]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/core/device.c
ed553d70a6bc0d62e22513f68fb8d2f9419c0075
[people/ms/u-boot.git] / drivers / core / device.c
1 /*
2 * Device manager
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * (C) Copyright 2012
7 * Pavel Herrmann <morpheus.ibis@gmail.com>
8 *
9 * SPDX-License-Identifier: GPL-2.0+
10 */
11
12 #include <common.h>
13 #include <asm/io.h>
14 #include <fdtdec.h>
15 #include <fdt_support.h>
16 #include <malloc.h>
17 #include <dm/device.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <dm/pinctrl.h>
21 #include <dm/platdata.h>
22 #include <dm/uclass.h>
23 #include <dm/uclass-internal.h>
24 #include <dm/util.h>
25 #include <linux/err.h>
26 #include <linux/list.h>
27
28 DECLARE_GLOBAL_DATA_PTR;
29
30 static int device_bind_common(struct udevice *parent, const struct driver *drv,
31 const char *name, void *platdata,
32 ulong driver_data, int of_offset,
33 uint of_platdata_size, struct udevice **devp)
34 {
35 struct udevice *dev;
36 struct uclass *uc;
37 int size, ret = 0;
38
39 if (devp)
40 *devp = NULL;
41 if (!name)
42 return -EINVAL;
43
44 ret = uclass_get(drv->id, &uc);
45 if (ret) {
46 debug("Missing uclass for driver %s\n", drv->name);
47 return ret;
48 }
49
50 dev = calloc(1, sizeof(struct udevice));
51 if (!dev)
52 return -ENOMEM;
53
54 INIT_LIST_HEAD(&dev->sibling_node);
55 INIT_LIST_HEAD(&dev->child_head);
56 INIT_LIST_HEAD(&dev->uclass_node);
57 #ifdef CONFIG_DEVRES
58 INIT_LIST_HEAD(&dev->devres_head);
59 #endif
60 dev->platdata = platdata;
61 dev->driver_data = driver_data;
62 dev->name = name;
63 dev->of_offset = of_offset;
64 dev->parent = parent;
65 dev->driver = drv;
66 dev->uclass = uc;
67
68 dev->seq = -1;
69 dev->req_seq = -1;
70 if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) {
71 /*
72 * Some devices, such as a SPI bus, I2C bus and serial ports
73 * are numbered using aliases.
74 *
75 * This is just a 'requested' sequence, and will be
76 * resolved (and ->seq updated) when the device is probed.
77 */
78 if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) {
79 if (uc->uc_drv->name && of_offset != -1) {
80 fdtdec_get_alias_seq(gd->fdt_blob,
81 uc->uc_drv->name, of_offset,
82 &dev->req_seq);
83 }
84 }
85 }
86
87 if (drv->platdata_auto_alloc_size) {
88 bool alloc = !platdata;
89
90 if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
91 if (of_platdata_size) {
92 dev->flags |= DM_FLAG_OF_PLATDATA;
93 if (of_platdata_size <
94 drv->platdata_auto_alloc_size)
95 alloc = true;
96 }
97 }
98 if (alloc) {
99 dev->flags |= DM_FLAG_ALLOC_PDATA;
100 dev->platdata = calloc(1,
101 drv->platdata_auto_alloc_size);
102 if (!dev->platdata) {
103 ret = -ENOMEM;
104 goto fail_alloc1;
105 }
106 if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) {
107 memcpy(dev->platdata, platdata,
108 of_platdata_size);
109 }
110 }
111 }
112
113 size = uc->uc_drv->per_device_platdata_auto_alloc_size;
114 if (size) {
115 dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA;
116 dev->uclass_platdata = calloc(1, size);
117 if (!dev->uclass_platdata) {
118 ret = -ENOMEM;
119 goto fail_alloc2;
120 }
121 }
122
123 if (parent) {
124 size = parent->driver->per_child_platdata_auto_alloc_size;
125 if (!size) {
126 size = parent->uclass->uc_drv->
127 per_child_platdata_auto_alloc_size;
128 }
129 if (size) {
130 dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA;
131 dev->parent_platdata = calloc(1, size);
132 if (!dev->parent_platdata) {
133 ret = -ENOMEM;
134 goto fail_alloc3;
135 }
136 }
137 }
138
139 /* put dev into parent's successor list */
140 if (parent)
141 list_add_tail(&dev->sibling_node, &parent->child_head);
142
143 ret = uclass_bind_device(dev);
144 if (ret)
145 goto fail_uclass_bind;
146
147 /* if we fail to bind we remove device from successors and free it */
148 if (drv->bind) {
149 ret = drv->bind(dev);
150 if (ret)
151 goto fail_bind;
152 }
153 if (parent && parent->driver->child_post_bind) {
154 ret = parent->driver->child_post_bind(dev);
155 if (ret)
156 goto fail_child_post_bind;
157 }
158 if (uc->uc_drv->post_bind) {
159 ret = uc->uc_drv->post_bind(dev);
160 if (ret)
161 goto fail_uclass_post_bind;
162 }
