]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
part_efi: move uuid<->string conversion functions into lib/uuid.c
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * Problems with CONFIG_SYS_64BIT_LBA:
10 *
11 * struct disk_partition.start in include/part.h is sized as ulong.
12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13 * For now, it is cast back to ulong at assignment.
14 *
15 * This limits the maximum size of addressable storage to < 2 Terra Bytes
16 */
17 #include <asm/unaligned.h>
18 #include <common.h>
19 #include <command.h>
20 #include <ide.h>
21 #include <malloc.h>
22 #include <part_efi.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
67
68 static inline int is_bootable(gpt_entry *p)
69 {
70 return p->attributes.fields.legacy_bios_bootable ||
71 !memcmp(&(p->partition_type_guid), &system_guid,
72 sizeof(efi_guid_t));
73 }
74
75 #ifdef CONFIG_EFI_PARTITION
76 /*
77 * Public Functions (include/part.h)
78 */
79
80 void print_part_efi(block_dev_desc_t * dev_desc)
81 {
82 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
83 gpt_entry *gpt_pte = NULL;
84 int i = 0;
85 char uuid[37];
86 unsigned char *uuid_bin;
87
88 if (!dev_desc) {
89 printf("%s: Invalid Argument(s)\n", __func__);
90 return;
91 }
92 /* This function validates AND fills in the GPT header and PTE */
93 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
94 gpt_head, &gpt_pte) != 1) {
95 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
96 return;
97 }
98
99 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
100
101 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
102 printf("\tAttributes\n");
103 printf("\tType UUID\n");
104 printf("\tPartition UUID\n");
105
106 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
107 /* Stop at the first non valid PTE */
108 if (!is_pte_valid(&gpt_pte[i]))
109 break;
110
111 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
112 le64_to_cpu(gpt_pte[i].starting_lba),
113 le64_to_cpu(gpt_pte[i].ending_lba),
114 print_efiname(&gpt_pte[i]));
115 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
116 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
117 uuid_bin_to_str(uuid_bin, uuid);
118 printf("\ttype:\t%s\n", uuid);
119 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
120 uuid_bin_to_str(uuid_bin, uuid);
121 printf("\tuuid:\t%s\n", uuid);
122 }
123
124 /* Remember to free pte */
125 free(gpt_pte);
126 return;
127 }
128
129 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
130 disk_partition_t * info)
131 {
132 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
133 gpt_entry *gpt_pte = NULL;
134
135 /* "part" argument must be at least 1 */
136 if (!dev_desc || !info || part < 1) {
137 printf("%s: Invalid Argument(s)\n", __func__);
138 return -1;
139 }
140
141 /* This function validates AND fills in the GPT header and PTE */
142 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
143 gpt_head, &gpt_pte) != 1) {
144 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
145 return -1;
146 }
147
148 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
149 !is_pte_valid(&gpt_pte[part - 1])) {
150 debug("%s: *** ERROR: Invalid partition number %d ***\n",
151 __func__, part);
152 free(gpt_pte);
153 return -1;
154 }
155
156 /* The ulong casting limits the maximum disk size to 2 TB */
157 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
158 /* The ending LBA is inclusive, to calculate size, add 1 to it */
159 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
160 - info->start;
161 info->blksz = dev_desc->blksz;
162
163 sprintf((char *)info->name, "%s",
164 print_efiname(&gpt_pte[part - 1]));
165 sprintf((char *)info->type, "U-Boot");
166 info->bootable = is_bootable(&gpt_pte[part - 1]);
167 #ifdef CONFIG_PARTITION_UUIDS
168 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
169 #endif
170
171 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
172 info->start, info->size, info->name);
173
174 /* Remember to free pte */
175 free(gpt_pte);
176 return 0;
177 }
178
179 int test_part_efi(block_dev_desc_t * dev_desc)
180 {
181 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
