]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/block/sata_dwc.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / block / sata_dwc.c
1 /*
2 * sata_dwc.c
3 *
4 * Synopsys DesignWare Cores (DWC) SATA host driver
5 *
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7 *
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
10 *
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
14 *
15 * SPDX-License-Identifier: GPL-2.0+
16 */
17 /*
18 * SATA support based on the chip canyonlands.
19 *
20 * 04-17-2009
21 * The local version of this driver for the canyonlands board
22 * does not use interrupts but polls the chip instead.
23 */
24
25 #include <common.h>
26 #include <command.h>
27 #include <pci.h>
28 #include <asm/processor.h>
29 #include <asm/errno.h>
30 #include <asm/io.h>
31 #include <malloc.h>
32 #include <ata.h>
33 #include <sata.h>
34 #include <linux/ctype.h>
35
36 #include "sata_dwc.h"
37
38 #define DMA_NUM_CHANS 1
39 #define DMA_NUM_CHAN_REGS 8
40
41 #define AHB_DMA_BRST_DFLT 16
42
43 struct dmareg {
44 u32 low;
45 u32 high;
46 };
47
48 struct dma_chan_regs {
49 struct dmareg sar;
50 struct dmareg dar;
51 struct dmareg llp;
52 struct dmareg ctl;
53 struct dmareg sstat;
54 struct dmareg dstat;
55 struct dmareg sstatar;
56 struct dmareg dstatar;
57 struct dmareg cfg;
58 struct dmareg sgr;
59 struct dmareg dsr;
60 };
61
62 struct dma_interrupt_regs {
63 struct dmareg tfr;
64 struct dmareg block;
65 struct dmareg srctran;
66 struct dmareg dsttran;
67 struct dmareg error;
68 };
69
70 struct ahb_dma_regs {
71 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
72 struct dma_interrupt_regs interrupt_raw;
73 struct dma_interrupt_regs interrupt_status;
74 struct dma_interrupt_regs interrupt_mask;
75 struct dma_interrupt_regs interrupt_clear;
76 struct dmareg statusInt;
77 struct dmareg rq_srcreg;
78 struct dmareg rq_dstreg;
79 struct dmareg rq_sgl_srcreg;
80 struct dmareg rq_sgl_dstreg;
81 struct dmareg rq_lst_srcreg;
82 struct dmareg rq_lst_dstreg;
83 struct dmareg dma_cfg;
84 struct dmareg dma_chan_en;
85 struct dmareg dma_id;
86 struct dmareg dma_test;
87 struct dmareg res1;
88 struct dmareg res2;
89 /* DMA Comp Params
90 * Param 6 = dma_param[0], Param 5 = dma_param[1],
91 * Param 4 = dma_param[2] ...
92 */
93 struct dmareg dma_params[6];
94 };
95
96 #define DMA_EN 0x00000001
97 #define DMA_DI 0x00000000
98 #define DMA_CHANNEL(ch) (0x00000001 << (ch))
99 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
100 ((0x000000001 << (ch)) << 8))
101 #define DMA_DISABLE_CHAN(ch) (0x00000000 | \
102 ((0x000000001 << (ch)) << 8))
103
104 #define SATA_DWC_MAX_PORTS 1
105 #define SATA_DWC_SCR_OFFSET 0x24
106 #define SATA_DWC_REG_OFFSET 0x64
107
108 struct sata_dwc_regs {
109 u32 fptagr;
110 u32 fpbor;
111 u32 fptcr;
112 u32 dmacr;
113 u32 dbtsr;
114 u32 intpr;
115 u32 intmr;
116 u32 errmr;
117 u32 llcr;
118 u32 phycr;
119 u32 physr;
120 u32 rxbistpd;
121 u32 rxbistpd1;
122 u32 rxbistpd2;
123 u32 txbistpd;
124 u32 txbistpd1;
125 u32 txbistpd2;
126 u32 bistcr;
127 u32 bistfctr;
128 u32 bistsr;
129 u32 bistdecr;
130 u32 res[15];
131 u32 testr;
132 u32 versionr;
133 u32 idr;
134 u32 unimpl[192];
135 u32 dmadr[256];
136 };
137
138 #define SATA_DWC_TXFIFO_DEPTH 0x01FF
139 #define SATA_DWC_RXFIFO_DEPTH 0x01FF
140
141 #define SATA_DWC_DBTSR_MWR(size) ((size / 4) & SATA_DWC_TXFIFO_DEPTH)
142 #define SATA_DWC_DBTSR_MRD(size) (((size / 4) & \
143 SATA_DWC_RXFIFO_DEPTH) << 16)
144 #define SATA_DWC_INTPR_DMAT 0x00000001
145 #define SATA_DWC_INTPR_NEWFP 0x00000002
146 #define SATA_DWC_INTPR_PMABRT 0x00000004
147 #define SATA_DWC_INTPR_ERR 0x00000008
148 #define SATA_DWC_INTPR_NEWBIST 0x00000010
149 #define SATA_DWC_INTPR_IPF 0x10000000
150 #define SATA_DWC_INTMR_DMATM 0x00000001
151 #define SATA_DWC_INTMR_NEWFPM 0x00000002
152 #define SATA_DWC_INTMR_PMABRTM 0x00000004
153 #define SATA_DWC_INTMR_ERRM 0x00000008
154 #define SATA_DWC_INTMR_NEWBISTM 0x00000010
155
156 #define SATA_DWC_DMACR_TMOD_TXCHEN 0x00000004
157 #define SATA_DWC_DMACR_TXRXCH_CLEAR SATA_DWC_DMACR_TMOD_TXCHEN
158
159 #define SATA_DWC_QCMD_MAX 32
160
161 #define SATA_DWC_SERROR_ERR_BITS 0x0FFF0F03
162
163 #define HSDEVP_FROM_AP(ap) (struct sata_dwc_device_port*) \
164 (ap)->private_data
165
166 struct sata_dwc_device {
167 struct device *dev;
168 struct ata_probe_ent *pe;
169 struct ata_host *host;
170 u8 *reg_base;
171 struct sata_dwc_regs *sata_dwc_regs;
172 int irq_dma;
173 };
174
175 struct sata_dwc_device_port {
176 struct sata_dwc_device *hsdev;
177 int cmd_issued[SATA_DWC_QCMD_MAX];
178 u32 dma_chan[SATA_DWC_QCMD_MAX];
179 int dma_pending[SATA_DWC_QCMD_MAX];
180 };
181
182 enum {
183 SATA_DWC_CMD_ISSUED_NOT = 0,
184 SATA_DWC_CMD_ISSUED_PEND = 1,
185 SATA_DWC_CMD_ISSUED_EXEC = 2,
186 SATA_DWC_CMD_ISSUED_NODATA = 3,
187
188 SATA_DWC_DMA_PENDING_NONE = 0,
189 SATA_DWC_DMA_PENDING_TX = 1,
190 SATA_DWC_DMA_PENDING_RX = 2,
191 };
192
193 #define msleep(a) udelay(a * 1000)
194 #define ssleep(a) msleep(a * 1000)
195
196 static int ata_probe_timeout = (ATA_TMOUT_INTERNAL / 100);
197
198 enum sata_dev_state {
199 SATA_INIT = 0,
200 SATA_READY = 1,
201 SATA_NODEVICE = 2,
202 SATA_ERROR = 3,
203 };
204 enum sata_dev_state dev_state = SATA_INIT;
205
206 static struct ahb_dma_regs *sata_dma_regs = 0;
207 static struct ata_host *phost;
208 static struct ata_port ap;
209 static struct ata_port *pap = &ap;
210 static struct ata_device ata_device;
211 static struct sata_dwc_device_port dwc_devp;
212
213 static void *scr_addr_sstatus;
214 static u32 temp_n_block = 0;
215
216 static unsigned ata_exec_internal(struct ata_device *dev,
217 struct ata_taskfile *tf, const u8 *cdb,
218 int dma_dir, unsigned int buflen,
219 unsigned long timeout);
220 static unsigned int ata_dev_set_feature(struct ata_device *dev,
221 u8 enable,u8 feature);
222 static unsigned int ata_dev_init_params(struct ata_device *dev,
223 u16 heads, u16 sectors);
224 static u8 ata_irq_on(struct ata_port *ap);
225 static struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap,