163
164 if (parent)
165 dm_dbg("Bound device %s to %s\n", dev->name, parent->name);
166 if (devp)
167 *devp = dev;
168
169 dev->flags |= DM_FLAG_BOUND;
170
171 return 0;
172
173 fail_uclass_post_bind:
174 /* There is no child unbind() method, so no clean-up required */
175 fail_child_post_bind:
176 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
177 if (drv->unbind && drv->unbind(dev)) {
178 dm_warn("unbind() method failed on dev '%s' on error path\n",
179 dev->name);
180 }
181 }
182
183 fail_bind:
184 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
185 if (uclass_unbind_device(dev)) {
186 dm_warn("Failed to unbind dev '%s' on error path\n",
187 dev->name);
188 }
189 }
190 fail_uclass_bind:
191 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
192 list_del(&dev->sibling_node);
193 if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) {
194 free(dev->parent_platdata);
195 dev->parent_platdata = NULL;
196 }
197 }
198 fail_alloc3:
199 if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) {
200 free(dev->uclass_platdata);
201 dev->uclass_platdata = NULL;
202 }
203 fail_alloc2:
204 if (dev->flags & DM_FLAG_ALLOC_PDATA) {
205 free(dev->platdata);
206 dev->platdata = NULL;
207 }
208 fail_alloc1:
209 devres_release_all(dev);
210
211 free(dev);
212
213 return ret;
214 }
215
216 int device_bind_with_driver_data(struct udevice *parent,
217 const struct driver *drv, const char *name,
218 ulong driver_data, int of_offset,
219 struct udevice **devp)
220 {
221 return device_bind_common(parent, drv, name, NULL, driver_data,
222 of_offset, 0, devp);
223 }
224
225 int device_bind(struct udevice *parent, const struct driver *drv,
226 const char *name, void *platdata, int of_offset,
227 struct udevice **devp)
228 {
229 return device_bind_common(parent, drv, name, platdata, 0, of_offset, 0,
230 devp);
231 }
232
233 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
234 const struct driver_info *info, struct udevice **devp)
235 {
236 struct driver *drv;
237 uint platdata_size = 0;
238
239 drv = lists_driver_lookup_name(info->name);
240 if (!drv)
241 return -ENOENT;
242 if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
243 return -EPERM;
244
245 #if CONFIG_IS_ENABLED(OF_PLATDATA)
246 platdata_size = info->platdata_size;
247 #endif
248 return device_bind_common(parent, drv, info->name,
249 (void *)info->platdata, 0, -1, platdata_size, devp);
250 }
251
252 static void *alloc_priv(int size, uint flags)
253 {
254 void *priv;
255
256 if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
257 priv = memalign(ARCH_DMA_MINALIGN, size);
258 if (priv)
259 memset(priv, '\0', size);
260 } else {
261 priv = calloc(1, size);
262 }
263
264 return priv;
265 }
266
267 int device_probe(struct udevice *dev)
268 {
269 const struct driver *drv;
270 int size = 0;
271 int ret;
272 int seq;
273
274 if (!dev)
275 return -EINVAL;
276
277 if (dev->flags & DM_FLAG_ACTIVATED)
278 return 0;
279
280 drv = dev->driver;
281 assert(drv);
282
283 /* Allocate private data if requested and not reentered */
284 if (drv->priv_auto_alloc_size && !dev->priv) {
285 dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags);
286 if (!dev->priv) {
287 ret = -ENOMEM;
288 goto fail;
289 }
290 }
291 /* Allocate private data if requested and not reentered */
292 size = dev->uclass->uc_drv->per_device_auto_alloc_size;
293 if (size && !dev->uclass_priv) {
294 dev->uclass_priv = calloc(1, size);
295 if (!dev->uclass_priv) {
296 ret = -ENOMEM;
297 goto fail;
298 }
299 }
300
301 /* Ensure all parents are probed */
302 if (dev->parent) {
303 size = dev->parent->driver->per_child_auto_alloc_size;
304 if (!size) {
305 size = dev->parent->uclass->uc_drv->
306 per_child_auto_alloc_size;
307 }
308 if (size && !dev->parent_priv) {
309 dev->parent_priv = alloc_priv(size, drv->flags);
310 if (!dev->parent_priv) {
311 ret = -ENOMEM;
312 goto fail;
313 }
314 }
315
316 ret = device_probe(dev->parent);
317 if (ret)
318 goto fail;
319
320 /*
321 * The device might have already been probed during
322 * the call to device_probe() on its parent device
323 * (e.g. PCI bridge devices). Test the flags again
324 * so that we don't mess up the device.