182
183 /* Read legacy MBR from block 0 and validate it */
184 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
185 || (is_pmbr_valid(legacymbr) != 1)) {
186 return -1;
187 }
188 return 0;
189 }
190
191 /**
192 * set_protective_mbr(): Set the EFI protective MBR
193 * @param dev_desc - block device descriptor
194 *
195 * @return - zero on success, otherwise error
196 */
197 static int set_protective_mbr(block_dev_desc_t *dev_desc)
198 {
199 /* Setup the Protective MBR */
200 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
201 memset(p_mbr, 0, sizeof(*p_mbr));
202
203 if (p_mbr == NULL) {
204 printf("%s: calloc failed!\n", __func__);
205 return -1;
206 }
207 /* Append signature */
208 p_mbr->signature = MSDOS_MBR_SIGNATURE;
209 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
210 p_mbr->partition_record[0].start_sect = 1;
211 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
212
213 /* Write MBR sector to the MMC device */
214 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
215 printf("** Can't write to device %d **\n",
216 dev_desc->dev);
217 return -1;
218 }
219
220 return 0;
221 }
222
223 int write_gpt_table(block_dev_desc_t *dev_desc,
224 gpt_header *gpt_h, gpt_entry *gpt_e)
225 {
226 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
227 * sizeof(gpt_entry)), dev_desc);
228 u32 calc_crc32;
229 u64 val;
230
231 debug("max lba: %x\n", (u32) dev_desc->lba);
232 /* Setup the Protective MBR */
233 if (set_protective_mbr(dev_desc) < 0)
234 goto err;
235
236 /* Generate CRC for the Primary GPT Header */
237 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
238 le32_to_cpu(gpt_h->num_partition_entries) *
239 le32_to_cpu(gpt_h->sizeof_partition_entry));
240 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
241
242 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
243 le32_to_cpu(gpt_h->header_size));
244 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
245
246 /* Write the First GPT to the block right after the Legacy MBR */
247 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
248 goto err;
249
250 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
251 != pte_blk_cnt)
252 goto err;
253
254 /* recalculate the values for the Second GPT Header */
255 val = le64_to_cpu(gpt_h->my_lba);
256 gpt_h->my_lba = gpt_h->alternate_lba;
257 gpt_h->alternate_lba = cpu_to_le64(val);
258 gpt_h->header_crc32 = 0;
259
260 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
261 le32_to_cpu(gpt_h->header_size));
262 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
263
264 if (dev_desc->block_write(dev_desc->dev,
265 le32_to_cpu(gpt_h->last_usable_lba + 1),
266 pte_blk_cnt, gpt_e) != pte_blk_cnt)
267 goto err;
268
269 if (dev_desc->block_write(dev_desc->dev,
270 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
271 goto err;
272
273 debug("GPT successfully written to block device!\n");
274 return 0;
275
276 err:
277 printf("** Can't write to device %d **\n", dev_desc->dev);
278 return -1;
279 }
280
281 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
282 disk_partition_t *partitions, int parts)
283 {
284 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
285 ulong start;
286 int i, k;
287 size_t efiname_len, dosname_len;
288 #ifdef CONFIG_PARTITION_UUIDS
289 char *str_uuid;
290 unsigned char *bin_uuid;
291 #endif
292
293 for (i = 0; i < parts; i++) {
294 /* partition starting lba */
295 start = partitions[i].start;
296 if (start && (start < offset)) {
297 printf("Partition overlap\n");
298 return -1;
299 }
300 if (start) {
301 gpt_e[i].starting_lba = cpu_to_le64(start);
302 offset = start + partitions[i].size;
303 } else {
304 gpt_e[i].starting_lba = cpu_to_le64(offset);
305 offset += partitions[i].size;
306 }
307 if (offset >= gpt_h->last_usable_lba) {
308 printf("Partitions layout exceds disk size\n");
309 return -1;
310 }
311 /* partition ending lba */
312 if ((i == parts - 1) && (partitions[i].size == 0))
313 /* extend the last partition to maximuim */
314 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
315 else
316 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
317
