]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
disk: part_efi: print raw partition attributes
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /*
25 * Problems with CONFIG_SYS_64BIT_LBA:
26 *
27 * struct disk_partition.start in include/part.h is sized as ulong.
28 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
29 * For now, it is cast back to ulong at assignment.
30 *
31 * This limits the maximum size of addressable storage to < 2 Terra Bytes
32 */
33 #include <common.h>
34 #include <command.h>
35 #include <ide.h>
36 #include <malloc.h>
37 #include "part_efi.h"
38 #include <linux/ctype.h>
39
40 #if defined(CONFIG_CMD_IDE) || \
41 defined(CONFIG_CMD_SATA) || \
42 defined(CONFIG_CMD_SCSI) || \
43 defined(CONFIG_CMD_USB) || \
44 defined(CONFIG_MMC) || \
45 defined(CONFIG_SYSTEMACE)
46
47 /* Convert char[2] in little endian format to the host format integer
48 */
49 static inline unsigned short le16_to_int(unsigned char *le16)
50 {
51 return ((le16[1] << 8) + le16[0]);
52 }
53
54 /* Convert char[4] in little endian format to the host format integer
55 */
56 static inline unsigned long le32_to_int(unsigned char *le32)
57 {
58 return ((le32[3] << 24) + (le32[2] << 16) + (le32[1] << 8) + le32[0]);
59 }
60
61 /* Convert char[8] in little endian format to the host format integer
62 */
63 static inline unsigned long long le64_to_int(unsigned char *le64)
64 {
65 return (((unsigned long long)le64[7] << 56) +
66 ((unsigned long long)le64[6] << 48) +
67 ((unsigned long long)le64[5] << 40) +
68 ((unsigned long long)le64[4] << 32) +
69 ((unsigned long long)le64[3] << 24) +
70 ((unsigned long long)le64[2] << 16) +
71 ((unsigned long long)le64[1] << 8) +
72 (unsigned long long)le64[0]);
73 }
74
75 /**
76 * efi_crc32() - EFI version of crc32 function
77 * @buf: buffer to calculate crc32 of
78 * @len - length of buf
79 *
80 * Description: Returns EFI-style CRC32 value for @buf
81 */
82 static inline unsigned long efi_crc32(const void *buf, unsigned long len)
83 {
84 return crc32(0, buf, len);
85 }
86
87 /*
88 * Private function prototypes
89 */
90
91 static int pmbr_part_valid(struct partition *part);
92 static int is_pmbr_valid(legacy_mbr * mbr);
93
94 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
95 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
96
97 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
98 gpt_header * pgpt_head);
99
100 static int is_pte_valid(gpt_entry * pte);
101
102 static char *print_efiname(gpt_entry *pte)
103 {
104 static char name[PARTNAME_SZ + 1];
105 int i;
106 for (i = 0; i < PARTNAME_SZ; i++) {
107 u8 c;
108 c = pte->partition_name[i] & 0xff;
109 c = (c && !isprint(c)) ? '.' : c;
110 name[i] = c;
111 }
112 name[PARTNAME_SZ] = 0;
113 return name;
114 }
115
116 static void uuid_string(unsigned char *uuid, char *str)
117 {
118 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
119 12, 13, 14, 15};
120 int i;
121
122 for (i = 0; i < 16; i++) {
123 sprintf(str, "%02x", uuid[le[i]]);
124 str += 2;
125 switch (i) {
126 case 3:
127 case 5:
128 case 7:
129 case 9:
130 *str++ = '-';
131 break;
132 }
133 }
134 }
135
136 /*
137 * Public Functions (include/part.h)
138 */
139
140 void print_part_efi(block_dev_desc_t * dev_desc)
141 {
142 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
143 gpt_entry *gpt_pte = NULL;
144 int i = 0;
145 char uuid[37];
146
147 if (!dev_desc) {
148 printf("%s: Invalid Argument(s)\n", __func__);
149 return;
150 }
151 /* This function validates AND fills in the GPT header and PTE */
152 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
153 gpt_head, &gpt_pte) != 1) {
154 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
155 return;
156 }
157
158 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
159
160 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
161 printf("\tAttributes\n");
162 printf("\tType UUID\n");