226 unsigned int tag);
227 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
228 u8 status, int in_wq);
229 static void ata_tf_to_host(struct ata_port *ap,
230 const struct ata_taskfile *tf);
231 static void ata_exec_command(struct ata_port *ap,
232 const struct ata_taskfile *tf);
233 static unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc);
234 static u8 ata_check_altstatus(struct ata_port *ap);
235 static u8 ata_check_status(struct ata_port *ap);
236 static void ata_dev_select(struct ata_port *ap, unsigned int device,
237 unsigned int wait, unsigned int can_sleep);
238 static void ata_qc_issue(struct ata_queued_cmd *qc);
239 static void ata_tf_load(struct ata_port *ap,
240 const struct ata_taskfile *tf);
241 static int ata_dev_read_sectors(unsigned char* pdata,
242 unsigned long datalen, u32 block, u32 n_block);
243 static int ata_dev_write_sectors(unsigned char* pdata,
244 unsigned long datalen , u32 block, u32 n_block);
245 static void ata_std_dev_select(struct ata_port *ap, unsigned int device);
246 static void ata_qc_complete(struct ata_queued_cmd *qc);
247 static void __ata_qc_complete(struct ata_queued_cmd *qc);
248 static void fill_result_tf(struct ata_queued_cmd *qc);
249 static void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
250 static void ata_mmio_data_xfer(struct ata_device *dev,
251 unsigned char *buf,
252 unsigned int buflen,int do_write);
253 static void ata_pio_task(struct ata_port *arg_ap);
254 static void __ata_port_freeze(struct ata_port *ap);
255 static int ata_port_freeze(struct ata_port *ap);
256 static void ata_qc_free(struct ata_queued_cmd *qc);
257 static void ata_pio_sectors(struct ata_queued_cmd *qc);
258 static void ata_pio_sector(struct ata_queued_cmd *qc);
259 static void ata_pio_queue_task(struct ata_port *ap,
260 void *data,unsigned long delay);
261 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq);
262 static int sata_dwc_softreset(struct ata_port *ap);
263 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
264 unsigned int flags, u16 *id);
265 static int check_sata_dev_state(void);
266
267 static const struct ata_port_info sata_dwc_port_info[] = {
268 {
269 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
270 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING |
271 ATA_FLAG_SRST | ATA_FLAG_NCQ,
272 .pio_mask = 0x1f,
273 .mwdma_mask = 0x07,
274 .udma_mask = 0x7f,
275 },
276 };
277
278 int init_sata(int dev)
279 {
280 struct sata_dwc_device hsdev;
281 struct ata_host host;
282 struct ata_port_info pi = sata_dwc_port_info[0];
283 struct ata_link *link;
284 struct sata_dwc_device_port hsdevp = dwc_devp;
285 u8 *base = 0;
286 u8 *sata_dma_regs_addr = 0;
287 u8 status;
288 unsigned long base_addr = 0;
289 int chan = 0;
290 int rc;
291 int i;
292
293 phost = &host;
294
295 base = (u8*)SATA_BASE_ADDR;
296
297 hsdev.sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
298
299 host.n_ports = SATA_DWC_MAX_PORTS;
300
301 for (i = 0; i < SATA_DWC_MAX_PORTS; i++) {
302 ap.pflags |= ATA_PFLAG_INITIALIZING;
303 ap.flags = ATA_FLAG_DISABLED;
304 ap.print_id = -1;
305 ap.ctl = ATA_DEVCTL_OBS;
306 ap.host = &host;
307 ap.last_ctl = 0xFF;
308
309 link = &ap.link;
310 link->ap = &ap;
311 link->pmp = 0;
312 link->active_tag = ATA_TAG_POISON;
313 link->hw_sata_spd_limit = 0;
314
315 ap.port_no = i;
316 host.ports[i] = &ap;
317 }
318
319 ap.pio_mask = pi.pio_mask;
320 ap.mwdma_mask = pi.mwdma_mask;
321 ap.udma_mask = pi.udma_mask;
322 ap.flags |= pi.flags;
323 ap.link.flags |= pi.link_flags;
324
325 host.ports[0]->ioaddr.cmd_addr = base;
326 host.ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
327 scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
328
329 base_addr = (unsigned long)base;
330
331 host.ports[0]->ioaddr.cmd_addr = (void *)base_addr + 0x00;
332 host.ports[0]->ioaddr.data_addr = (void *)base_addr + 0x00;
333
334 host.ports[0]->ioaddr.error_addr = (void *)base_addr + 0x04;
335 host.ports[0]->ioaddr.feature_addr = (void *)base_addr + 0x04;
336
337 host.ports[0]->ioaddr.nsect_addr = (void *)base_addr + 0x08;
338
339 host.ports[0]->ioaddr.lbal_addr = (void *)base_addr + 0x0c;
340 host.ports[0]->ioaddr.lbam_addr = (void *)base_addr + 0x10;
341 host.ports[0]->ioaddr.lbah_addr = (void *)base_addr + 0x14;
342
343 host.ports[0]->ioaddr.device_addr = (void *)base_addr + 0x18;
344 host.ports[0]->ioaddr.command_addr = (void *)base_addr + 0x1c;
345 host.ports[0]->ioaddr.status_addr = (void *)base_addr + 0x1c;
346
347 host.ports[0]->ioaddr.altstatus_addr = (void *)base_addr + 0x20;
348 host.ports[0]->ioaddr.ctl_addr = (void *)base_addr + 0x20;
349
350 sata_dma_regs_addr = (u8*)SATA_DMA_REG_ADDR;
351 sata_dma_regs = (void *__iomem)sata_dma_regs_addr;
352
353 status = ata_check_altstatus(&ap);
354
355 if (status == 0x7f) {
356 printf("Hard Disk not found.\n");
357 dev_state = SATA_NODEVICE;
358 rc = false;
359 return rc;
360 }
361
362 printf("Waiting for device...");
363 i = 0;
364 while (1) {
365 udelay(10000);
366
367 status = ata_check_altstatus(&ap);
368
369 if ((status & ATA_BUSY) == 0) {
370 printf("\n");
371 break;
372 }
373
374 i++;
375 if (i > (ATA_RESET_TIME * 100)) {
376 printf("** TimeOUT **\n");
377
378 dev_state = SATA_NODEVICE;
379 rc = false;
380 return rc;
381 }
382 if ((i >= 100) && ((i % 100) == 0))
383 printf(".");
384 }
385
386 rc = sata_dwc_softreset(&ap);
387
388 if (rc) {
389 printf("sata_dwc : error. soft reset failed\n");
390 return rc;
391 }
392
393 for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
394 out_le32(&(sata_dma_regs->interrupt_mask.error.low),
395 DMA_DISABLE_CHAN(chan));
396
397 out_le32(&(sata_dma_regs->interrupt_mask.tfr.low),
398 DMA_DISABLE_CHAN(chan));
399 }
400
401 out_le32(&(sata_dma_regs->dma_cfg.low), DMA_DI);
402
403 out_le32(&hsdev.sata_dwc_regs->intmr,
404 SATA_DWC_INTMR_ERRM |
405 SATA_DWC_INTMR_PMABRTM);
406
407 /* Unmask the error bits that should trigger
408 * an error interrupt by setting the error mask register.