318 /* partition type GUID */
319 memcpy(gpt_e[i].partition_type_guid.b,
320 &PARTITION_BASIC_DATA_GUID, 16);
321
322 #ifdef CONFIG_PARTITION_UUIDS
323 str_uuid = partitions[i].uuid;
324 bin_uuid = gpt_e[i].unique_partition_guid.b;
325
326 if (uuid_str_to_bin(str_uuid, bin_uuid)) {
327 printf("Partition no. %d: invalid guid: %s\n",
328 i, str_uuid);
329 return -1;
330 }
331 #endif
332
333 /* partition attributes */
334 memset(&gpt_e[i].attributes, 0,
335 sizeof(gpt_entry_attributes));
336
337 /* partition name */
338 efiname_len = sizeof(gpt_e[i].partition_name)
339 / sizeof(efi_char16_t);
340 dosname_len = sizeof(partitions[i].name);
341
342 memset(gpt_e[i].partition_name, 0,
343 sizeof(gpt_e[i].partition_name));
344
345 for (k = 0; k < min(dosname_len, efiname_len); k++)
346 gpt_e[i].partition_name[k] =
347 (efi_char16_t)(partitions[i].name[k]);
348
349 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
350 __func__, partitions[i].name, i,
351 offset, i, partitions[i].size);
352 }
353
354 return 0;
355 }
356
357 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
358 char *str_guid, int parts_count)
359 {
360 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
361 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
362 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
363 gpt_h->my_lba = cpu_to_le64(1);
364 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
365 gpt_h->first_usable_lba = cpu_to_le64(34);
366 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
367 gpt_h->partition_entry_lba = cpu_to_le64(2);
368 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
369 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
370 gpt_h->header_crc32 = 0;
371 gpt_h->partition_entry_array_crc32 = 0;
372
373 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b))
374 return -1;
375
376 return 0;
377 }
378
379 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
380 disk_partition_t *partitions, int parts_count)
381 {
382 int ret;
383
384 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
385 dev_desc));
386 gpt_entry *gpt_e;
387
388 if (gpt_h == NULL) {
389 printf("%s: calloc failed!\n", __func__);
390 return -1;
391 }
392
393 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
394 * sizeof(gpt_entry),
395 dev_desc));
396 if (gpt_e == NULL) {
397 printf("%s: calloc failed!\n", __func__);
398 free(gpt_h);
399 return -1;
400 }
401
402 /* Generate Primary GPT header (LBA1) */
403 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
404 if (ret)
405 goto err;
406
407 /* Generate partition entries */
408 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
409 if (ret)
410 goto err;
411
412 /* Write GPT partition table */
413 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
414
415 err:
416 free(gpt_e);
417 free(gpt_h);
418 return ret;
419 }
420 #endif
421
422 /*
423 * Private functions
424 */
425 /*
426 * pmbr_part_valid(): Check for EFI partition signature
427 *
428 * Returns: 1 if EFI GPT partition type is found.
429 */
430 static int pmbr_part_valid(struct partition *part)
431 {
432 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
433 get_unaligned_le32(&part->start_sect) == 1UL) {
434 return 1;
435 }
436
437 return 0;
438 }
439
440 /*
441 * is_pmbr_valid(): test Protective MBR for validity
442 *
443 * Returns: 1 if PMBR is valid, 0 otherwise.
444 * Validity depends on two things:
445 * 1) MSDOS signature is in the last two bytes of the MBR
446 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
447 */
448 static int is_pmbr_valid(legacy_mbr * mbr)
449 {
450 int i = 0;
451
452 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
453 return 0;
454
455 for (i = 0; i < 4; i++) {
456 if (pmbr_part_valid(&mbr->partition_record[i])) {
457 return 1;
458 }
459 }
460 return 0;
461 }
462
463 /**
464 * is_gpt_valid() - tests one GPT header and PTEs for validity
465 *
466 * lba is the logical block address of the GPT header to test
467 * gpt is a GPT header ptr, filled on return.
468 * ptes is a PTEs ptr, filled on return.
469 *
470 * Description: returns 1 if valid, 0 on error.
471 * If valid, returns pointers to PTEs.
