]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/crypto/fsl/jobdesc.c
imx: Refactoring CAAM Job Ring structure and Secure Memory for imx7
[people/ms/u-boot.git] / drivers / crypto / fsl / jobdesc.c
1 /*
2 * SEC Descriptor Construction Library
3 * Basic job descriptor construction
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 *
9 */
10
11 #include <common.h>
12 #include <fsl_sec.h>
13 #include "desc_constr.h"
14 #include "jobdesc.h"
15 #include "rsa_caam.h"
16
17 #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
18 /*!
19 * Secure memory run command
20 *
21 * @param sec_mem_cmd Secure memory command register
22 * @return cmd_status Secure memory command status register
23 */
24 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
25 {
26 uint32_t temp_reg;
27
28 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
29 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
30 uint32_t jr_id = 0;
31
32 sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
33
34 do {
35 temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
36 } while (temp_reg & CMD_COMPLETE);
37
38 return temp_reg;
39 }
40
41 /*!
42 * CAAM page allocation:
43 * Allocates a partition from secure memory, with the id
44 * equal to partion_num. This will de-allocate the page
45 * if it is already allocated. The partition will have
46 * full access permissions. The permissions are set before,
47 * running a job descriptor. A memory page of secure RAM
48 * is allocated for the partition.
49 *
50 * @param page Number of the page to allocate.
51 * @param partition Number of the partition to allocate.
52 * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
53 */
54 int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
55 {
56 uint32_t temp_reg;
57
58 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
59 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
60 uint32_t jr_id = 0;
61
62 /*
63 * De-Allocate partition_num if already allocated to ARM core
64 */
65 if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
66 temp_reg = secmem_set_cmd(PARTITION(partition_num) |
67 CMD_PART_DEALLOC);
68 if (temp_reg & SMCSJR_AERR) {
69 printf("Error: De-allocation status 0x%X\n", temp_reg);
70 return ERROR_IN_PAGE_ALLOC;
71 }
72 }
73
74 /* set the access rights to allow full access */
75 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
76 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
77 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
78
79 /* Now need to allocate partition_num of secure RAM. */
80 /* De-Allocate page_num by starting with a page inquiry command */
81 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
82
83 /* if the page is owned, de-allocate it */
84 if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
85 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
86 if (temp_reg & SMCSJR_AERR) {
87 printf("Error: Allocation status 0x%X\n", temp_reg);
88 return ERROR_IN_PAGE_ALLOC;
89 }
90 }
91
92 /* Allocate page_num to partition_num */
93 temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
94 | CMD_PAGE_ALLOC);
95 if (temp_reg & SMCSJR_AERR) {
96 printf("Error: Allocation status 0x%X\n", temp_reg);
97 return ERROR_IN_PAGE_ALLOC;
98 }
99 /* page inquiry command to ensure that the page was allocated */
100 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
101
102 /* if the page is not owned => problem */
103 if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
104 printf("Allocation of page %d in partition %d failed 0x%X\n",
105 temp_reg, page_num, partition_num);
106
107 return ERROR_IN_PAGE_ALLOC;
108 }
109
110 return 0;
111 }
112
113 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
114 uint8_t *dek_blob, uint32_t in_sz)
115 {
116 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
117 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
118 uint32_t jr_id = 0;
119
120 uint32_t ret = 0;
121 u32 aad_w1, aad_w2;
122 /* output blob will have 32 bytes key blob in beginning and
123 * 16 byte HMAC identifier at end of data blob */
124 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
125 /* Setting HDR for blob */
126 uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
127 HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
128
129 /* initialize the blob array */
130 memset(dek_blob, 0, out_sz + 8);
131 /* Copy the header into the DEK blob buffer */
132 memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
133
134 /* allocating secure memory */
135 ret = caam_page_alloc(PAGE_1, PARTITION_1);
136 if (ret)
137 return ret;
138
139 /* Write DEK to secure memory */
140 memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
141
142 unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
143 ~(ARCH_DMA_MINALIGN - 1);
144 unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
145 flush_dcache_range(start, end);
146
147 /* Now configure the access rights of the partition */
148 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
149 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
