]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /*
25 * Problems with CONFIG_SYS_64BIT_LBA:
26 *
27 * struct disk_partition.start in include/part.h is sized as ulong.
28 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
29 * For now, it is cast back to ulong at assignment.
30 *
31 * This limits the maximum size of addressable storage to < 2 Terra Bytes
32 */
33 #include <common.h>
34 #include <command.h>
35 #include <ide.h>
36 #include <malloc.h>
37 #include <part_efi.h>
38 #include <linux/ctype.h>
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 #ifdef HAVE_BLOCK_DEVICE
43 /**
44 * efi_crc32() - EFI version of crc32 function
45 * @buf: buffer to calculate crc32 of
46 * @len - length of buf
47 *
48 * Description: Returns EFI-style CRC32 value for @buf
49 */
50 static inline u32 efi_crc32(const void *buf, u32 len)
51 {
52 return crc32(0, buf, len);
53 }
54
55 /*
56 * Private function prototypes
57 */
58
59 static int pmbr_part_valid(struct partition *part);
60 static int is_pmbr_valid(legacy_mbr * mbr);
61 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
62 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
63 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
64 gpt_header * pgpt_head);
65 static int is_pte_valid(gpt_entry * pte);
66
67 static char *print_efiname(gpt_entry *pte)
68 {
69 static char name[PARTNAME_SZ + 1];
70 int i;
71 for (i = 0; i < PARTNAME_SZ; i++) {
72 u8 c;
73 c = pte->partition_name[i] & 0xff;
74 c = (c && !isprint(c)) ? '.' : c;
75 name[i] = c;
76 }
77 name[PARTNAME_SZ] = 0;
78 return name;
79 }
80
81 static void uuid_string(unsigned char *uuid, char *str)
82 {
83 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
84 12, 13, 14, 15};
85 int i;
86
87 for (i = 0; i < 16; i++) {
88 sprintf(str, "%02x", uuid[le[i]]);
89 str += 2;
90 switch (i) {
91 case 3:
92 case 5:
93 case 7:
94 case 9:
95 *str++ = '-';
96 break;
97 }
98 }
99 }
100
101 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
102
103 static inline int is_bootable(gpt_entry *p)
104 {
105 return p->attributes.fields.legacy_bios_bootable ||
106 !memcmp(&(p->partition_type_guid), &system_guid,
107 sizeof(efi_guid_t));
108 }
109
110 #ifdef CONFIG_EFI_PARTITION
111 /*
112 * Public Functions (include/part.h)
113 */
114
115 void print_part_efi(block_dev_desc_t * dev_desc)
116 {
117 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
118 gpt_entry *gpt_pte = NULL;
119 int i = 0;
120 char uuid[37];
121
122 if (!dev_desc) {
123 printf("%s: Invalid Argument(s)\n", __func__);
124 return;
125 }
126 /* This function validates AND fills in the GPT header and PTE */
127 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
128 gpt_head, &gpt_pte) != 1) {
129 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
130 return;
131 }
132
133 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
134
135 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
136 printf("\tAttributes\n");
137 printf("\tType UUID\n");
138 printf("\tPartition UUID\n");
139
140 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
141 /* Stop at the first non valid PTE */
142 if (!is_pte_valid(&gpt_pte[i]))
143 break;
144
145 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
146 le64_to_cpu(gpt_pte[i].starting_lba),
147 le64_to_cpu(gpt_pte[i].ending_lba),
148 print_efiname(&gpt_pte[i]));
149 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
150 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
151 printf("\ttype:\t%s\n", uuid);
152 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
153 printf("\tuuid:\t%s\n", uuid);
154 }
155
156 /* Remember to free pte */
157 free(gpt_pte);
158 return;