409 */
410 out_le32(&hsdev.sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
411
412 hsdev.host = ap.host;
413 memset(&hsdevp, 0, sizeof(hsdevp));
414 hsdevp.hsdev = &hsdev;
415
416 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
417 hsdevp.cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
418
419 out_le32((void __iomem *)scr_addr_sstatus + 4,
420 in_le32((void __iomem *)scr_addr_sstatus + 4));
421
422 rc = 0;
423 return rc;
424 }
425
426 static u8 ata_check_altstatus(struct ata_port *ap)
427 {
428 u8 val = 0;
429 val = readb(ap->ioaddr.altstatus_addr);
430 return val;
431 }
432
433 static int sata_dwc_softreset(struct ata_port *ap)
434 {
435 u8 nsect,lbal = 0;
436 u8 tmp = 0;
437 struct ata_ioports *ioaddr = &ap->ioaddr;
438
439 in_le32((void *)ap->ioaddr.scr_addr + (SCR_ERROR * 4));
440
441 writeb(0x55, ioaddr->nsect_addr);
442 writeb(0xaa, ioaddr->lbal_addr);
443 writeb(0xaa, ioaddr->nsect_addr);
444 writeb(0x55, ioaddr->lbal_addr);
445 writeb(0x55, ioaddr->nsect_addr);
446 writeb(0xaa, ioaddr->lbal_addr);
447
448 nsect = readb(ioaddr->nsect_addr);
449 lbal = readb(ioaddr->lbal_addr);
450
451 if ((nsect == 0x55) && (lbal == 0xaa)) {
452 printf("Device found\n");
453 } else {
454 printf("No device found\n");
455 dev_state = SATA_NODEVICE;
456 return false;
457 }
458
459 tmp = ATA_DEVICE_OBS;
460 writeb(tmp, ioaddr->device_addr);
461 writeb(ap->ctl, ioaddr->ctl_addr);
462
463 udelay(200);
464
465 writeb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
466
467 udelay(200);
468 writeb(ap->ctl, ioaddr->ctl_addr);
469
470 msleep(150);
471 ata_check_status(ap);
472
473 msleep(50);
474 ata_check_status(ap);
475
476 while (1) {
477 u8 status = ata_check_status(ap);
478
479 if (!(status & ATA_BUSY))
480 break;
481
482 printf("Hard Disk status is BUSY.\n");
483 msleep(50);
484 }
485
486 tmp = ATA_DEVICE_OBS;
487 writeb(tmp, ioaddr->device_addr);
488
489 nsect = readb(ioaddr->nsect_addr);
490 lbal = readb(ioaddr->lbal_addr);
491
492 return 0;
493 }
494
495 static u8 ata_check_status(struct ata_port *ap)
496 {
497 u8 val = 0;
498 val = readb(ap->ioaddr.status_addr);
499 return val;
500 }
501
502 static int ata_id_has_hipm(const u16 *id)
503 {
504 u16 val = id[76];
505
506 if (val == 0 || val == 0xffff)
507 return -1;
508
509 return val & (1 << 9);
510 }
511
512 static int ata_id_has_dipm(const u16 *id)
513 {
514 u16 val = id[78];
515
516 if (val == 0 || val == 0xffff)
517 return -1;
518
519 return val & (1 << 3);
520 }
521
522 int scan_sata(int dev)
523 {
524 int i;
525 int rc;
526 u8 status;
527 const u16 *id;
528 struct ata_device *ata_dev = &ata_device;
529 unsigned long pio_mask, mwdma_mask;
530 char revbuf[7];
531 u16 iobuf[ATA_SECTOR_WORDS];
532
533 memset(iobuf, 0, sizeof(iobuf));
534
535 if (dev_state == SATA_NODEVICE)
536 return 1;
537
538 printf("Waiting for device...");
539 i = 0;
540 while (1) {
541 udelay(10000);
542
543 status = ata_check_altstatus(&ap);
544
545 if ((status & ATA_BUSY) == 0) {
546 printf("\n");
547 break;
548 }
549
550 i++;
551 if (i > (ATA_RESET_TIME * 100)) {
552 printf("** TimeOUT **\n");
553
554 dev_state = SATA_NODEVICE;
555 return 1;
556 }
557 if ((i >= 100) && ((i % 100) == 0))
558 printf(".");
559 }
560
561 udelay(1000);
562
563 rc = ata_dev_read_id(ata_dev, &ata_dev->class,
564 ATA_READID_POSTRESET,ata_dev->id);
565 if (rc) {
566 printf("sata_dwc : error. failed sata scan\n");
567 return 1;
568 }
569
570 /* SATA drives indicate we have a bridge. We don't know which
571 * end of the link the bridge is which is a problem
572 */
573 if (ata_id_is_sata(ata_dev->id))
574 ap.cbl = ATA_CBL_SATA;
575
576 id = ata_dev->id;
577
578 ata_dev->flags &= ~ATA_DFLAG_CFG_MASK;
579 ata_dev->max_sectors = 0;
580 ata_dev->cdb_len = 0;
581 ata_dev->n_sectors = 0;
582 ata_dev->cylinders = 0;
583 ata_dev->heads = 0;
584 ata_dev->sectors = 0;
585
586 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
587 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
588 pio_mask <<= 3;
589 pio_mask |= 0x7;
590 } else {
591 /* If word 64 isn't valid then Word 51 high byte holds
592 * the PIO timing number for the maximum. Turn it into
593 * a mask.
594 */
595 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
596 if (mode < 5) {
597 pio_mask = (2 << mode) - 1;
598 } else {
599 pio_mask = 1;
600 }
601 }
602
603 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
604
605 if (ata_id_is_cfa(id)) {
606 int pio = id[163] & 0x7;
607 int dma = (id[163] >> 3) & 7;
608
609 if (pio)
610 pio_mask |= (1 << 5);
611 if (pio > 1)
612 pio_mask |= (1 << 6);
613 if (dma)
614 mwdma_mask |= (1 << 3);
615 if (dma > 1)
616 mwdma_mask |= (1 << 4);
617 }
618
619 if (ata_dev->class == ATA_DEV_ATA) {
620 if (ata_id_is_cfa(id)) {
621 if (id[162] & 1)
622 printf("supports DRM functions and may "
623 "not be fully accessable.\n");
624 sprintf(revbuf, "%s", "CFA");
625 } else {
626 if (ata_id_has_tpm(id))
627 printf("supports DRM functions and may "
628 "not be fully accessable.\n");
629 }
630
631 ata_dev->n_sectors = ata_id_n_sectors((u16*)id);
632
633 if (ata_dev->id[59] & 0x100)
634 ata_dev->multi_count = ata_dev->id[59] & 0xff;
635
636 if (ata_id_has_lba(id)) {
637 char ncq_desc[20];
638
639 ata_dev->flags |= ATA_DFLAG_LBA;
640 if (ata_id_has_lba48(id)) {
641 ata_dev->flags |= ATA_DFLAG_LBA48;
642
643 if (ata_dev->n_sectors >= (1UL << 28) &&
644 ata_id_has_flush_ext(id))
645 ata_dev->flags |= ATA_DFLAG_FLUSH_EXT;
646 }
647 if (!ata_id_has_ncq(ata_dev->id))
648 ncq_desc[0] = '\0';
649
650 if (ata_dev->horkage & ATA_HORKAGE_NONCQ)
651 sprintf(ncq_desc, "%s", "NCQ (not used)");
652
653 if (ap.flags & ATA_FLAG_NCQ)
654 ata_dev->flags |= ATA_DFLAG_NCQ;
655 }
656 ata_dev->cdb_len = 16;
657 }
658 ata_dev->max_sectors = ATA_MAX_SECTORS;
659 if (ata_dev->flags & ATA_DFLAG_LBA48)
660 ata_dev->max_sectors = ATA_MAX_SECTORS_LBA48;
661
662 if (!(ata_dev->horkage & ATA_HORKAGE_IPM)) {
663 if (ata_id_has_hipm(ata_dev->id))
664 ata_dev->flags |= ATA_DFLAG_HIPM;
665 if (ata_id_has_dipm(ata_dev->id))
666 ata_dev->flags |= ATA_DFLAG_DIPM;
667 }
668
669 if ((ap.cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ata_dev->id))) {
670 ata_dev->udma_mask &= ATA_UDMA5;
671 ata_dev->max_sectors = ATA_MAX_SECTORS;
672 }
673
674 if (ata_dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
675 printf("Drive reports diagnostics failure."
676 "This may indicate a drive\n");
677 printf("fault or invalid emulation."
678 "Contact drive vendor for information.\n");
679 }
680
681 rc = check_sata_dev_state();
682
683 ata_id_c_string(ata_dev->id,
684 (unsigned char *)sata_dev_desc[dev].revision,
685 ATA_ID_FW_REV, sizeof(sata_dev_desc[dev].revision));
686 ata_id_c_string(ata_dev->id,
687 (unsigned char *)sata_dev_desc[dev].vendor,
688 ATA_ID_PROD, sizeof(sata_dev_desc[dev].vendor));
689 ata_id_c_string(ata_dev->id,
690 (unsigned char *)sata_dev_desc[dev].product,
691 ATA_ID_SERNO, sizeof(sata_dev_desc[dev].product));
692
693 sata_dev_desc[dev].lba = (u32) ata_dev->n_sectors;
694
695 #ifdef CONFIG_LBA48
696 if (ata_dev->id[83] & (1 << 10)) {
697 sata_dev_desc[dev].lba48 = 1;
698 } else {
699 sata_dev_desc[dev].lba48 = 0;
700 }
701 #endif
702
703 return 0;
704 }
705
706 static u8 ata_busy_wait(struct ata_port *ap,
707 unsigned int bits,unsigned int max)
708 {
709 u8 status;
710
711 do {
712 udelay(10);
713 status = ata_check_status(ap);
714 max--;
715 } while (status != 0xff && (status & bits) && (max > 0));
716
717 return status;
718 }
719
720 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
721 unsigned int flags, u16 *id)
722 {
723 struct ata_port *ap = pap;
724 unsigned int class = *p_class;
725 struct ata_taskfile tf;
726 unsigned int err_mask = 0;
727 const char *reason;
728 int may_fallback = 1, tried_spinup = 0;
729 u8 status;
730 int rc;
731
732 status = ata_busy_wait(ap, ATA_BUSY, 30000);
733 if (status & ATA_BUSY) {
734 printf("BSY = 0 check. timeout.\n");
735 rc = false;
736 return rc;
737 }
738
739 ata_dev_select(ap, dev->devno, 1, 1);
740
741 retry:
742 memset(&tf, 0, sizeof(tf));
743 ap->print_id = 1;
744 ap->flags &= ~ATA_FLAG_DISABLED;
745 tf.ctl = ap->ctl;
746 tf.device = ATA_DEVICE_OBS;
747 tf.command = ATA_CMD_ID_ATA;
748 tf.protocol = ATA_PROT_PIO;
749
750 /* Some devices choke if TF registers contain garbage. Make
751 * sure those are properly initialized.