150 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
151
152 /* construct aad for AES */
153 aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
154 aad_w2 = 0x0;
155
156 init_job_desc(desc, 0);
157
158 append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
159 (0x0c << LDST_OFFSET_SHIFT) | 0x08);
160
161 append_u32(desc, aad_w1);
162
163 append_u32(desc, aad_w2);
164
165 append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
166
167 append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
168
169 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
170 OP_PCLID_SECMEM);
171
172 return ret;
173 }
174 #endif
175
176 void inline_cnstr_jobdesc_hash(uint32_t *desc,
177 const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
178 u32 alg_type, uint32_t alg_size, int sg_tbl)
179 {
180 /* SHA 256 , output is of length 32 words */
181 uint32_t storelen = alg_size;
182 u32 options;
183 dma_addr_t dma_addr_in, dma_addr_out;
184
185 dma_addr_in = virt_to_phys((void *)msg);
186 dma_addr_out = virt_to_phys((void *)digest);
187
188 init_job_desc(desc, 0);
189 append_operation(desc, OP_TYPE_CLASS2_ALG |
190 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
191 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
192
193 options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
194 if (sg_tbl)
195 options |= FIFOLDST_SGF;
196 if (msgsz > 0xffff) {
197 options |= FIFOLDST_EXT;
198 append_fifo_load(desc, dma_addr_in, 0, options);
199 append_cmd(desc, msgsz);
200 } else {
201 append_fifo_load(desc, dma_addr_in, msgsz, options);
202 }
203
204 append_store(desc, dma_addr_out, storelen,
205 LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
206 }
207
208 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
209 uint8_t *plain_txt, uint8_t *enc_blob,
210 uint32_t in_sz)
211 {
212 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
213 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
214 /* output blob will have 32 bytes key blob in beginning and
215 * 16 byte HMAC identifier at end of data blob */
216 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
217
218 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
219 dma_addr_in = virt_to_phys((void *)plain_txt);
220 dma_addr_out = virt_to_phys((void *)enc_blob);
221
222 init_job_desc(desc, 0);
223
224 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
225
226 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
227
228 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
229
230 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
231 }
232
233 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
234 uint8_t *enc_blob, uint8_t *plain_txt,
235 uint32_t out_sz)
236 {
237 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
238 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
239 uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
240
241 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
242 dma_addr_in = virt_to_phys((void *)enc_blob);
243 dma_addr_out = virt_to_phys((void *)plain_txt);
244
245 init_job_desc(desc, 0);
246
247 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
248
249 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
250
251 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
252
253 append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
254 }
255
256 /*
257 * Descriptor to instantiate RNG State Handle 0 in normal mode and
258 * load the JDKEK, TDKEK and TDSK registers
259 */
260 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
261 {
262 u32 *jump_cmd;
263
264 init_job_desc(desc, 0);
265
266 /* INIT RNG in non-test mode */
267 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
268 OP_ALG_AS_INIT);
269
270 /* wait for done */
271 jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
272 set_jump_tgt_here(desc, jump_cmd);
273
274 /*
275 * load 1 to clear written reg:
276 * resets the done interrrupt and returns the RNG to idle.
277 */
278 append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
279
280 /* generate secure keys (non-test) */
281 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
282 OP_ALG_RNG4_SK);
283 }
284
285 /* Change key size to bytes form bits in calling function*/
286 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
287 struct pk_in_params *pkin, uint8_t *out,
288 uint32_t out_siz)
289 {
290 dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
291
292 dma_addr_e = virt_to_phys((void *)pkin->e);
293 dma_addr_a = virt_to_phys((void *)pkin->a);
294 dma_addr_n = virt_to_phys((void *)pkin->n);
295 dma_addr_out = virt_to_phys((void *)out);
296
297 init_job_desc(desc, 0);
298 append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
299
300 append_fifo_load(desc, dma_addr_a,
301 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
302
303 append_fifo_load(desc, dma_addr_n,
304 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
305
306 append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
307
308 append_fifo_store(desc, dma_addr_out, out_siz,
309 LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
310 }