325 */
326 if (dev->flags & DM_FLAG_ACTIVATED)
327 return 0;
328 }
329
330 seq = uclass_resolve_seq(dev);
331 if (seq < 0) {
332 ret = seq;
333 goto fail;
334 }
335 dev->seq = seq;
336
337 dev->flags |= DM_FLAG_ACTIVATED;
338
339 /*
340 * Process pinctrl for everything except the root device, and
341 * continue regardless of the result of pinctrl. Don't process pinctrl
342 * settings for pinctrl devices since the device may not yet be
343 * probed.
344 */
345 if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL)
346 pinctrl_select_state(dev, "default");
347
348 ret = uclass_pre_probe_device(dev);
349 if (ret)
350 goto fail;
351
352 if (dev->parent && dev->parent->driver->child_pre_probe) {
353 ret = dev->parent->driver->child_pre_probe(dev);
354 if (ret)
355 goto fail;
356 }
357
358 if (drv->ofdata_to_platdata && dev->of_offset >= 0) {
359 ret = drv->ofdata_to_platdata(dev);
360 if (ret)
361 goto fail;
362 }
363
364 if (drv->probe) {
365 ret = drv->probe(dev);
366 if (ret) {
367 dev->flags &= ~DM_FLAG_ACTIVATED;
368 goto fail;
369 }
370 }
371
372 ret = uclass_post_probe_device(dev);
373 if (ret)
374 goto fail_uclass;
375
376 if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL)
377 pinctrl_select_state(dev, "default");
378
379 return 0;
380 fail_uclass:
381 if (device_remove(dev)) {
382 dm_warn("%s: Device '%s' failed to remove on error path\n",
383 __func__, dev->name);
384 }
385 fail:
386 dev->flags &= ~DM_FLAG_ACTIVATED;
387
388 dev->seq = -1;
389 device_free(dev);
390
391 return ret;
392 }
393
394 void *dev_get_platdata(struct udevice *dev)
395 {
396 if (!dev) {
397 dm_warn("%s: null device\n", __func__);
398 return NULL;
399 }
400
401 return dev->platdata;
402 }
403
404 void *dev_get_parent_platdata(struct udevice *dev)
405 {
406 if (!dev) {
407 dm_warn("%s: null device\n", __func__);
408 return NULL;
409 }
410
411 return dev->parent_platdata;
412 }
413
414 void *dev_get_uclass_platdata(struct udevice *dev)
415 {
416 if (!dev) {
417 dm_warn("%s: null device\n", __func__);
418 return NULL;
419 }
420
421 return dev->uclass_platdata;
422 }
423
424 void *dev_get_priv(struct udevice *dev)
425 {
426 if (!dev) {
427 dm_warn("%s: null device\n", __func__);
428 return NULL;
429 }
430
431 return dev->priv;
432 }
433
434 void *dev_get_uclass_priv(struct udevice *dev)
435 {
436 if (!dev) {
437 dm_warn("%s: null device\n", __func__);
438 return NULL;
439 }
440
441 return dev->uclass_priv;
442 }
443
444 void *dev_get_parent_priv(struct udevice *dev)
445 {
446 if (!dev) {
447 dm_warn("%s: null device\n", __func__);
448 return NULL;
449 }
450
451 return dev->parent_priv;
452 }
453
454 static int device_get_device_tail(struct udevice *dev, int ret,
455 struct udevice **devp)
456 {
457 if (ret)
458 return ret;
459
460 ret = device_probe(dev);
461 if (ret)
462 return ret;
463
464 *devp = dev;
465
466 return 0;
467 }
468
469 int device_get_child(struct udevice *parent, int index, struct udevice **devp)
470 {
471 struct udevice *dev;
472
473 list_for_each_entry(dev, &parent->child_head, sibling_node) {
474 if (!index--)
475 return device_get_device_tail(dev, 0, devp);
476 }
477
478 return -ENODEV;
479 }
480
481 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
482 bool find_req_seq, struct udevice **devp)
483 {
484 struct udevice *dev;
485
486 *devp = NULL;
487 if (seq_or_req_seq == -1)
488 return -ENODEV;
489
490 list_for_each_entry(dev, &parent->child_head, sibling_node) {
491 if ((find_req_seq ? dev->req_seq : dev->seq) ==
492 seq_or_req_seq) {
493 *devp = dev;
494 return 0;
495 }
496 }
497
498 return -ENODEV;
499 }
500
501 int device_get_child_by_seq(struct udevice *parent, int seq,
502 struct udevice **devp)
503 {
504 struct udevice *dev;
505 int ret;
506
507 *devp = NULL;
508 ret = device_find_child_by_seq(parent, seq, false, &dev);
509 if (ret == -ENODEV) {
510 /*
511 * We didn't find it in probed devices. See if there is one
512 * that will request this seq if probed.