752 */
753 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
754
755 /* Device presence detection is unreliable on some
756 * controllers. Always poll IDENTIFY if available.
757 */
758 tf.flags |= ATA_TFLAG_POLLING;
759
760 temp_n_block = 1;
761
762 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
763 sizeof(id[0]) * ATA_ID_WORDS, 0);
764
765 if (err_mask) {
766 if (err_mask & AC_ERR_NODEV_HINT) {
767 printf("NODEV after polling detection\n");
768 return -ENOENT;
769 }
770
771 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
772 /* Device or controller might have reported
773 * the wrong device class. Give a shot at the
774 * other IDENTIFY if the current one is
775 * aborted by the device.
776 */
777 if (may_fallback) {
778 may_fallback = 0;
779
780 if (class == ATA_DEV_ATA) {
781 class = ATA_DEV_ATAPI;
782 } else {
783 class = ATA_DEV_ATA;
784 }
785 goto retry;
786 }
787 /* Control reaches here iff the device aborted
788 * both flavors of IDENTIFYs which happens
789 * sometimes with phantom devices.
790 */
791 printf("both IDENTIFYs aborted, assuming NODEV\n");
792 return -ENOENT;
793 }
794 rc = -EIO;
795 reason = "I/O error";
796 goto err_out;
797 }
798
799 /* Falling back doesn't make sense if ID data was read
800 * successfully at least once.
801 */
802 may_fallback = 0;
803
804 unsigned int id_cnt;
805
806 for (id_cnt = 0; id_cnt < ATA_ID_WORDS; id_cnt++)
807 id[id_cnt] = le16_to_cpu(id[id_cnt]);
808
809
810 rc = -EINVAL;
811 reason = "device reports invalid type";
812
813 if (class == ATA_DEV_ATA) {
814 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
815 goto err_out;
816 } else {
817 if (ata_id_is_ata(id))
818 goto err_out;
819 }
820 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
821 tried_spinup = 1;
822 /*
823 * Drive powered-up in standby mode, and requires a specific
824 * SET_FEATURES spin-up subcommand before it will accept
825 * anything other than the original IDENTIFY command.
826 */
827 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
828 if (err_mask && id[2] != 0x738c) {
829 rc = -EIO;
830 reason = "SPINUP failed";
831 goto err_out;
832 }
833 /*
834 * If the drive initially returned incomplete IDENTIFY info,
835 * we now must reissue the IDENTIFY command.
836 */
837 if (id[2] == 0x37c8)
838 goto retry;
839 }
840
841 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
842 /*
843 * The exact sequence expected by certain pre-ATA4 drives is:
844 * SRST RESET
845 * IDENTIFY (optional in early ATA)
846 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
847 * anything else..
848 * Some drives were very specific about that exact sequence.
849 *
850 * Note that ATA4 says lba is mandatory so the second check
851 * shoud never trigger.
852 */
853 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
854 err_mask = ata_dev_init_params(dev, id[3], id[6]);
855 if (err_mask) {
856 rc = -EIO;
857 reason = "INIT_DEV_PARAMS failed";
858 goto err_out;
859 }
860
861 /* current CHS translation info (id[53-58]) might be
862 * changed. reread the identify device info.
863 */
864 flags &= ~ATA_READID_POSTRESET;
865 goto retry;
866 }
867 }
868
869 *p_class = class;
870 return 0;
871
872 err_out:
873 printf("failed to READ ID (%s, err_mask=0x%x)\n", reason, err_mask);
874 return rc;
875 }
876
877 static u8 ata_wait_idle(struct ata_port *ap)
878 {
879 u8 status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
880 return status;
881 }
882
883 static void ata_dev_select(struct ata_port *ap, unsigned int device,
884 unsigned int wait, unsigned int can_sleep)
885 {
886 if (wait)
887 ata_wait_idle(ap);
888
889 ata_std_dev_select(ap, device);
890
891 if (wait)
892 ata_wait_idle(ap);
893 }
894
895 static void ata_std_dev_select(struct ata_port *ap, unsigned int device)
896 {
897 u8 tmp;
898
899 if (device == 0) {
900 tmp = ATA_DEVICE_OBS;
901 } else {
902 tmp = ATA_DEVICE_OBS | ATA_DEV1;
903 }
904
905 writeb(tmp, ap->ioaddr.device_addr);
906
907 readb(ap->ioaddr.altstatus_addr);
908
909 udelay(1);
910 }
911
912 static int waiting_for_reg_state(volatile u8 *offset,
913 int timeout_msec,
914 u32 sign)
915 {
916 int i;
917 u32 status;
918
919 for (i = 0; i < timeout_msec; i++) {
920 status = readl(offset);
921 if ((status & sign) != 0)
922 break;
923 msleep(1);
924 }
925
926 return (i < timeout_msec) ? 0 : -1;
927 }
928
929 static void ata_qc_reinit(struct ata_queued_cmd *qc)
930 {
931 qc->dma_dir = DMA_NONE;
932 qc->flags = 0;
933 qc->nbytes = qc->extrabytes = qc->curbytes = 0;
934 qc->n_elem = 0;
935 qc->err_mask = 0;
936 qc->sect_size = ATA_SECT_SIZE;
937 qc->nbytes = ATA_SECT_SIZE * temp_n_block;
938
939 memset(&qc->tf, 0, sizeof(qc->tf));
940 qc->tf.ctl = 0;
941 qc->tf.device = ATA_DEVICE_OBS;
942
943 qc->result_tf.command = ATA_DRDY;
944 qc->result_tf.feature = 0;
945 }
946
947 struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap,
948 unsigned int tag)
949 {
950 if (tag < ATA_MAX_QUEUE)
951 return &ap->qcmd[tag];
952 return NULL;
953 }
954
955 static void __ata_port_freeze(struct ata_port *ap)
956 {
957 printf("set port freeze.\n");
958 ap->pflags |= ATA_PFLAG_FROZEN;
959 }
960
961 static int ata_port_freeze(struct ata_port *ap)
962 {
963 __ata_port_freeze(ap);
964 return 0;
965 }
966
967 unsigned ata_exec_internal(struct ata_device *dev,
968 struct ata_taskfile *tf, const u8 *cdb,
969 int dma_dir, unsigned int buflen,
970 unsigned long timeout)
971 {
972 struct ata_link *link = dev->link;
973 struct ata_port *ap = pap;
974 struct ata_queued_cmd *qc;
975 unsigned int tag, preempted_tag;
976 u32 preempted_sactive, preempted_qc_active;
977 int preempted_nr_active_links;
978 unsigned int err_mask;
979 int rc = 0;
980 u8 status;
981
982 status = ata_busy_wait(ap, ATA_BUSY, 300000);
983 if (status & ATA_BUSY) {
984 printf("BSY = 0 check. timeout.\n");
985 rc = false;
986 return rc;
987 }
988
989 if (ap->pflags & ATA_PFLAG_FROZEN)
990 return AC_ERR_SYSTEM;
991
992 tag = ATA_TAG_INTERNAL;
993
994 if (test_and_set_bit(tag, &ap->qc_allocated)) {
995 rc = false;
996 return rc;
997 }
998
999 qc = __ata_qc_from_tag(ap, tag);
1000 qc->tag = tag;
1001 qc->ap = ap;
1002 qc->dev = dev;
1003
1004 ata_qc_reinit(qc);
1005
1006 preempted_tag = link->active_tag;
1007 preempted_sactive = link->sactive;
1008 preempted_qc_active = ap->qc_active;
1009 preempted_nr_active_links = ap->nr_active_links;
1010 link->active_tag = ATA_TAG_POISON;
1011 link->sactive = 0;
1012 ap->qc_active = 0;
1013 ap->nr_active_links = 0;
1014
1015 qc->tf = *tf;
1016 if (cdb)
1017 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1018 qc->flags |= ATA_QCFLAG_RESULT_TF;
1019 qc->dma_dir = dma_dir;
1020 qc->private_data = 0;
1021
1022 ata_qc_issue(qc);
1023
1024 if (!timeout)
1025 timeout = ata_probe_timeout * 1000 / HZ;
1026
1027 status = ata_busy_wait(ap, ATA_BUSY, 30000);
1028 if (status & ATA_BUSY) {
1029 printf("BSY = 0 check. timeout.\n");
