]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * Problems with CONFIG_SYS_64BIT_LBA:
10 *
11 * struct disk_partition.start in include/part.h is sized as ulong.
12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13 * For now, it is cast back to ulong at assignment.
14 *
15 * This limits the maximum size of addressable storage to < 2 Terra Bytes
16 */
17 #include <asm/unaligned.h>
18 #include <common.h>
19 #include <command.h>
20 #include <ide.h>
21 #include <malloc.h>
22 #include <part_efi.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static void uuid_string(unsigned char *uuid, char *str)
67 {
68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
69 12, 13, 14, 15};
70 int i;
71
72 for (i = 0; i < 16; i++) {
73 sprintf(str, "%02x", uuid[le[i]]);
74 str += 2;
75 switch (i) {
76 case 3:
77 case 5:
78 case 7:
79 case 9:
80 *str++ = '-';
81 break;
82 }
83 }
84 }
85
86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
87
88 static inline int is_bootable(gpt_entry *p)
89 {
90 return p->attributes.fields.legacy_bios_bootable ||
91 !memcmp(&(p->partition_type_guid), &system_guid,
92 sizeof(efi_guid_t));
93 }
94
95 #ifdef CONFIG_EFI_PARTITION
96 /*
97 * Public Functions (include/part.h)
98 */
99
100 void print_part_efi(block_dev_desc_t * dev_desc)
101 {
102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
103 gpt_entry *gpt_pte = NULL;
104 int i = 0;
105 char uuid[37];
106
107 if (!dev_desc) {
108 printf("%s: Invalid Argument(s)\n", __func__);
109 return;
110 }
111 /* This function validates AND fills in the GPT header and PTE */
112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
113 gpt_head, &gpt_pte) != 1) {
114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
115 return;
116 }
117
118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
119
120 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
121 printf("\tAttributes\n");
122 printf("\tType UUID\n");
123 printf("\tPartition UUID\n");
124
125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
126 /* Stop at the first non valid PTE */
127 if (!is_pte_valid(&gpt_pte[i]))
128 break;
129
130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
131 le64_to_cpu(gpt_pte[i].starting_lba),
132 le64_to_cpu(gpt_pte[i].ending_lba),
133 print_efiname(&gpt_pte[i]));
134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
136 printf("\ttype:\t%s\n", uuid);
137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
138 printf("\tuuid:\t%s\n", uuid);
139 }
140
141 /* Remember to free pte */
142 free(gpt_pte);
143 return;
144 }
145
146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
147 disk_partition_t * info)
148 {
149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
150 gpt_entry *gpt_pte = NULL;
151
152 /* "part" argument must be at least 1 */
153 if (!dev_desc || !info || part < 1) {
154 printf("%s: Invalid Argument(s)\n", __func__);
155 return -1;
156 }
157
158 /* This function validates AND fills in the GPT header and PTE */
159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
160 gpt_head, &gpt_pte) != 1) {
161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
162 return -1;
163 }
164
165 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
166 !is_pte_valid(&gpt_pte[part - 1])) {
167 debug("%s: *** ERROR: Invalid partition number %d ***\n",
168 __func__, part);
169 free(gpt_pte);
170 return -1;
171 }
172
173 /* The ulong casting limits the maximum disk size to 2 TB */
174 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
175 /* The ending LBA is inclusive, to calculate size, add 1 to it */
176 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
177 - info->start;
178 info->blksz = dev_desc->blksz;
179
180 sprintf((char *)info->name, "%s",
181 print_efiname(&gpt_pte[part - 1]));
182 sprintf((char *)info->type, "U-Boot");
183 info->bootable = is_bootable(&gpt_pte[part - 1]);
184 #ifdef CONFIG_PARTITION_UUIDS
185 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
186 #endif
187
188 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
189 info->start, info->size, info->name);
190
191 /* Remember to free pte */
192 free(gpt_pte);
193 return 0;
194 }
195
196 int test_part_efi(block_dev_desc_t * dev_desc)
197 {
198 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
199
200 /* Read legacy MBR from block 0 and validate it */
201 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
202 || (is_pmbr_valid(legacymbr) != 1)) {
203 return -1;
204 }
205 return 0;
206 }
207
208 /**
209 * set_protective_mbr(): Set the EFI protective MBR
210 * @param dev_desc - block device descriptor