513 */
514 ret = device_find_child_by_seq(parent, seq, true, &dev);
515 }
516 return device_get_device_tail(dev, ret, devp);
517 }
518
519 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
520 struct udevice **devp)
521 {
522 struct udevice *dev;
523
524 *devp = NULL;
525
526 list_for_each_entry(dev, &parent->child_head, sibling_node) {
527 if (dev->of_offset == of_offset) {
528 *devp = dev;
529 return 0;
530 }
531 }
532
533 return -ENODEV;
534 }
535
536 int device_get_child_by_of_offset(struct udevice *parent, int node,
537 struct udevice **devp)
538 {
539 struct udevice *dev;
540 int ret;
541
542 *devp = NULL;
543 ret = device_find_child_by_of_offset(parent, node, &dev);
544 return device_get_device_tail(dev, ret, devp);
545 }
546
547 static struct udevice *_device_find_global_by_of_offset(struct udevice *parent,
548 int of_offset)
549 {
550 struct udevice *dev, *found;
551
552 if (parent->of_offset == of_offset)
553 return parent;
554
555 list_for_each_entry(dev, &parent->child_head, sibling_node) {
556 found = _device_find_global_by_of_offset(dev, of_offset);
557 if (found)
558 return found;
559 }
560
561 return NULL;
562 }
563
564 int device_get_global_by_of_offset(int of_offset, struct udevice **devp)
565 {
566 struct udevice *dev;
567
568 dev = _device_find_global_by_of_offset(gd->dm_root, of_offset);
569 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
570 }
571
572 int device_find_first_child(struct udevice *parent, struct udevice **devp)
573 {
574 if (list_empty(&parent->child_head)) {
575 *devp = NULL;
576 } else {
577 *devp = list_first_entry(&parent->child_head, struct udevice,
578 sibling_node);
579 }
580
581 return 0;
582 }
583
584 int device_find_next_child(struct udevice **devp)
585 {
586 struct udevice *dev = *devp;
587 struct udevice *parent = dev->parent;
588
589 if (list_is_last(&dev->sibling_node, &parent->child_head)) {
590 *devp = NULL;
591 } else {
592 *devp = list_entry(dev->sibling_node.next, struct udevice,
593 sibling_node);
594 }
595
596 return 0;
597 }
598
599 struct udevice *dev_get_parent(struct udevice *child)
600 {
601 return child->parent;
602 }
603
604 ulong dev_get_driver_data(struct udevice *dev)
605 {
606 return dev->driver_data;
607 }
608
609 const void *dev_get_driver_ops(struct udevice *dev)
610 {
611 if (!dev || !dev->driver->ops)
612 return NULL;
613
614 return dev->driver->ops;
615 }
616
617 enum uclass_id device_get_uclass_id(struct udevice *dev)
618 {
619 return dev->uclass->uc_drv->id;
620 }
621
622 const char *dev_get_uclass_name(struct udevice *dev)
623 {
624 if (!dev)
625 return NULL;
626
627 return dev->uclass->uc_drv->name;
628 }
629
630 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index)
631 {
632 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
633 fdt_addr_t addr;
634
635 if (CONFIG_IS_ENABLED(OF_TRANSLATE)) {
636 const fdt32_t *reg;
637 int len = 0;
638 int na, ns;
639
640 na = fdt_address_cells(gd->fdt_blob, dev->parent->of_offset);
641 if (na < 1) {
642 debug("bad #address-cells\n");
643 return FDT_ADDR_T_NONE;
644 }
645
646 ns = fdt_size_cells(gd->fdt_blob, dev->parent->of_offset);
647 if (ns < 0) {
648 debug("bad #size-cells\n");
649 return FDT_ADDR_T_NONE;
650 }
651
652 reg = fdt_getprop(gd->fdt_blob, dev->of_offset, "reg", &len);
653 if (!reg || (len <= (index * sizeof(fdt32_t) * (na + ns)))) {
654 debug("Req index out of range\n");
655 return FDT_ADDR_T_NONE;
656 }
657
658 reg += index * (na + ns);
659
660 /*
661 * Use the full-fledged translate function for complex
662 * bus setups.