1030 printf("altstatus = 0x%x.\n", status);
1031 qc->err_mask |= AC_ERR_OTHER;
1032 return qc->err_mask;
1033 }
1034
1035 if (waiting_for_reg_state(ap->ioaddr.altstatus_addr, 1000, 0x8)) {
1036 u8 status = 0;
1037 u8 errorStatus = 0;
1038
1039 status = readb(ap->ioaddr.altstatus_addr);
1040 if ((status & 0x01) != 0) {
1041 errorStatus = readb(ap->ioaddr.feature_addr);
1042 if (errorStatus == 0x04 &&
1043 qc->tf.command == ATA_CMD_PIO_READ_EXT){
1044 printf("Hard Disk doesn't support LBA48\n");
1045 dev_state = SATA_ERROR;
1046 qc->err_mask |= AC_ERR_OTHER;
1047 return qc->err_mask;
1048 }
1049 }
1050 qc->err_mask |= AC_ERR_OTHER;
1051 return qc->err_mask;
1052 }
1053
1054 status = ata_busy_wait(ap, ATA_BUSY, 10);
1055 if (status & ATA_BUSY) {
1056 printf("BSY = 0 check. timeout.\n");
1057 qc->err_mask |= AC_ERR_OTHER;
1058 return qc->err_mask;
1059 }
1060
1061 ata_pio_task(ap);
1062
1063 if (!rc) {
1064 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1065 qc->err_mask |= AC_ERR_TIMEOUT;
1066 ata_port_freeze(ap);
1067 }
1068 }
1069
1070 if (qc->flags & ATA_QCFLAG_FAILED) {
1071 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1072 qc->err_mask |= AC_ERR_DEV;
1073
1074 if (!qc->err_mask)
1075 qc->err_mask |= AC_ERR_OTHER;
1076
1077 if (qc->err_mask & ~AC_ERR_OTHER)
1078 qc->err_mask &= ~AC_ERR_OTHER;
1079 }
1080
1081 *tf = qc->result_tf;
1082 err_mask = qc->err_mask;
1083 ata_qc_free(qc);
1084 link->active_tag = preempted_tag;
1085 link->sactive = preempted_sactive;
1086 ap->qc_active = preempted_qc_active;
1087 ap->nr_active_links = preempted_nr_active_links;
1088
1089 if (ap->flags & ATA_FLAG_DISABLED) {
1090 err_mask |= AC_ERR_SYSTEM;
1091 ap->flags &= ~ATA_FLAG_DISABLED;
1092 }
1093
1094 return err_mask;
1095 }
1096
1097 static void ata_qc_issue(struct ata_queued_cmd *qc)
1098 {
1099 struct ata_port *ap = qc->ap;
1100 struct ata_link *link = qc->dev->link;
1101 u8 prot = qc->tf.protocol;
1102
1103 if (ata_is_ncq(prot)) {
1104 if (!link->sactive)
1105 ap->nr_active_links++;
1106 link->sactive |= 1 << qc->tag;
1107 } else {
1108 ap->nr_active_links++;
1109 link->active_tag = qc->tag;
1110 }
1111
1112 qc->flags |= ATA_QCFLAG_ACTIVE;
1113 ap->qc_active |= 1 << qc->tag;
1114
1115 if (qc->dev->flags & ATA_DFLAG_SLEEPING) {
1116 msleep(1);
1117 return;
1118 }
1119
1120 qc->err_mask |= ata_qc_issue_prot(qc);
1121 if (qc->err_mask)
1122 goto err;
1123
1124 return;
1125 err:
1126 ata_qc_complete(qc);
1127 }
1128
1129 static unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1130 {
1131 struct ata_port *ap = qc->ap;
1132
1133 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1134 switch (qc->tf.protocol) {
1135 case ATA_PROT_PIO:
1136 case ATA_PROT_NODATA:
1137 case ATAPI_PROT_PIO:
1138 case ATAPI_PROT_NODATA:
1139 qc->tf.flags |= ATA_TFLAG_POLLING;
1140 break;
1141 default:
1142 break;
1143 }
1144 }
1145
1146 ata_dev_select(ap, qc->dev->devno, 1, 0);
1147
1148 switch (qc->tf.protocol) {
1149 case ATA_PROT_PIO:
1150 if (qc->tf.flags & ATA_TFLAG_POLLING)
1151 qc->tf.ctl |= ATA_NIEN;
1152
1153 ata_tf_to_host(ap, &qc->tf);
1154
1155 ap->hsm_task_state = HSM_ST;
1156
1157 if (qc->tf.flags & ATA_TFLAG_POLLING)
1158 ata_pio_queue_task(ap, qc, 0);
1159
1160 break;
1161
1162 default:
1163 return AC_ERR_SYSTEM;
1164 }
1165
1166 return 0;
1167 }
1168
1169 static void ata_tf_to_host(struct ata_port *ap,
1170 const struct ata_taskfile *tf)
1171 {
1172 ata_tf_load(ap, tf);
1173 ata_exec_command(ap, tf);
1174 }
1175
1176 static void ata_tf_load(struct ata_port *ap,
1177 const struct ata_taskfile *tf)
1178 {
1179 struct ata_ioports *ioaddr = &ap->ioaddr;
1180 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
1181
1182 if (tf->ctl != ap->last_ctl) {
1183 if (ioaddr->ctl_addr)
1184 writeb(tf->ctl, ioaddr->ctl_addr);
1185 ap->last_ctl = tf->ctl;
1186 ata_wait_idle(ap);
1187 }
1188
1189 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
1190 writeb(tf->hob_feature, ioaddr->feature_addr);
1191 writeb(tf->hob_nsect, ioaddr->nsect_addr);
1192 writeb(tf->hob_lbal, ioaddr->lbal_addr);
1193 writeb(tf->hob_lbam, ioaddr->lbam_addr);
1194 writeb(tf->hob_lbah, ioaddr->lbah_addr);
1195 }
1196
1197 if (is_addr) {
1198 writeb(tf->feature, ioaddr->feature_addr);
1199 writeb(tf->nsect, ioaddr->nsect_addr);
1200 writeb(tf->lbal, ioaddr->lbal_addr);
1201 writeb(tf->lbam, ioaddr->lbam_addr);
1202 writeb(tf->lbah, ioaddr->lbah_addr);
1203 }
1204
1205 if (tf->flags & ATA_TFLAG_DEVICE)
1206 writeb(tf->device, ioaddr->device_addr);
1207
1208 ata_wait_idle(ap);
1209 }
1210
1211 static void ata_exec_command(struct ata_port *ap,
1212 const struct ata_taskfile *tf)
1213 {
1214 writeb(tf->command, ap->ioaddr.command_addr);
1215
1216 readb(ap->ioaddr.altstatus_addr);
1217
1218 udelay(1);
1219 }
1220
1221 static void ata_pio_queue_task(struct ata_port *ap,
1222 void *data,unsigned long delay)
1223 {
1224 ap->port_task_data = data;
1225 }
1226
1227 static unsigned int ac_err_mask(u8 status)
1228 {
1229 if (status & (ATA_BUSY | ATA_DRQ))
1230 return AC_ERR_HSM;
1231 if (status & (ATA_ERR | ATA_DF))
1232 return AC_ERR_DEV;
1233 return 0;
1234 }
1235
1236 static unsigned int __ac_err_mask(u8 status)
1237 {
1238 unsigned int mask = ac_err_mask(status);
1239 if (mask == 0)
1240 return AC_ERR_OTHER;
1241 return mask;
1242 }
1243
1244 static void ata_pio_task(struct ata_port *arg_ap)
1245 {
1246 struct ata_port *ap = arg_ap;
1247 struct ata_queued_cmd *qc = ap->port_task_data;
1248 u8 status;
1249 int poll_next;
1250
1251 fsm_start:
1252 /*
1253 * This is purely heuristic. This is a fast path.
1254 * Sometimes when we enter, BSY will be cleared in
1255 * a chk-status or two. If not, the drive is probably seeking
1256 * or something. Snooze for a couple msecs, then
1257 * chk-status again. If still busy, queue delayed work.
1258 */
1259 status = ata_busy_wait(ap, ATA_BUSY, 5);
1260 if (status & ATA_BUSY) {
1261 msleep(2);
1262 status = ata_busy_wait(ap, ATA_BUSY, 10);
1263 if (status & ATA_BUSY) {
1264 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1265 return;
1266 }
1267 }
1268
1269 poll_next = ata_hsm_move(ap, qc, status, 1);
1270
1271 /* another command or interrupt handler
1272 * may be running at this point.
1273 */
1274 if (poll_next)
1275 goto fsm_start;
1276 }
1277
1278 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1279 u8 status, int in_wq)
1280 {
1281 int poll_next;
1282
1283 fsm_start:
1284 switch (ap->hsm_task_state) {
1285 case HSM_ST_FIRST:
1286 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1287
1288 if ((status & ATA_DRQ) == 0) {
1289 if (status & (ATA_ERR | ATA_DF)) {
1290 qc->err_mask |= AC_ERR_DEV;
1291 } else {
1292 qc->err_mask |= AC_ERR_HSM;
1293 }
1294 ap->hsm_task_state = HSM_ST_ERR;
1295 goto fsm_start;
1296 }
1297
1298 /* Device should not ask for data transfer (DRQ=1)
1299 * when it finds something wrong.