211 *
212 * @return - zero on success, otherwise error
213 */
214 static int set_protective_mbr(block_dev_desc_t *dev_desc)
215 {
216 legacy_mbr *p_mbr;
217
218 /* Setup the Protective MBR */
219 p_mbr = calloc(1, sizeof(p_mbr));
220 if (p_mbr == NULL) {
221 printf("%s: calloc failed!\n", __func__);
222 return -1;
223 }
224 /* Append signature */
225 p_mbr->signature = MSDOS_MBR_SIGNATURE;
226 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
227 p_mbr->partition_record[0].start_sect = 1;
228 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
229
230 /* Write MBR sector to the MMC device */
231 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
232 printf("** Can't write to device %d **\n",
233 dev_desc->dev);
234 free(p_mbr);
235 return -1;
236 }
237
238 free(p_mbr);
239 return 0;
240 }
241
242 /**
243 * string_uuid(); Convert UUID stored as string to bytes
244 *
245 * @param uuid - UUID represented as string
246 * @param dst - GUID buffer
247 *
248 * @return return 0 on successful conversion
249 */
250 static int string_uuid(char *uuid, u8 *dst)
251 {
252 efi_guid_t guid;
253 u16 b, c, d;
254 u64 e;
255 u32 a;
256 u8 *p;
257 u8 i;
258
259 const u8 uuid_str_len = 36;
260
261 /* The UUID is written in text: */
262 /* 1 9 14 19 24 */
263 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
264
265 debug("%s: uuid: %s\n", __func__, uuid);
266
267 if (strlen(uuid) != uuid_str_len)
268 return -1;
269
270 for (i = 0; i < uuid_str_len; i++) {
271 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
272 if (uuid[i] != '-')
273 return -1;
274 } else {
275 if (!isxdigit(uuid[i]))
276 return -1;
277 }
278 }
279
280 a = (u32)simple_strtoul(uuid, NULL, 16);
281 b = (u16)simple_strtoul(uuid + 9, NULL, 16);
282 c = (u16)simple_strtoul(uuid + 14, NULL, 16);
283 d = (u16)simple_strtoul(uuid + 19, NULL, 16);
284 e = (u64)simple_strtoull(uuid + 24, NULL, 16);
285
286 p = (u8 *) &e;
287 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
288 *(p + 5), *(p + 4), *(p + 3),
289 *(p + 2), *(p + 1) , *p);
290
291 memcpy(dst, guid.b, sizeof(efi_guid_t));
292
293 return 0;
294 }
295
296 int write_gpt_table(block_dev_desc_t *dev_desc,
297 gpt_header *gpt_h, gpt_entry *gpt_e)
298 {
299 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
300 * sizeof(gpt_entry)), dev_desc);
301 u32 calc_crc32;
302 u64 val;
303
304 debug("max lba: %x\n", (u32) dev_desc->lba);
305 /* Setup the Protective MBR */
306 if (set_protective_mbr(dev_desc) < 0)
307 goto err;
308
309 /* Generate CRC for the Primary GPT Header */
310 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
311 le32_to_cpu(gpt_h->num_partition_entries) *
312 le32_to_cpu(gpt_h->sizeof_partition_entry));
313 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
314
315 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
316 le32_to_cpu(gpt_h->header_size));
317 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
318
319 /* Write the First GPT to the block right after the Legacy MBR */
320 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
321 goto err;
322
323 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
324 != pte_blk_cnt)
325 goto err;
326
327 /* recalculate the values for the Second GPT Header */
328 val = le64_to_cpu(gpt_h->my_lba);
329 gpt_h->my_lba = gpt_h->alternate_lba;
330 gpt_h->alternate_lba = cpu_to_le64(val);
331 gpt_h->header_crc32 = 0;
332
333 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
334 le32_to_cpu(gpt_h->header_size));
335 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
336
337 if (dev_desc->block_write(dev_desc->dev,
338 le32_to_cpu(gpt_h->last_usable_lba + 1),
339 pte_blk_cnt, gpt_e) != pte_blk_cnt)
340 goto err;
341
342 if (dev_desc->block_write(dev_desc->dev,
343 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
344 goto err;
345
346 debug("GPT successfully written to block device!\n");
347 return 0;
348
349 err:
350 printf("** Can't write to device %d **\n", dev_desc->dev);
351 return -1;
352 }
353
354 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
355 disk_partition_t *partitions, int parts)
356 {
357 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
358 ulong start;
359 int i, k;
360 size_t efiname_len, dosname_len;
361 #ifdef CONFIG_PARTITION_UUIDS
362 char *str_uuid;
363 #endif
364
365 for (i = 0; i < parts; i++) {
366 /* partition starting lba */
367 start = partitions[i].start;
368 if (start && (start < offset)) {
369 printf("Partition overlap\n");
370 return -1;
371 }
372 if (start) {
373 gpt_e[i].starting_lba = cpu_to_le64(start);
374 offset = start + partitions[i].size;