472 */
473 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
474 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
475 {
476 u32 crc32_backup = 0;
477 u32 calc_crc32;
478 unsigned long long lastlba;
479
480 if (!dev_desc || !pgpt_head) {
481 printf("%s: Invalid Argument(s)\n", __func__);
482 return 0;
483 }
484
485 /* Read GPT Header from device */
486 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
487 printf("*** ERROR: Can't read GPT header ***\n");
488 return 0;
489 }
490
491 /* Check the GPT header signature */
492 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
493 printf("GUID Partition Table Header signature is wrong:"
494 "0x%llX != 0x%llX\n",
495 le64_to_cpu(pgpt_head->signature),
496 GPT_HEADER_SIGNATURE);
497 return 0;
498 }
499
500 /* Check the GUID Partition Table CRC */
501 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
502 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
503
504 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
505 le32_to_cpu(pgpt_head->header_size));
506
507 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
508
509 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
510 printf("GUID Partition Table Header CRC is wrong:"
511 "0x%x != 0x%x\n",
512 le32_to_cpu(crc32_backup), calc_crc32);
513 return 0;
514 }
515
516 /* Check that the my_lba entry points to the LBA that contains the GPT */
517 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
518 printf("GPT: my_lba incorrect: %llX != %llX\n",
519 le64_to_cpu(pgpt_head->my_lba),
520 lba);
521 return 0;
522 }
523
524 /* Check the first_usable_lba and last_usable_lba are within the disk. */
525 lastlba = (unsigned long long)dev_desc->lba;
526 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
527 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
528 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
529 return 0;
530 }
531 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
532 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
533 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
534 return 0;
535 }
536
537 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
538 le64_to_cpu(pgpt_head->first_usable_lba),
539 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
540
541 /* Read and allocate Partition Table Entries */
542 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
543 if (*pgpt_pte == NULL) {
544 printf("GPT: Failed to allocate memory for PTE\n");
545 return 0;
546 }
547
548 /* Check the GUID Partition Table Entry Array CRC */
549 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
550 le32_to_cpu(pgpt_head->num_partition_entries) *
551 le32_to_cpu(pgpt_head->sizeof_partition_entry));
552
553 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
554 printf("GUID Partition Table Entry Array CRC is wrong:"
555 "0x%x != 0x%x\n",
556 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
557 calc_crc32);
558
559 free(*pgpt_pte);
560 return 0;
561 }
562
563 /* We're done, all's well */
564 return 1;
565 }
566
567 /**
568 * alloc_read_gpt_entries(): reads partition entries from disk
569 * @dev_desc
570 * @gpt - GPT header
571 *
572 * Description: Returns ptes on success, NULL on error.
573 * Allocates space for PTEs based on information found in @gpt.
574 * Notes: remember to free pte when you're done!
575 */
576 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
577 gpt_header * pgpt_head)
578 {
579 size_t count = 0, blk_cnt;
580 gpt_entry *pte = NULL;
581
582 if (!dev_desc || !pgpt_head) {
583 printf("%s: Invalid Argument(s)\n", __func__);
584 return NULL;
585 }
586
587 count = le32_to_cpu(pgpt_head->num_partition_entries) *
588 le32_to_cpu(pgpt_head->sizeof_partition_entry);
589
590 debug("%s: count = %u * %u = %zu\n", __func__,
591 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
592 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
593
594 /* Allocate memory for PTE, remember to FREE */
595 if (count != 0) {
596 pte = memalign(ARCH_DMA_MINALIGN,
597 PAD_TO_BLOCKSIZE(count, dev_desc));
598 }
599
600 if (count == 0 || pte == NULL) {
601 printf("%s: ERROR: Can't allocate 0x%zX "
602 "bytes for GPT Entries\n",
603 __func__, count);
604 return NULL;
605 }
606
607 /* Read GPT Entries from device */
608 blk_cnt = BLOCK_CNT(count, dev_desc);
609 if (dev_desc->block_read (dev_desc->dev,
610 le64_to_cpu(pgpt_head->partition_entry_lba),
611 (lbaint_t) (blk_cnt), pte)
612 != blk_cnt) {
613
614 printf("*** ERROR: Can't read GPT Entries ***\n");
615 free(pte);
616 return NULL;
617 }
618 return pte;
619 }
620
621 /**
622 * is_pte_valid(): validates a single Partition Table Entry
623 * @gpt_entry - Pointer to a single Partition Table Entry
624 *
625 * Description: returns 1 if valid, 0 on error.
626 */
627 static int is_pte_valid(gpt_entry * pte)
628 {
629 efi_guid_t unused_guid;
630
631 if (!pte) {
632 printf("%s: Invalid Argument(s)\n", __func__);
633 return 0;
634 }
635
636 /* Only one validation for now:
637 * The GUID Partition Type != Unused Entry (ALL-ZERO)
638 */
639 memset(unused_guid.b, 0, sizeof(unused_guid.b));
640
641 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
642 sizeof(unused_guid.b)) == 0) {
643
644 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
645 (unsigned int)(uintptr_t)pte);
646
647 return 0;
648 } else {
649 return 1;
650 }
651 }
652 #endif