163 printf("\tPartition UUID\n");
164
165 for (i = 0; i < le32_to_int(gpt_head->num_partition_entries); i++) {
166 /* Stop at the first non valid PTE */
167 if (!is_pte_valid(&gpt_pte[i]))
168 break;
169
170 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
171 le64_to_int(gpt_pte[i].starting_lba),
172 le64_to_int(gpt_pte[i].ending_lba),
173 print_efiname(&gpt_pte[i]));
174 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
175 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
176 printf("\ttype:\t%s\n", uuid);
177 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
178 printf("\tuuid:\t%s\n", uuid);
179 }
180
181 /* Remember to free pte */
182 free(gpt_pte);
183 return;
184 }
185
186 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
187 disk_partition_t * info)
188 {
189 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
190 gpt_entry *gpt_pte = NULL;
191
192 /* "part" argument must be at least 1 */
193 if (!dev_desc || !info || part < 1) {
194 printf("%s: Invalid Argument(s)\n", __func__);
195 return -1;
196 }
197
198 /* This function validates AND fills in the GPT header and PTE */
199 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
200 gpt_head, &gpt_pte) != 1) {
201 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
202 return -1;
203 }
204
205 if (part > le32_to_int(gpt_head->num_partition_entries) ||
206 !is_pte_valid(&gpt_pte[part - 1])) {
207 printf("%s: *** ERROR: Invalid partition number %d ***\n",
208 __func__, part);
209 return -1;
210 }
211
212 /* The ulong casting limits the maximum disk size to 2 TB */
213 info->start = (ulong) le64_to_int(gpt_pte[part - 1].starting_lba);
214 /* The ending LBA is inclusive, to calculate size, add 1 to it */
215 info->size = ((ulong)le64_to_int(gpt_pte[part - 1].ending_lba) + 1)
216 - info->start;
217 info->blksz = GPT_BLOCK_SIZE;
218
219 sprintf((char *)info->name, "%s",
220 print_efiname(&gpt_pte[part - 1]));
221 sprintf((char *)info->type, "U-Boot");
222 #ifdef CONFIG_PARTITION_UUIDS
223 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
224 #endif
225
226 debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
227 info->start, info->size, info->name);
228
229 /* Remember to free pte */
230 free(gpt_pte);
231 return 0;
232 }
233
234 int test_part_efi(block_dev_desc_t * dev_desc)
235 {
236 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
237
238 /* Read legacy MBR from block 0 and validate it */
239 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
240 || (is_pmbr_valid(legacymbr) != 1)) {
241 return -1;
242 }
243 return 0;
244 }
245
246 /*
247 * Private functions
248 */
249 /*
250 * pmbr_part_valid(): Check for EFI partition signature
251 *
252 * Returns: 1 if EFI GPT partition type is found.
253 */
254 static int pmbr_part_valid(struct partition *part)
255 {
256 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
257 le32_to_int(part->start_sect) == 1UL) {
258 return 1;
259 }
260
261 return 0;
262 }
263
264 /*
265 * is_pmbr_valid(): test Protective MBR for validity
266 *
267 * Returns: 1 if PMBR is valid, 0 otherwise.
268 * Validity depends on two things:
269 * 1) MSDOS signature is in the last two bytes of the MBR
270 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
271 */
272 static int is_pmbr_valid(legacy_mbr * mbr)
273 {
274 int i = 0;
275
276 if (!mbr || le16_to_int(mbr->signature) != MSDOS_MBR_SIGNATURE) {
277 return 0;
278 }
279
280 for (i = 0; i < 4; i++) {
281 if (pmbr_part_valid(&mbr->partition_record[i])) {
282 return 1;
283 }
284 }
285 return 0;
286 }
287
288 /**
289 * is_gpt_valid() - tests one GPT header and PTEs for validity
290 *
291 * lba is the logical block address of the GPT header to test
292 * gpt is a GPT header ptr, filled on return.
293 * ptes is a PTEs ptr, filled on return.
294 *
295 * Description: returns 1 if valid, 0 on error.
296 * If valid, returns pointers to PTEs.