159 }
160
161 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
162 disk_partition_t * info)
163 {
164 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
165 gpt_entry *gpt_pte = NULL;
166
167 /* "part" argument must be at least 1 */
168 if (!dev_desc || !info || part < 1) {
169 printf("%s: Invalid Argument(s)\n", __func__);
170 return -1;
171 }
172
173 /* This function validates AND fills in the GPT header and PTE */
174 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
175 gpt_head, &gpt_pte) != 1) {
176 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
177 return -1;
178 }
179
180 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
181 !is_pte_valid(&gpt_pte[part - 1])) {
182 printf("%s: *** ERROR: Invalid partition number %d ***\n",
183 __func__, part);
184 return -1;
185 }
186
187 /* The ulong casting limits the maximum disk size to 2 TB */
188 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
189 /* The ending LBA is inclusive, to calculate size, add 1 to it */
190 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
191 - info->start;
192 info->blksz = GPT_BLOCK_SIZE;
193
194 sprintf((char *)info->name, "%s",
195 print_efiname(&gpt_pte[part - 1]));
196 sprintf((char *)info->type, "U-Boot");
197 info->bootable = is_bootable(&gpt_pte[part - 1]);
198 #ifdef CONFIG_PARTITION_UUIDS
199 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
200 #endif
201
202 debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
203 info->start, info->size, info->name);
204
205 /* Remember to free pte */
206 free(gpt_pte);
207 return 0;
208 }
209
210 int test_part_efi(block_dev_desc_t * dev_desc)
211 {
212 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
213
214 /* Read legacy MBR from block 0 and validate it */
215 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
216 || (is_pmbr_valid(legacymbr) != 1)) {
217 return -1;
218 }
219 return 0;
220 }
221
222 /**
223 * set_protective_mbr(): Set the EFI protective MBR
224 * @param dev_desc - block device descriptor
225 *
226 * @return - zero on success, otherwise error
227 */
228 static int set_protective_mbr(block_dev_desc_t *dev_desc)
229 {
230 legacy_mbr *p_mbr;
231
232 /* Setup the Protective MBR */
233 p_mbr = calloc(1, sizeof(p_mbr));
234 if (p_mbr == NULL) {
235 printf("%s: calloc failed!\n", __func__);
236 return -1;
237 }
238 /* Append signature */
239 p_mbr->signature = MSDOS_MBR_SIGNATURE;
240 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
241 p_mbr->partition_record[0].start_sect = 1;
242 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
243
244 /* Write MBR sector to the MMC device */
245 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
246 printf("** Can't write to device %d **\n",
247 dev_desc->dev);
248 free(p_mbr);
249 return -1;
250 }
251
252 free(p_mbr);
253 return 0;
254 }
255
256 /**
257 * string_uuid(); Convert UUID stored as string to bytes
258 *
259 * @param uuid - UUID represented as string
260 * @param dst - GUID buffer
261 *
262 * @return return 0 on successful conversion
263 */
264 static int string_uuid(char *uuid, u8 *dst)
265 {
266 efi_guid_t guid;
267 u16 b, c, d;
268 u64 e;
269 u32 a;
270 u8 *p;
271 u8 i;
272
273 const u8 uuid_str_len = 36;
274
275 /* The UUID is written in text: */
276 /* 1 9 14 19 24 */
277 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
278
279 debug("%s: uuid: %s\n", __func__, uuid);
280
281 if (strlen(uuid) != uuid_str_len)
282 return -1;
283
284 for (i = 0; i < uuid_str_len; i++) {
285 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
286 if (uuid[i] != '-')
287 return -1;
288 } else {
289 if (!isxdigit(uuid[i]))
290 return -1;
