two bytes of the MBR
464 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
465 */
466 static int is_pmbr_valid(legacy_mbr * mbr)
467 {
468 int i = 0;
469
470 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
471 return 0;
472
473 for (i = 0; i < 4; i++) {
474 if (pmbr_part_valid(&mbr->partition_record[i])) {
475 return 1;
476 }
477 }
478 return 0;
479 }
480
481 /**
482 * is_gpt_valid() - tests one GPT header and PTEs for validity
483 *
484 * lba is the logical block address of the GPT header to test
485 * gpt is a GPT header ptr, filled on return.
486 * ptes is a PTEs ptr, filled on return.
487 *
488 * Description: returns 1 if valid, 0 on error.
489 * If valid, returns pointers to PTEs.
490 */
491 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
492 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
493 {
494 u32 crc32_backup = 0;
495 u32 calc_crc32;
496 unsigned long long lastlba;
497
498 if (!dev_desc || !pgpt_head) {
499 printf("%s: Invalid Argument(s)\n", __func__);
500 return 0;
501 }
502
503 /* Read GPT Header from device */
504 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
505 printf("*** ERROR: Can't read GPT header ***\n");
506 return 0;
507 }
508
509 /* Check the GPT header signature */
510 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
511 printf("GUID Partition Table Header signature is wrong:"
512 "0x%llX != 0x%llX\n",
513 le64_to_cpu(pgpt_head->signature),
514 GPT_HEADER_SIGNATURE);
515 return 0;
516 }
517
518 /* Check the GUID Partition Table CRC */
519 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
520 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
521
522 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
523 le32_to_cpu(pgpt_head->header_size));
524
525 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
526
527 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
528 printf("GUID Partition Table Header CRC is wrong:"
529 "0x%x != 0x%x\n",
530 le32_to_cpu(crc32_backup), calc_crc32);
531 return 0;
532 }
533
534 /* Check that the my_lba entry points to the LBA that contains the GPT */
535 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
536 printf("GPT: my_lba incorrect: %llX != %llX\n",
537 le64_to_cpu(pgpt_head->my_lba),
538 lba);
539 return 0;
540 }
541
542 /* Check the first_usable_lba and last_usable_lba are within the disk. */
543 lastlba = (unsigned long long)dev_desc->lba;
544 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
545 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
546 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
547 return 0;
548 }
549 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
550 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
551 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
552 return 0;
553 }
554
555 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
556 le64_to_cpu(pgpt_head->first_usable_lba),
557 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
558
559 /* Read and allocate Partition Table Entries */
560 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
561 if (*pgpt_pte == NULL) {
562 printf("GPT: Failed to allocate memory for PTE\n");
563 return 0;
564 }
565
566 /* Check the GUID Partition Table Entry Array CRC */
567 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
568 le32_to_cpu(pgpt_head->num_partition_entries) *
569 le32_to_cpu(pgpt_head->sizeof_partition_entry));
570
571 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
572 printf("GUID Partition Table Entry Array CRC is wrong:"
573 "0x%x != 0x%x\n",
574 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
575 calc_crc32);
576
577 free(*pgpt_pte);
578 return 0;
579 }
580
581 /* We're done, all's well */
582 return 1;
583 }
584
585 /**
586 * alloc_read_gpt_entries(): reads partition entries from disk
587 * @dev_desc
588 * @gpt - GPT header
589 *
590 * Description: Returns ptes on success, NULL on error.
591 * Allocates space for PTEs based on information found in @gpt.
592 * Notes: remember to free pte when you're done!
593 */
594 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
595 gpt_header * pgpt_head)
596 {
597 size_t count = 0, blk_cnt;
598 gpt_entry *pte = NULL;
599
600 if (!dev_desc || !pgpt_head) {
601 printf("%s: Invalid Argument(s)\n", __func__);
602 return NULL;
603 }
604
605 count = le32_to_cpu(pgpt_head->num_partition_entries) *
606 le32_to_cpu(pgpt_head->sizeof_partition_entry);
607
608 debug("%s: count = %u * %u = %zu\n", __func__,
609 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
610 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
611
612 /* Allocate memory for PTE, remember to FREE */
613 if (count != 0) {
614 pte = memalign(ARCH_DMA_MINALIGN,
615 PAD_TO_BLOCKSIZE(count, dev_desc));
616 }
617
618 if (count == 0 || pte == NULL) {
619 printf("%s: ERROR: Can't allocate 0x%zX "
620 "bytes for GPT Entries\n",
621 __func__, count);
622 return NULL;
623 }
624
625 /* Read GPT Entries from device */
626 blk_cnt = BLOCK_CNT(count, dev_desc);
627 if (dev_desc->block_read (dev_desc->dev,
628 le64_to_cpu(pgpt_head->partition_entry_lba),
629 (lbaint_t) (blk_cnt), pte)
630 != blk_cnt) {
631
632 printf("*** ERROR: Can't read GPT Entries ***\n");
633 free(pte);
634 return NULL;
635 }
636 return pte;
637 }
638
639 /**
640 * is_pte_valid(): validates a single Partition Table Entry
641 * @gpt_entry - Pointer to a single Partition Table Entry
642 *
643 * Description: returns 1 if valid, 0 on error.
644 */
645 static int is_pte_valid(gpt_entry * pte)
646 {
647 efi_guid_t unused_guid;
648
649 if (!pte) {
650 printf("%s: Invalid Argument(s)\n", __func__);
651 return 0;
652 }
653
654 /* Only one validation for now:
655 * The GUID Partition Type != Unused Entry (ALL-ZERO)
656 */
657 memset(unused_guid.b, 0, sizeof(unused_guid.b));
658
659 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
660 sizeof(unused_guid.b)) == 0) {
661
662 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
663 (unsigned int)(uintptr_t)pte);
664
665 return 0;
666 } else {
667 return 1;
668 }
669 }
670 #endif