1300 * We ignore DRQ here and stop the HSM by
1301 * changing hsm_task_state to HSM_ST_ERR and
1302 * let the EH abort the command or reset the device.
1303 */
1304 if (status & (ATA_ERR | ATA_DF)) {
1305 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1306 printf("DRQ=1 with device error, "
1307 "dev_stat 0x%X\n", status);
1308 qc->err_mask |= AC_ERR_HSM;
1309 ap->hsm_task_state = HSM_ST_ERR;
1310 goto fsm_start;
1311 }
1312 }
1313
1314 if (qc->tf.protocol == ATA_PROT_PIO) {
1315 /* PIO data out protocol.
1316 * send first data block.
1317 */
1318 /* ata_pio_sectors() might change the state
1319 * to HSM_ST_LAST. so, the state is changed here
1320 * before ata_pio_sectors().
1321 */
1322 ap->hsm_task_state = HSM_ST;
1323 ata_pio_sectors(qc);
1324 } else {
1325 printf("protocol is not ATA_PROT_PIO \n");
1326 }
1327 break;
1328
1329 case HSM_ST:
1330 if ((status & ATA_DRQ) == 0) {
1331 if (status & (ATA_ERR | ATA_DF)) {
1332 qc->err_mask |= AC_ERR_DEV;
1333 } else {
1334 /* HSM violation. Let EH handle this.
1335 * Phantom devices also trigger this
1336 * condition. Mark hint.
1337 */
1338 qc->err_mask |= AC_ERR_HSM | AC_ERR_NODEV_HINT;
1339 }
1340
1341 ap->hsm_task_state = HSM_ST_ERR;
1342 goto fsm_start;
1343 }
1344 /* For PIO reads, some devices may ask for
1345 * data transfer (DRQ=1) alone with ERR=1.
1346 * We respect DRQ here and transfer one
1347 * block of junk data before changing the
1348 * hsm_task_state to HSM_ST_ERR.
1349 *
1350 * For PIO writes, ERR=1 DRQ=1 doesn't make
1351 * sense since the data block has been
1352 * transferred to the device.
1353 */
1354 if (status & (ATA_ERR | ATA_DF)) {
1355 qc->err_mask |= AC_ERR_DEV;
1356
1357 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1358 ata_pio_sectors(qc);
1359 status = ata_wait_idle(ap);
1360 }
1361
1362 if (status & (ATA_BUSY | ATA_DRQ))
1363 qc->err_mask |= AC_ERR_HSM;
1364
1365 /* ata_pio_sectors() might change the
1366 * state to HSM_ST_LAST. so, the state
1367 * is changed after ata_pio_sectors().
1368 */
1369 ap->hsm_task_state = HSM_ST_ERR;
1370 goto fsm_start;
1371 }
1372
1373 ata_pio_sectors(qc);
1374 if (ap->hsm_task_state == HSM_ST_LAST &&
1375 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1376 status = ata_wait_idle(ap);
1377 goto fsm_start;
1378 }
1379
1380 poll_next = 1;
1381 break;
1382
1383 case HSM_ST_LAST:
1384 if (!ata_ok(status)) {
1385 qc->err_mask |= __ac_err_mask(status);
1386 ap->hsm_task_state = HSM_ST_ERR;
1387 goto fsm_start;
1388 }
1389
1390 ap->hsm_task_state = HSM_ST_IDLE;
1391
1392 ata_hsm_qc_complete(qc, in_wq);
1393
1394 poll_next = 0;
1395 break;
1396
1397 case HSM_ST_ERR:
1398 /* make sure qc->err_mask is available to
1399 * know what's wrong and recover
1400 */
1401 ap->hsm_task_state = HSM_ST_IDLE;
1402
1403 ata_hsm_qc_complete(qc, in_wq);
1404
1405 poll_next = 0;
1406 break;
1407 default:
1408 poll_next = 0;
1409 }
1410
1411 return poll_next;
1412 }
1413
1414 static void ata_pio_sectors(struct ata_queued_cmd *qc)
1415 {
1416 struct ata_port *ap;
1417 ap = pap;
1418 qc->pdata = ap->pdata;
1419
1420 ata_pio_sector(qc);
1421
1422 readb(qc->ap->ioaddr.altstatus_addr);
1423 udelay(1);
1424 }
1425
1426 static void ata_pio_sector(struct ata_queued_cmd *qc)
1427 {
1428 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1429 struct ata_port *ap = qc->ap;
1430 unsigned int offset;
1431 unsigned char *buf;
1432 char temp_data_buf[512];
1433
1434 if (qc->curbytes == qc->nbytes - qc->sect_size)
1435 ap->hsm_task_state = HSM_ST_LAST;
1436
1437 offset = qc->curbytes;
1438
1439 switch (qc->tf.command) {
1440 case ATA_CMD_ID_ATA:
1441 buf = (unsigned char *)&ata_device.id[0];
1442 break;
1443 case ATA_CMD_PIO_READ_EXT:
1444 case ATA_CMD_PIO_READ:
1445 case ATA_CMD_PIO_WRITE_EXT:
1446 case ATA_CMD_PIO_WRITE:
1447 buf = qc->pdata + offset;
1448 break;
1449 default:
1450 buf = (unsigned char *)&temp_data_buf[0];
1451 }
1452
1453 ata_mmio_data_xfer(qc->dev, buf, qc->sect_size, do_write);
1454
1455 qc->curbytes += qc->sect_size;
1456
1457 }
1458
1459 static void ata_mmio_data_xfer(struct ata_device *dev, unsigned char *buf,
1460 unsigned int buflen, int do_write)
1461 {
1462 struct ata_port *ap = pap;
1463 void __iomem *data_addr = ap->ioaddr.data_addr;
1464 unsigned int words = buflen >> 1;
1465 u16 *buf16 = (u16 *)buf;
1466 unsigned int i = 0;
1467
1468 udelay(100);
1469 if (do_write) {
1470 for (i = 0; i < words; i++)
1471 writew(le16_to_cpu(buf16[i]), data_addr);
1472 } else {
1473 for (i = 0; i < words; i++)
1474 buf16[i] = cpu_to_le16(readw(data_addr));
1475 }
1476
1477 if (buflen & 0x01) {
1478 __le16 align_buf[1] = { 0 };
1479 unsigned char *trailing_buf = buf + buflen - 1;
1480
1481 if (do_write) {
1482 memcpy(align_buf, trailing_buf, 1);
1483 writew(le16_to_cpu(align_buf[0]), data_addr);
1484 } else {
1485 align_buf[0] = cpu_to_le16(readw(data_addr));
1486 memcpy(trailing_buf, align_buf, 1);
1487 }
1488 }
1489 }
1490
1491 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1492 {
1493 struct ata_port *ap = qc->ap;
1494
1495 if (in_wq) {
1496 /* EH might have kicked in while host lock is
1497 * released.
1498 */
1499 qc = &ap->qcmd[qc->tag];
1500 if (qc) {
1501 if (!(qc->err_mask & AC_ERR_HSM)) {
1502 ata_irq_on(ap);
1503 ata_qc_complete(qc);
1504 } else {
1505 ata_port_freeze(ap);
1506 }
1507 }
1508 } else {
1509 if (!(qc->err_mask & AC_ERR_HSM)) {
1510 ata_qc_complete(qc);
1511 } else {
1512 ata_port_freeze(ap);
1513 }
1514 }
1515 }
1516
1517 static u8 ata_irq_on(struct ata_port *ap)
1518 {
1519 struct ata_ioports *ioaddr = &ap->ioaddr;
1520 u8 tmp;
1521
1522 ap->ctl &= ~ATA_NIEN;
1523 ap->last_ctl = ap->ctl;
1524
1525 if (ioaddr->ctl_addr)
1526 writeb(ap->ctl, ioaddr->ctl_addr);
1527
1528 tmp = ata_wait_idle(ap);
1529
1530 return tmp;
1531 }
1532
1533 static unsigned int ata_tag_internal(unsigned int tag)
1534 {
1535 return tag == ATA_MAX_QUEUE - 1;
1536 }
1537
1538 static void ata_qc_complete(struct ata_queued_cmd *qc)
1539 {
1540 struct ata_device *dev = qc->dev;
1541 if (qc->err_mask)
1542 qc->flags |= ATA_QCFLAG_FAILED;
1543
1544 if (qc->flags & ATA_QCFLAG_FAILED) {
1545 if (!ata_tag_internal(qc->tag)) {
1546 fill_result_tf(qc);
1547 return;
1548 }
1549 }
1550 if (qc->flags & ATA_QCFLAG_RESULT_TF)
1551 fill_result_tf(qc);
1552
1553 /* Some commands need post-processing after successful
1554 * completion.