291 }
292 }
293
294 a = (u32)simple_strtoul(uuid, NULL, 16);
295 b = (u16)simple_strtoul(uuid + 9, NULL, 16);
296 c = (u16)simple_strtoul(uuid + 14, NULL, 16);
297 d = (u16)simple_strtoul(uuid + 19, NULL, 16);
298 e = (u64)simple_strtoull(uuid + 24, NULL, 16);
299
300 p = (u8 *) &e;
301 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
302 *(p + 5), *(p + 4), *(p + 3),
303 *(p + 2), *(p + 1) , *p);
304
305 memcpy(dst, guid.b, sizeof(efi_guid_t));
306
307 return 0;
308 }
309
310 int write_gpt_table(block_dev_desc_t *dev_desc,
311 gpt_header *gpt_h, gpt_entry *gpt_e)
312 {
313 const int pte_blk_num = (gpt_h->num_partition_entries
314 * sizeof(gpt_entry)) / dev_desc->blksz;
315
316 u32 calc_crc32;
317 u64 val;
318
319 debug("max lba: %x\n", (u32) dev_desc->lba);
320 /* Setup the Protective MBR */
321 if (set_protective_mbr(dev_desc) < 0)
322 goto err;
323
324 /* Generate CRC for the Primary GPT Header */
325 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
326 le32_to_cpu(gpt_h->num_partition_entries) *
327 le32_to_cpu(gpt_h->sizeof_partition_entry));
328 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
329
330 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
331 le32_to_cpu(gpt_h->header_size));
332 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
333
334 /* Write the First GPT to the block right after the Legacy MBR */
335 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
336 goto err;
337
338 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_num, gpt_e)
339 != pte_blk_num)
340 goto err;
341
342 /* recalculate the values for the Second GPT Header */
343 val = le64_to_cpu(gpt_h->my_lba);
344 gpt_h->my_lba = gpt_h->alternate_lba;
345 gpt_h->alternate_lba = cpu_to_le64(val);
346 gpt_h->header_crc32 = 0;
347
348 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
349 le32_to_cpu(gpt_h->header_size));
350 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
351
352 if (dev_desc->block_write(dev_desc->dev,
353 le32_to_cpu(gpt_h->last_usable_lba + 1),
354 pte_blk_num, gpt_e) != pte_blk_num)
355 goto err;
356
357 if (dev_desc->block_write(dev_desc->dev,
358 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
359 goto err;
360
361 debug("GPT successfully written to block device!\n");
362 return 0;
363
364 err:
365 printf("** Can't write to device %d **\n", dev_desc->dev);
366 return -1;
367 }
368
369 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
370 disk_partition_t *partitions, int parts)
371 {
372 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
373 ulong start;
374 int i, k;
375 size_t name_len;
376 #ifdef CONFIG_PARTITION_UUIDS
377 char *str_uuid;
378 #endif
379
380 for (i = 0; i < parts; i++) {
381 /* partition starting lba */
382 start = partitions[i].start;
383 if (start && (start < offset)) {
384 printf("Partition overlap\n");
385 return -1;
386 }
387 if (start) {
388 gpt_e[i].starting_lba = cpu_to_le64(start);
389 offset = start + partitions[i].size;
390 } else {
391 gpt_e[i].starting_lba = cpu_to_le64(offset);
392 offset += partitions[i].size;
393 }
394 if (offset >= gpt_h->last_usable_lba) {
395 printf("Partitions layout exceds disk size\n");
396 return -1;
397 }
398 /* partition ending lba */
399 if ((i == parts - 1) && (partitions[i].size == 0))
400 /* extend the last partition to maximuim */
401 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
402 else
403 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
404
405 /* partition type GUID */
406 memcpy(gpt_e[i].partition_type_guid.b,
407 &PARTITION_BASIC_DATA_GUID, 16);
408
409 #ifdef CONFIG_PARTITION_UUIDS
410 str_uuid = partitions[i].uuid;