297 */
298 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
299 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
300 {
301 unsigned char crc32_backup[4] = { 0 };
302 unsigned long calc_crc32;
303 unsigned long long lastlba;
304
305 if (!dev_desc || !pgpt_head) {
306 printf("%s: Invalid Argument(s)\n", __func__);
307 return 0;
308 }
309
310 /* Read GPT Header from device */
311 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
312 printf("*** ERROR: Can't read GPT header ***\n");
313 return 0;
314 }
315
316 /* Check the GPT header signature */
317 if (le64_to_int(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
318 printf("GUID Partition Table Header signature is wrong:"
319 "0x%llX != 0x%llX\n",
320 (unsigned long long)le64_to_int(pgpt_head->signature),
321 (unsigned long long)GPT_HEADER_SIGNATURE);
322 return 0;
323 }
324
325 /* Check the GUID Partition Table CRC */
326 memcpy(crc32_backup, pgpt_head->header_crc32, sizeof(crc32_backup));
327 memset(pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
328
329 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
330 le32_to_int(pgpt_head->header_size));
331
332 memcpy(pgpt_head->header_crc32, crc32_backup, sizeof(crc32_backup));
333
334 if (calc_crc32 != le32_to_int(crc32_backup)) {
335 printf("GUID Partition Table Header CRC is wrong:"
336 "0x%08lX != 0x%08lX\n",
337 le32_to_int(crc32_backup), calc_crc32);
338 return 0;
339 }
340
341 /* Check that the my_lba entry points to the LBA that contains the GPT */
342 if (le64_to_int(pgpt_head->my_lba) != lba) {
343 printf("GPT: my_lba incorrect: %llX != %llX\n",
344 (unsigned long long)le64_to_int(pgpt_head->my_lba),
345 (unsigned long long)lba);
346 return 0;
347 }
348
349 /* Check the first_usable_lba and last_usable_lba are within the disk. */
350 lastlba = (unsigned long long)dev_desc->lba;
351 if (le64_to_int(pgpt_head->first_usable_lba) > lastlba) {
352 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
353 le64_to_int(pgpt_head->first_usable_lba), lastlba);
354 return 0;
355 }
356 if (le64_to_int(pgpt_head->last_usable_lba) > lastlba) {
357 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
358 le64_to_int(pgpt_head->last_usable_lba), lastlba);
359 return 0;
360 }
361
362 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
363 le64_to_int(pgpt_head->first_usable_lba),
364 le64_to_int(pgpt_head->last_usable_lba), lastlba);
365
366 /* Read and allocate Partition Table Entries */
367 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
368 if (*pgpt_pte == NULL) {
369 printf("GPT: Failed to allocate memory for PTE\n");
370 return 0;
371 }
372
373 /* Check the GUID Partition Table Entry Array CRC */
374 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
375 le32_to_int(pgpt_head->num_partition_entries) *
376 le32_to_int(pgpt_head->sizeof_partition_entry));
377
378 if (calc_crc32 != le32_to_int(pgpt_head->partition_entry_array_crc32)) {
379 printf("GUID Partition Table Entry Array CRC is wrong:"
380 "0x%08lX != 0x%08lX\n",
381 le32_to_int(pgpt_head->partition_entry_array_crc32),
382 calc_crc32);
383
384 free(*pgpt_pte);
385 return 0;
386 }
387
388 /* We're done, all's well */
389 return 1;
390 }
391
392 /**
393 * alloc_read_gpt_entries(): reads partition entries from disk
394 * @dev_desc
395 * @gpt - GPT header
396 *
397 * Description: Returns ptes on success, NULL on error.
398 * Allocates space for PTEs based on information found in @gpt.
399 * Notes: remember to free pte when you're done!
400 */
401 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
402 gpt_header * pgpt_head)
403 {
404 size_t count = 0;
405 gpt_entry *pte = NULL;
406
407 if (!dev_desc || !pgpt_head) {
408 printf("%s: Invalid Argument(s)\n", __func__);
409 return NULL;
410 }
411
412 count = le32_to_int(pgpt_head->num_partition_entries) *
413 le32_to_int(pgpt_head->sizeof_partition_entry);
414
415 debug("%s: count = %lu * %lu = %u\n", __func__,
416 le32_to_int(pgpt_head->num_partition_entries),
417 le32_to_int(pgpt_head->sizeof_partition_entry), count);
418
419 /* Allocate memory for PTE, remember to FREE */
420 if (count != 0) {
421 pte = memalign(ARCH_DMA_MINALIGN, count);
422 }
423
424 if (count == 0 || pte == NULL) {
425 printf("%s: ERROR: Can't allocate 0x%X bytes for GPT Entries\n",
426 __func__, count);
427 return NULL;
428 }
429
430 /* Read GPT Entries from device */
431 if (dev_desc->block_read (dev_desc->dev,
432 (unsigned long)le64_to_int(pgpt_head->partition_entry_lba),
433 (lbaint_t) (count / GPT_BLOCK_SIZE), pte)
434 != (count / GPT_BLOCK_SIZE)) {
435
436 printf("*** ERROR: Can't read GPT Entries ***\n");
437 free(pte);
438 return NULL;
439 }
440 return pte;
441 }
442
443 /**
444 * is_pte_valid(): validates a single Partition Table Entry
445 * @gpt_entry - Pointer to a single Partition Table Entry
446 *
447 * Description: returns 1 if valid, 0 on error.
448 */
449 static int is_pte_valid(gpt_entry * pte)
450 {
451 efi_guid_t unused_guid;
452
453 if (!pte) {
454 printf("%s: Invalid Argument(s)\n", __func__);
455 return 0;
456 }
457
458 /* Only one validation for now:
459 * The GUID Partition Type != Unused Entry (ALL-ZERO)
460 */
461 memset(unused_guid.b, 0, sizeof(unused_guid.b));
462
463 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
464 sizeof(unused_guid.b)) == 0) {
465
466 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
467 (unsigned int)pte);
468
469 return 0;
470 } else {
471 return 1;
472 }
473 }
474 #endif