1555 */
1556 switch (qc->tf.command) {
1557 case ATA_CMD_SET_FEATURES:
1558 if (qc->tf.feature != SETFEATURES_WC_ON &&
1559 qc->tf.feature != SETFEATURES_WC_OFF)
1560 break;
1561 case ATA_CMD_INIT_DEV_PARAMS:
1562 case ATA_CMD_SET_MULTI:
1563 break;
1564
1565 case ATA_CMD_SLEEP:
1566 dev->flags |= ATA_DFLAG_SLEEPING;
1567 break;
1568 }
1569
1570 __ata_qc_complete(qc);
1571 }
1572
1573 static void fill_result_tf(struct ata_queued_cmd *qc)
1574 {
1575 struct ata_port *ap = qc->ap;
1576
1577 qc->result_tf.flags = qc->tf.flags;
1578 ata_tf_read(ap, &qc->result_tf);
1579 }
1580
1581 static void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
1582 {
1583 struct ata_ioports *ioaddr = &ap->ioaddr;
1584
1585 tf->command = ata_check_status(ap);
1586 tf->feature = readb(ioaddr->error_addr);
1587 tf->nsect = readb(ioaddr->nsect_addr);
1588 tf->lbal = readb(ioaddr->lbal_addr);
1589 tf->lbam = readb(ioaddr->lbam_addr);
1590 tf->lbah = readb(ioaddr->lbah_addr);
1591 tf->device = readb(ioaddr->device_addr);
1592
1593 if (tf->flags & ATA_TFLAG_LBA48) {
1594 if (ioaddr->ctl_addr) {
1595 writeb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
1596
1597 tf->hob_feature = readb(ioaddr->error_addr);
1598 tf->hob_nsect = readb(ioaddr->nsect_addr);
1599 tf->hob_lbal = readb(ioaddr->lbal_addr);
1600 tf->hob_lbam = readb(ioaddr->lbam_addr);
1601 tf->hob_lbah = readb(ioaddr->lbah_addr);
1602
1603 writeb(tf->ctl, ioaddr->ctl_addr);
1604 ap->last_ctl = tf->ctl;
1605 } else {
1606 printf("sata_dwc warnning register read.\n");
1607 }
1608 }
1609 }
1610
1611 static void __ata_qc_complete(struct ata_queued_cmd *qc)
1612 {
1613 struct ata_port *ap = qc->ap;
1614 struct ata_link *link = qc->dev->link;
1615
1616 link->active_tag = ATA_TAG_POISON;
1617 ap->nr_active_links--;
1618
1619 if (qc->flags & ATA_QCFLAG_CLEAR_EXCL && ap->excl_link == link)
1620 ap->excl_link = NULL;
1621
1622 qc->flags &= ~ATA_QCFLAG_ACTIVE;
1623 ap->qc_active &= ~(1 << qc->tag);
1624 }
1625
1626 static void ata_qc_free(struct ata_queued_cmd *qc)
1627 {
1628 struct ata_port *ap = qc->ap;
1629 unsigned int tag;
1630 qc->flags = 0;
1631 tag = qc->tag;
1632 if (tag < ATA_MAX_QUEUE) {
1633 qc->tag = ATA_TAG_POISON;
1634 clear_bit(tag, &ap->qc_allocated);
1635 }
1636 }
1637
1638 static int check_sata_dev_state(void)
1639 {
1640 unsigned long datalen;
1641 unsigned char *pdata;
1642 int ret = 0;
1643 int i = 0;
1644 char temp_data_buf[512];
1645
1646 while (1) {
1647 udelay(10000);
1648
1649 pdata = (unsigned char*)&temp_data_buf[0];
1650 datalen = 512;
1651
1652 ret = ata_dev_read_sectors(pdata, datalen, 0, 1);
1653
1654 if (ret == true)
1655 break;
1656
1657 i++;
1658 if (i > (ATA_RESET_TIME * 100)) {
1659 printf("** TimeOUT **\n");
1660 dev_state = SATA_NODEVICE;
1661 return false;
1662 }
1663
1664 if ((i >= 100) && ((i % 100) == 0))
1665 printf(".");
1666 }
1667
1668 dev_state = SATA_READY;
1669
1670 return true;
1671 }
1672
1673 static unsigned int ata_dev_set_feature(struct ata_device *dev,
1674 u8 enable, u8 feature)
1675 {
1676 struct ata_taskfile tf;
1677 struct ata_port *ap;
1678 ap = pap;
1679 unsigned int err_mask;
1680
1681 memset(&tf, 0, sizeof(tf));
1682 tf.ctl = ap->ctl;
1683
1684 tf.device = ATA_DEVICE_OBS;
1685 tf.command = ATA_CMD_SET_FEATURES;
1686 tf.feature = enable;
1687 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1688 tf.protocol = ATA_PROT_NODATA;
1689 tf.nsect = feature;
1690
1691 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, 0, 0);
1692
1693 return err_mask;
1694 }
1695
1696 static unsigned int ata_dev_init_params(struct ata_device *dev,
1697 u16 heads, u16 sectors)
1698 {
1699 struct ata_taskfile tf;
1700 struct ata_port *ap;
1701 ap = pap;
1702 unsigned int err_mask;
1703
1704 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
1705 return AC_ERR_INVALID;
1706
1707 memset(&tf, 0, sizeof(tf));
1708 tf.ctl = ap->ctl;
1709 tf.device = ATA_DEVICE_OBS;
1710 tf.command = ATA_CMD_INIT_DEV_PARAMS;
1711 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1712 tf.protocol = ATA_PROT_NODATA;
1713 tf.nsect = sectors;
1714 tf.device |= (heads - 1) & 0x0f;
1715
1716 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, 0, 0);
1717
1718 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1719 err_mask = 0;
1720
1721 return err_mask;
1722 }
1723
1724 #if defined(CONFIG_SATA_DWC) && !defined(CONFIG_LBA48)
1725 #define SATA_MAX_READ_BLK 0xFF
1726 #else
1727 #define SATA_MAX_READ_BLK 0xFFFF
1728 #endif
1729
1730 ulong sata_read(int device, ulong blknr, lbaint_t blkcnt, void *buffer)
1731 {
1732 ulong start,blks, buf_addr;
1733 unsigned short smallblks;
1734 unsigned long datalen;
1735 unsigned char *pdata;
1736 device &= 0xff;
1737
1738 u32 block = 0;
1739 u32 n_block = 0;
1740
1741 if (dev_state != SATA_READY)
1742 return 0;
1743
1744 buf_addr = (unsigned long)buffer;
1745 start = blknr;
1746 blks = blkcnt;
1747 do {
1748 pdata = (unsigned char *)buf_addr;
1749 if (blks > SATA_MAX_READ_BLK) {
1750 datalen = sata_dev_desc[device].blksz * SATA_MAX_READ_BLK;
1751 smallblks = SATA_MAX_READ_BLK;
1752
1753 block = (u32)start;
1754 n_block = (u32)smallblks;
1755
1756 start += SATA_MAX_READ_BLK;
1757 blks -= SATA_MAX_READ_BLK;
1758 } else {
1759 datalen = sata_dev_desc[device].blksz * SATA_MAX_READ_BLK;
1760 datalen = sata_dev_desc[device].blksz * blks;
1761 smallblks = (unsigned short)blks;
1762
1763 block = (u32)start;
1764 n_block = (u32)smallblks;
1765
1766 start += blks;
1767 blks = 0;
1768 }
1769
1770 if (ata_dev_read_sectors(pdata, datalen, block, n_block) != true) {
1771 printf("sata_dwc : Hard disk read error.\n");
1772 blkcnt -= blks;
1773 break;
1774 }
1775 buf_addr += datalen;
1776 } while (blks != 0);
1777
1778 return (blkcnt);
1779 }
1780
1781 static int ata_dev_read_sectors(unsigned char *pdata, unsigned long datalen,
1782 u32 block, u32 n_block)
1783 {
1784 struct ata_port *ap = pap;
1785 struct ata_device *dev = &ata_device;
1786 struct ata_taskfile tf;
1787 unsigned int class = ATA_DEV_ATA;
1788 unsigned int err_mask = 0;
1789 const char *reason;
1790 int may_fallback = 1;
1791
1792 if (dev_state == SATA_ERROR)
1793 return false;
1794
1795 ata_dev_select(ap, dev->devno, 1, 1);
1796
1797 retry:
1798 memset(&tf, 0, sizeof(tf));
1799 tf.ctl = ap->ctl;
1800 ap->print_id = 1;
1801 ap->flags &= ~ATA_FLAG_DISABLED;
1802
1803 ap->pdata = pdata;
1804
1805 tf.device = ATA_DEVICE_OBS;
1806
1807 temp_n_block = n_block;
1808
1809 #ifdef CONFIG_LBA48
1810 tf.command = ATA_CMD_PIO_READ_EXT;
1811 tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
1812
1813 tf.hob_feature = 31;
1814 tf.feature = 31;
1815 tf.hob_nsect = (n_block >> 8) & 0xff;
1816 tf.nsect = n_block & 0xff;
1817
1818 tf.hob_lbah = 0x0;
1819 tf.hob_lbam = 0x0;
1820 tf.hob_lbal = (block >> 24) & 0xff;
1821 tf.lbah = (block >> 16) & 0xff;
1822 tf.lbam = (block >> 8) & 0xff;
1823 tf.lbal = block & 0xff;
1824
1825 tf.device = 1 << 6;
1826 if (tf.flags & ATA_TFLAG_FUA)
1827 tf.device |= 1 << 7;
1828 #else
1829 tf.command = ATA_CMD_PIO_READ;
1830 tf.flags |= ATA_TFLAG_LBA ;
1831
1832 tf.feature = 31;
1833 tf.nsect = n_block & 0xff;
1834
1835 tf.lbah = (block >> 16) & 0xff;
1836 tf.lbam = (block >> 8) & 0xff;
1837 tf.lbal = block & 0xff;
1838
1839 tf.device = (block >> 24) & 0xf;
1840
1841 tf.device |= 1 << 6;
1842 if (tf.flags & ATA_TFLAG_FUA)
1843 tf.device |= 1 << 7;
1844
1845 #endif
1846
1847 tf.protocol = ATA_PROT_PIO;
1848
1849 /* Some devices choke if TF registers contain garbage. Make
1850 * sure those are properly initialized.