375 } else {
376 gpt_e[i].starting_lba = cpu_to_le64(offset);
377 offset += partitions[i].size;
378 }
379 if (offset >= gpt_h->last_usable_lba) {
380 printf("Partitions layout exceds disk size\n");
381 return -1;
382 }
383 /* partition ending lba */
384 if ((i == parts - 1) && (partitions[i].size == 0))
385 /* extend the last partition to maximuim */
386 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
387 else
388 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
389
390 /* partition type GUID */
391 memcpy(gpt_e[i].partition_type_guid.b,
392 &PARTITION_BASIC_DATA_GUID, 16);
393
394 #ifdef CONFIG_PARTITION_UUIDS
395 str_uuid = partitions[i].uuid;
396 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
397 printf("Partition no. %d: invalid guid: %s\n",
398 i, str_uuid);
399 return -1;
400 }
401 #endif
402
403 /* partition attributes */
404 memset(&gpt_e[i].attributes, 0,
405 sizeof(gpt_entry_attributes));
406
407 /* partition name */
408 efiname_len = sizeof(gpt_e[i].partition_name)
409 / sizeof(efi_char16_t);
410 dosname_len = sizeof(partitions[i].name);
411
412 memset(gpt_e[i].partition_name, 0,
413 sizeof(gpt_e[i].partition_name));
414
415 for (k = 0; k < min(dosname_len, efiname_len); k++)
416 gpt_e[i].partition_name[k] =
417 (efi_char16_t)(partitions[i].name[k]);
418
419 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
420 __func__, partitions[i].name, i,
421 offset, i, partitions[i].size);
422 }
423
424 return 0;
425 }
426
427 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
428 char *str_guid, int parts_count)
429 {
430 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
431 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
432 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
433 gpt_h->my_lba = cpu_to_le64(1);
434 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
435 gpt_h->first_usable_lba = cpu_to_le64(34);
436 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
437 gpt_h->partition_entry_lba = cpu_to_le64(2);
438 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
439 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
440 gpt_h->header_crc32 = 0;
441 gpt_h->partition_entry_array_crc32 = 0;
442
443 if (string_uuid(str_guid, gpt_h->disk_guid.b))
444 return -1;
445
446 return 0;
447 }
448
449 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
450 disk_partition_t *partitions, int parts_count)
451 {
452 int ret;
453
454 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
455 dev_desc));
456 gpt_entry *gpt_e;
457
458 if (gpt_h == NULL) {
459 printf("%s: calloc failed!\n", __func__);
460 return -1;
461 }
462
463 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
464 * sizeof(gpt_entry),
465 dev_desc));
466 if (gpt_e == NULL) {
467 printf("%s: calloc failed!\n", __func__);
468 free(gpt_h);
469 return -1;
470 }
471
472 /* Generate Primary GPT header (LBA1) */
473 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
474 if (ret)
475 goto err;
476
477 /* Generate partition entries */
478 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
479 if (ret)
480 goto err;
481
482 /* Write GPT partition table */
483 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
484
485 err:
486 free(gpt_e);
487 free(gpt_h);
488 return ret;
489 }
490 #endif
491
492 /*
493 * Private functions
494 */
495 /*
496 * pmbr_part_valid(): Check for EFI partition signature
497 *
498 * Returns: 1 if EFI GPT partition type is found.
499 */
500 static int pmbr_part_valid(struct partition *part)
501 {
502 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
503 get_unaligned_le32(&part->start_sect) == 1UL) {
504 return 1;
505 }
506
507 return 0;
508 }
509
510 /*
511 * is_pmbr_valid(): test Protective MBR for validity
512 *
513 * Returns: 1 if PMBR is valid, 0 otherwise.
514 * Validity depends on two things:
515 * 1) MSDOS signature is in the last two bytes of the MBR
516 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
517 */
518 static int is_pmbr_valid(legacy_mbr * mbr)
519 {
520 int i = 0;
521
522 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
523 return 0;
524
525 for (i = 0; i < 4; i++) {
526 if (pmbr_part_valid(&mbr->partition_record[i])) {
527 return 1;
528 }
529 }
530 return 0;
531 }
532
533 /**
534 * is_gpt_valid() - tests one GPT header and PTEs for validity
535 *
536 * lba is the logical block address of the GPT header to test
537 * gpt is a GPT header ptr, filled on return.
538 * ptes is a PTEs ptr, filled on return.
539 *
540 * Description: returns 1 if valid, 0 on error.
541 * If valid, returns pointers to PTEs.