663 */
664 addr = fdt_translate_address((void *)gd->fdt_blob,
665 dev->of_offset, reg);
666 } else {
667 /*
668 * Use the "simple" translate function for less complex
669 * bus setups.
670 */
671 addr = fdtdec_get_addr_size_auto_parent(gd->fdt_blob,
672 dev->parent->of_offset,
673 dev->of_offset, "reg",
674 index, NULL, false);
675 if (CONFIG_IS_ENABLED(SIMPLE_BUS) && addr != FDT_ADDR_T_NONE) {
676 if (device_get_uclass_id(dev->parent) ==
677 UCLASS_SIMPLE_BUS)
678 addr = simple_bus_translate(dev->parent, addr);
679 }
680 }
681
682 /*
683 * Some platforms need a special address translation. Those
684 * platforms (e.g. mvebu in SPL) can configure a translation
685 * offset in the DM by calling dm_set_translation_offset() that
686 * will get added to all addresses returned by dev_get_addr().
687 */
688 addr += dm_get_translation_offset();
689
690 return addr;
691 #else
692 return FDT_ADDR_T_NONE;
693 #endif
694 }
695
696 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
697 fdt_size_t *size)
698 {
699 #if CONFIG_IS_ENABLED(OF_CONTROL)
700 /*
701 * Only get the size in this first call. We'll get the addr in the
702 * next call to the exisiting dev_get_xxx function which handles
703 * all config options.
704 */
705 fdtdec_get_addr_size_auto_noparent(gd->fdt_blob, dev->of_offset,
706 "reg", index, size, false);
707
708 /*
709 * Get the base address via the existing function which handles
710 * all Kconfig cases
711 */
712 return dev_get_addr_index(dev, index);
713 #else
714 return FDT_ADDR_T_NONE;
715 #endif
716 }
717
718 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name)
719 {
720 #if CONFIG_IS_ENABLED(OF_CONTROL)
721 int index;
722
723 index = fdt_stringlist_search(gd->fdt_blob, dev->of_offset,
724 "reg-names", name);
725 if (index < 0)
726 return index;
727
728 return dev_get_addr_index(dev, index);
729 #else
730 return FDT_ADDR_T_NONE;
731 #endif
732 }
733
734 fdt_addr_t dev_get_addr(struct udevice *dev)
735 {
736 return dev_get_addr_index(dev, 0);
737 }
738
739 void *dev_get_addr_ptr(struct udevice *dev)
740 {
741 return (void *)(uintptr_t)dev_get_addr_index(dev, 0);
742 }
743
744 void *dev_map_physmem(struct udevice *dev, unsigned long size)
745 {
746 fdt_addr_t addr = dev_get_addr(dev);
747
748 if (addr == FDT_ADDR_T_NONE)
749 return NULL;
750
751 return map_physmem(addr, size, MAP_NOCACHE);
752 }
753
754 bool device_has_children(struct udevice *dev)
755 {
756 return !list_empty(&dev->child_head);
757 }
758
759 bool device_has_active_children(struct udevice *dev)
760 {
761 struct udevice *child;
762
763 for (device_find_first_child(dev, &child);
764 child;
765 device_find_next_child(&child)) {
766 if (device_active(child))
767 return true;
768 }
769
770 return false;
771 }
772
773 bool device_is_last_sibling(struct udevice *dev)
774 {
775 struct udevice *parent = dev->parent;
776
777 if (!parent)
778 return false;
779 return list_is_last(&dev->sibling_node, &parent->child_head);
780 }
781
782 void device_set_name_alloced(struct udevice *dev)
783 {
784 dev->flags |= DM_FLAG_NAME_ALLOCED;
785 }
786
787 int device_set_name(struct udevice *dev, const char *name)
788 {
789 name = strdup(name);
790 if (!name)
791 return -ENOMEM;
792 dev->name = name;
793 device_set_name_alloced(dev);
794
795 return 0;
796 }
797
798 bool of_device_is_compatible(struct udevice *dev, const char *compat)
799 {
800 const void *fdt = gd->fdt_blob;
801
802 return !fdt_node_check_compatible(fdt, dev->of_offset, compat);
803 }
804
805 bool of_machine_is_compatible(const char *compat)
806 {
807 const void *fdt = gd->fdt_blob;
808
809 return !fdt_node_check_compatible(fdt, 0, compat);
810 }