411 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
412 printf("Partition no. %d: invalid guid: %s\n",
413 i, str_uuid);
414 return -1;
415 }
416 #endif
417
418 /* partition attributes */
419 memset(&gpt_e[i].attributes, 0,
420 sizeof(gpt_entry_attributes));
421
422 /* partition name */
423 name_len = sizeof(gpt_e[i].partition_name)
424 / sizeof(efi_char16_t);
425 for (k = 0; k < name_len; k++)
426 gpt_e[i].partition_name[k] =
427 (efi_char16_t)(partitions[i].name[k]);
428
429 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x%lx\n",
430 __func__, partitions[i].name, i,
431 offset, i, partitions[i].size);
432 }
433
434 return 0;
435 }
436
437 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
438 char *str_guid, int parts_count)
439 {
440 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
441 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
442 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
443 gpt_h->my_lba = cpu_to_le64(1);
444 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
445 gpt_h->first_usable_lba = cpu_to_le64(34);
446 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
447 gpt_h->partition_entry_lba = cpu_to_le64(2);
448 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
449 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
450 gpt_h->header_crc32 = 0;
451 gpt_h->partition_entry_array_crc32 = 0;
452
453 if (string_uuid(str_guid, gpt_h->disk_guid.b))
454 return -1;
455
456 return 0;
457 }
458
459 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
460 disk_partition_t *partitions, int parts_count)
461 {
462 int ret;
463
464 gpt_header *gpt_h = calloc(1, sizeof(gpt_header));
465 if (gpt_h == NULL) {
466 printf("%s: calloc failed!\n", __func__);
467 return -1;
468 }
469
470 gpt_entry *gpt_e = calloc(GPT_ENTRY_NUMBERS, sizeof(gpt_entry));
471 if (gpt_e == NULL) {
472 printf("%s: calloc failed!\n", __func__);
473 free(gpt_h);
474 return -1;
475 }
476
477 /* Generate Primary GPT header (LBA1) */
478 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
479 if (ret)
480 goto err;
481
482 /* Generate partition entries */
483 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
484 if (ret)
485 goto err;
486
487 /* Write GPT partition table */
488 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
489
490 err:
491 free(gpt_e);
492 free(gpt_h);
493 return ret;
494 }
495 #endif
496
497 /*
498 * Private functions
499 */
500 /*
501 * pmbr_part_valid(): Check for EFI partition signature
502 *
503 * Returns: 1 if EFI GPT partition type is found.
504 */
505 static int pmbr_part_valid(struct partition *part)
506 {
507 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
508 le32_to_cpu(part->start_sect) == 1UL) {
509 return 1;
510 }
511
512 return 0;
513 }
514
515 /*
516 * is_pmbr_valid(): test Protective MBR for validity
517 *
518 * Returns: 1 if PMBR is valid, 0 otherwise.
519 * Validity depends on two things:
520 * 1) MSDOS signature is in the last two bytes of the MBR
521 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
522 */
523 static int is_pmbr_valid(legacy_mbr * mbr)
524 {
525 int i = 0;
526
527 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
528 return 0;
529
530 for (i = 0; i < 4; i++) {
531 if (pmbr_part_valid(&mbr->partition_record[i])) {
532 return 1;
533 }
534 }
535 return 0;
536 }
537
538 /**
539 * is_gpt_valid() - tests one GPT header and PTEs for validity
540 *
541 * lba is the logical block address of the GPT header to test
542 * gpt is a GPT header ptr, filled on return.
543 * ptes is a PTEs ptr, filled on return.
544 *
545 * Description: returns 1 if valid, 0 on error.
546 * If valid, returns pointers to PTEs.