1851 */
1852 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1853 tf.flags |= ATA_TFLAG_POLLING;
1854
1855 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 0, 0);
1856
1857 if (err_mask) {
1858 if (err_mask & AC_ERR_NODEV_HINT) {
1859 printf("READ_SECTORS NODEV after polling detection\n");
1860 return -ENOENT;
1861 }
1862
1863 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1864 /* Device or controller might have reported
1865 * the wrong device class. Give a shot at the
1866 * other IDENTIFY if the current one is
1867 * aborted by the device.
1868 */
1869 if (may_fallback) {
1870 may_fallback = 0;
1871
1872 if (class == ATA_DEV_ATA) {
1873 class = ATA_DEV_ATAPI;
1874 } else {
1875 class = ATA_DEV_ATA;
1876 }
1877 goto retry;
1878 }
1879 /* Control reaches here iff the device aborted
1880 * both flavors of IDENTIFYs which happens
1881 * sometimes with phantom devices.
1882 */
1883 printf("both IDENTIFYs aborted, assuming NODEV\n");
1884 return -ENOENT;
1885 }
1886
1887 reason = "I/O error";
1888 goto err_out;
1889 }
1890
1891 return true;
1892
1893 err_out:
1894 printf("failed to READ SECTORS (%s, err_mask=0x%x)\n", reason, err_mask);
1895 return false;
1896 }
1897
1898 #if defined(CONFIG_SATA_DWC) && !defined(CONFIG_LBA48)
1899 #define SATA_MAX_WRITE_BLK 0xFF
1900 #else
1901 #define SATA_MAX_WRITE_BLK 0xFFFF
1902 #endif
1903
1904 ulong sata_write(int device, ulong blknr, lbaint_t blkcnt, const void *buffer)
1905 {
1906 ulong start,blks, buf_addr;
1907 unsigned short smallblks;
1908 unsigned long datalen;
1909 unsigned char *pdata;
1910 device &= 0xff;
1911
1912
1913 u32 block = 0;
1914 u32 n_block = 0;
1915
1916 if (dev_state != SATA_READY)
1917 return 0;
1918
1919 buf_addr = (unsigned long)buffer;
1920 start = blknr;
1921 blks = blkcnt;
1922 do {
1923 pdata = (unsigned char *)buf_addr;
1924 if (blks > SATA_MAX_WRITE_BLK) {
1925 datalen = sata_dev_desc[device].blksz * SATA_MAX_WRITE_BLK;
1926 smallblks = SATA_MAX_WRITE_BLK;
1927
1928 block = (u32)start;
1929 n_block = (u32)smallblks;
1930
1931 start += SATA_MAX_WRITE_BLK;
1932 blks -= SATA_MAX_WRITE_BLK;
1933 } else {
1934 datalen = sata_dev_desc[device].blksz * blks;
1935 smallblks = (unsigned short)blks;
1936
1937 block = (u32)start;
1938 n_block = (u32)smallblks;
1939
1940 start += blks;
1941 blks = 0;
1942 }
1943
1944 if (ata_dev_write_sectors(pdata, datalen, block, n_block) != true) {
1945 printf("sata_dwc : Hard disk read error.\n");
1946 blkcnt -= blks;
1947 break;
1948 }
1949 buf_addr += datalen;
1950 } while (blks != 0);
1951
1952 return (blkcnt);
1953 }
1954
1955 static int ata_dev_write_sectors(unsigned char* pdata, unsigned long datalen,
1956 u32 block, u32 n_block)
1957 {
1958 struct ata_port *ap = pap;
1959 struct ata_device *dev = &ata_device;
1960 struct ata_taskfile tf;
1961 unsigned int class = ATA_DEV_ATA;
1962 unsigned int err_mask = 0;
1963 const char *reason;
1964 int may_fallback = 1;
1965
1966 if (dev_state == SATA_ERROR)
1967 return false;
1968
1969 ata_dev_select(ap, dev->devno, 1, 1);
1970
1971 retry:
1972 memset(&tf, 0, sizeof(tf));
1973 tf.ctl = ap->ctl;
1974 ap->print_id = 1;
1975 ap->flags &= ~ATA_FLAG_DISABLED;
1976
1977 ap->pdata = pdata;
1978
1979 tf.device = ATA_DEVICE_OBS;
1980
1981 temp_n_block = n_block;
1982
1983
1984 #ifdef CONFIG_LBA48
1985 tf.command = ATA_CMD_PIO_WRITE_EXT;
1986 tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48 | ATA_TFLAG_WRITE;
1987
1988 tf.hob_feature = 31;
1989 tf.feature = 31;
1990 tf.hob_nsect = (n_block >> 8) & 0xff;
1991 tf.nsect = n_block & 0xff;
1992
1993 tf.hob_lbah = 0x0;
1994 tf.hob_lbam = 0x0;
1995 tf.hob_lbal = (block >> 24) & 0xff;
1996 tf.lbah = (block >> 16) & 0xff;
1997 tf.lbam = (block >> 8) & 0xff;
1998 tf.lbal = block & 0xff;
1999
2000 tf.device = 1 << 6;
2001 if (tf.flags & ATA_TFLAG_FUA)
2002 tf.device |= 1 << 7;
2003 #else
2004 tf.command = ATA_CMD_PIO_WRITE;
2005 tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_WRITE;
2006
2007 tf.feature = 31;
2008 tf.nsect = n_block & 0xff;
2009
2010 tf.lbah = (block >> 16) & 0xff;
2011 tf.lbam = (block >> 8) & 0xff;
2012 tf.lbal = block & 0xff;
2013
2014 tf.device = (block >> 24) & 0xf;
2015
2016 tf.device |= 1 << 6;
2017 if (tf.flags & ATA_TFLAG_FUA)
2018 tf.device |= 1 << 7;
2019
2020 #endif
2021
2022 tf.protocol = ATA_PROT_PIO;
2023
2024 /* Some devices choke if TF registers contain garbage. Make
2025 * sure those are properly initialized.
2026 */
2027 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2028 tf.flags |= ATA_TFLAG_POLLING;
2029
2030 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 0, 0);
2031
2032 if (err_mask) {
2033 if (err_mask & AC_ERR_NODEV_HINT) {
2034 printf("READ_SECTORS NODEV after polling detection\n");
2035 return -ENOENT;
2036 }
2037
2038 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2039 /* Device or controller might have reported
2040 * the wrong device class. Give a shot at the
2041 * other IDENTIFY if the current one is
2042 * aborted by the device.
2043 */
2044 if (may_fallback) {
2045 may_fallback = 0;
2046
2047 if (class == ATA_DEV_ATA) {
2048 class = ATA_DEV_ATAPI;
2049 } else {
2050 class = ATA_DEV_ATA;
2051 }
2052 goto retry;
2053 }
2054 /* Control reaches here iff the device aborted
2055 * both flavors of IDENTIFYs which happens
2056 * sometimes with phantom devices.
2057 */
2058 printf("both IDENTIFYs aborted, assuming NODEV\n");
2059 return -ENOENT;
2060 }
2061
2062 reason = "I/O error";
2063 goto err_out;
2064 }
2065
2066 return true;
2067
2068 err_out:
2069 printf("failed to WRITE SECTORS (%s, err_mask=0x%x)\n", reason, err_mask);
2070 return false;
2071 }