542 */
543 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
544 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
545 {
546 u32 crc32_backup = 0;
547 u32 calc_crc32;
548 unsigned long long lastlba;
549
550 if (!dev_desc || !pgpt_head) {
551 printf("%s: Invalid Argument(s)\n", __func__);
552 return 0;
553 }
554
555 /* Read GPT Header from device */
556 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
557 printf("*** ERROR: Can't read GPT header ***\n");
558 return 0;
559 }
560
561 /* Check the GPT header signature */
562 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
563 printf("GUID Partition Table Header signature is wrong:"
564 "0x%llX != 0x%llX\n",
565 le64_to_cpu(pgpt_head->signature),
566 GPT_HEADER_SIGNATURE);
567 return 0;
568 }
569
570 /* Check the GUID Partition Table CRC */
571 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
572 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
573
574 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
575 le32_to_cpu(pgpt_head->header_size));
576
577 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
578
579 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
580 printf("GUID Partition Table Header CRC is wrong:"
581 "0x%x != 0x%x\n",
582 le32_to_cpu(crc32_backup), calc_crc32);
583 return 0;
584 }
585
586 /* Check that the my_lba entry points to the LBA that contains the GPT */
587 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
588 printf("GPT: my_lba incorrect: %llX != %llX\n",
589 le64_to_cpu(pgpt_head->my_lba),
590 lba);
591 return 0;
592 }
593
594 /* Check the first_usable_lba and last_usable_lba are within the disk. */
595 lastlba = (unsigned long long)dev_desc->lba;
596 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
597 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
598 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
599 return 0;
600 }
601 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
602 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
603 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
604 return 0;
605 }
606
607 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
608 le64_to_cpu(pgpt_head->first_usable_lba),
609 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
610
611 /* Read and allocate Partition Table Entries */
612 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
613 if (*pgpt_pte == NULL) {
614 printf("GPT: Failed to allocate memory for PTE\n");
615 return 0;
616 }
617
618 /* Check the GUID Partition Table Entry Array CRC */
619 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
620 le32_to_cpu(pgpt_head->num_partition_entries) *
621 le32_to_cpu(pgpt_head->sizeof_partition_entry));
622
623 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
624 printf("GUID Partition Table Entry Array CRC is wrong:"
625 "0x%x != 0x%x\n",
626 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
627 calc_crc32);
628
629 free(*pgpt_pte);
630 return 0;
631 }
632
633 /* We're done, all's well */
634 return 1;
635 }
636
637 /**
638 * alloc_read_gpt_entries(): reads partition entries from disk
639 * @dev_desc
640 * @gpt - GPT header
641 *
642 * Description: Returns ptes on success, NULL on error.
643 * Allocates space for PTEs based on information found in @gpt.
644 * Notes: remember to free pte when you're done!
645 */
646 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
647 gpt_header * pgpt_head)
648 {
649 size_t count = 0, blk_cnt;
650 gpt_entry *pte = NULL;
651
652 if (!dev_desc || !pgpt_head) {
653 printf("%s: Invalid Argument(s)\n", __func__);
654 return NULL;
655 }
656
657 count = le32_to_cpu(pgpt_head->num_partition_entries) *
658 le32_to_cpu(pgpt_head->sizeof_partition_entry);
659
660 debug("%s: count = %u * %u = %zu\n", __func__,
661 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
662 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
663
664 /* Allocate memory for PTE, remember to FREE */
665 if (count != 0) {
666 pte = memalign(ARCH_DMA_MINALIGN,
667 PAD_TO_BLOCKSIZE(count, dev_desc));
668 }
669
670 if (count == 0 || pte == NULL) {
671 printf("%s: ERROR: Can't allocate 0x%zX "
672 "bytes for GPT Entries\n",
673 __func__, count);
674 return NULL;
675 }
676
677 /* Read GPT Entries from device */
678 blk_cnt = BLOCK_CNT(count, dev_desc);
679 if (dev_desc->block_read (dev_desc->dev,
680 le64_to_cpu(pgpt_head->partition_entry_lba),
681 (lbaint_t) (blk_cnt), pte)
682 != blk_cnt) {
683
684 printf("*** ERROR: Can't read GPT Entries ***\n");
685 free(pte);
686 return NULL;
687 }
688 return pte;
689 }
690
691 /**
692 * is_pte_valid(): validates a single Partition Table Entry
693 * @gpt_entry - Pointer to a single Partition Table Entry
694 *
695 * Description: returns 1 if valid, 0 on error.
696 */
697 static int is_pte_valid(gpt_entry * pte)
698 {
699 efi_guid_t unused_guid;
700
701 if (!pte) {
702 printf("%s: Invalid Argument(s)\n", __func__);
703 return 0;
704 }
705
706 /* Only one validation for now:
707 * The GUID Partition Type != Unused Entry (ALL-ZERO)
708 */
709 memset(unused_guid.b, 0, sizeof(unused_guid.b));
710
711 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
712 sizeof(unused_guid.b)) == 0) {
713
714 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
715 (unsigned int)(uintptr_t)pte);
716
717 return 0;
718 } else {
719 return 1;
720 }
721 }
722 #endif