547 */
548 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
549 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
550 {
551 u32 crc32_backup = 0;
552 u32 calc_crc32;
553 unsigned long long lastlba;
554
555 if (!dev_desc || !pgpt_head) {
556 printf("%s: Invalid Argument(s)\n", __func__);
557 return 0;
558 }
559
560 /* Read GPT Header from device */
561 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
562 printf("*** ERROR: Can't read GPT header ***\n");
563 return 0;
564 }
565
566 /* Check the GPT header signature */
567 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
568 printf("GUID Partition Table Header signature is wrong:"
569 "0x%llX != 0x%llX\n",
570 le64_to_cpu(pgpt_head->signature),
571 GPT_HEADER_SIGNATURE);
572 return 0;
573 }
574
575 /* Check the GUID Partition Table CRC */
576 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
577 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
578
579 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
580 le32_to_cpu(pgpt_head->header_size));
581
582 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
583
584 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
585 printf("GUID Partition Table Header CRC is wrong:"
586 "0x%x != 0x%x\n",
587 le32_to_cpu(crc32_backup), calc_crc32);
588 return 0;
589 }
590
591 /* Check that the my_lba entry points to the LBA that contains the GPT */
592 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
593 printf("GPT: my_lba incorrect: %llX != %llX\n",
594 le64_to_cpu(pgpt_head->my_lba),
595 lba);
596 return 0;
597 }
598
599 /* Check the first_usable_lba and last_usable_lba are within the disk. */
600 lastlba = (unsigned long long)dev_desc->lba;
601 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
602 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
603 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
604 return 0;
605 }
606 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
607 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
608 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
609 return 0;
610 }
611
612 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
613 le64_to_cpu(pgpt_head->first_usable_lba),
614 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
615
616 /* Read and allocate Partition Table Entries */
617 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
618 if (*pgpt_pte == NULL) {
619 printf("GPT: Failed to allocate memory for PTE\n");
620 return 0;
621 }
622
623 /* Check the GUID Partition Table Entry Array CRC */
624 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
625 le32_to_cpu(pgpt_head->num_partition_entries) *
626 le32_to_cpu(pgpt_head->sizeof_partition_entry));
627
628 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
629 printf("GUID Partition Table Entry Array CRC is wrong:"
630 "0x%x != 0x%x\n",
631 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
632 calc_crc32);
633
634 free(*pgpt_pte);
635 return 0;
636 }
637
638 /* We're done, all's well */
639 return 1;
640 }
641
642 /**
643 * alloc_read_gpt_entries(): reads partition entries from disk
644 * @dev_desc
645 * @gpt - GPT header
646 *
647 * Description: Returns ptes on success, NULL on error.
648 * Allocates space for PTEs based on information found in @gpt.
649 * Notes: remember to free pte when you're done!
650 */
651 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
652 gpt_header * pgpt_head)
653 {
654 size_t count = 0;
655 gpt_entry *pte = NULL;
656
657 if (!dev_desc || !pgpt_head) {
658 printf("%s: Invalid Argument(s)\n", __func__);
659 return NULL;
660 }
661
662 count = le32_to_cpu(pgpt_head->num_partition_entries) *
663 le32_to_cpu(pgpt_head->sizeof_partition_entry);
664
665 debug("%s: count = %u * %u = %zu\n", __func__,
666 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
667 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
668
669 /* Allocate memory for PTE, remember to FREE */
670 if (count != 0) {
671 pte = memalign(ARCH_DMA_MINALIGN, count);
672 }
673
674 if (count == 0 || pte == NULL) {
675 printf("%s: ERROR: Can't allocate 0x%zX "
676 "bytes for GPT Entries\n",
677 __func__, count);
678 return NULL;
679 }
680
681 /* Read GPT Entries from device */
682 if (dev_desc->block_read (dev_desc->dev,
683 le64_to_cpu(pgpt_head->partition_entry_lba),
684 (lbaint_t) (count / GPT_BLOCK_SIZE), pte)
685 != (count / GPT_BLOCK_SIZE)) {
686
687 printf("*** ERROR: Can't read GPT Entries ***\n");
688 free(pte);
689 return NULL;
690 }
691 return pte;
692 }
693
694 /**
695 * is_pte_valid(): validates a single Partition Table Entry
696 * @gpt_entry - Pointer to a single Partition Table Entry
697 *
698 * Description: returns 1 if valid, 0 on error.
699 */
700 static int is_pte_valid(gpt_entry * pte)
701 {
702 efi_guid_t unused_guid;
703
704 if (!pte) {
705 printf("%s: Invalid Argument(s)\n", __func__);
706 return 0;
707 }
708
709 /* Only one validation for now:
710 * The GUID Partition Type != Unused Entry (ALL-ZERO)
711 */
712 memset(unused_guid.b, 0, sizeof(unused_guid.b));
713
714 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
715 sizeof(unused_guid.b)) == 0) {
716
717 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
718 (unsigned int)(uintptr_t)pte);
719
720 return 0;
721 } else {
722 return 1;
723 }
724 }
725 #endif