]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: sequencer: Pluck out IO_* macros from code
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14 * FIXME: This path is temporary until the SDRAM driver gets
15 * a proper thorough cleanup.
16 */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37
38 static struct socfpga_data_mgr *data_mgr =
39 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45 const struct socfpga_sdram_io_config *iocfg;
46
47 #define DELTA_D 1
48
49 /*
50 * In order to reduce ROM size, most of the selectable calibration steps are
51 * decided at compile time based on the user's calibration mode selection,
52 * as captured by the STATIC_CALIB_STEPS selection below.
53 *
54 * However, to support simulation-time selection of fast simulation mode, where
55 * we skip everything except the bare minimum, we need a few of the steps to
56 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
57 * check, which is based on the rtl-supplied value, or we dynamically compute
58 * the value to use based on the dynamically-chosen calibration mode
59 */
60
61 #define DLEVEL 0
62 #define STATIC_IN_RTL_SIM 0
63 #define STATIC_SKIP_DELAY_LOOPS 0
64
65 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
66 STATIC_SKIP_DELAY_LOOPS)
67
68 /* calibration steps requested by the rtl */
69 uint16_t dyn_calib_steps;
70
71 /*
72 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
73 * instead of static, we use boolean logic to select between
74 * non-skip and skip values
75 *
76 * The mask is set to include all bits when not-skipping, but is
77 * zero when skipping
78 */
79
80 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
81
82 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
83 ((non_skip_value) & skip_delay_mask)
84
85 struct gbl_type *gbl;
86 struct param_type *param;
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89 uint32_t substage)
90 {
91 /*
92 * Only set the global stage if there was not been any other
93 * failing group
94 */
95 if (gbl->error_stage == CAL_STAGE_NIL) {
96 gbl->error_substage = substage;
97 gbl->error_stage = stage;
98 gbl->error_group = group;
99 }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114 set_sub_stage &= 0xff;
115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 /**
119 * phy_mgr_initialize() - Initialize PHY Manager
120 *
121 * Initialize PHY Manager.
122 */
123 static void phy_mgr_initialize(void)
124 {
125 u32 ratio;
126
127 debug("%s:%d\n", __func__, __LINE__);
128 /* Calibration has control over path to memory */
129 /*
130 * In Hard PHY this is a 2-bit control:
131 * 0: AFI Mux Select
132 * 1: DDIO Mux Select
133 */
134 writel(0x3, &phy_mgr_cfg->mux_sel);
135
136 /* USER memory clock is not stable we begin initialization */
137 writel(0, &phy_mgr_cfg->reset_mem_stbl);
138
139 /* USER calibration status all set to zero */
140 writel(0, &phy_mgr_cfg->cal_status);
141
142 writel(0, &phy_mgr_cfg->cal_debug_info);
143
144 /* Init params only if we do NOT skip calibration. */
145 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
146 return;
147
148 ratio = rwcfg->mem_dq_per_read_dqs /
149 rwcfg->mem_virtual_groups_per_read_dqs;
150 param->read_correct_mask_vg = (1 << ratio) - 1;
151 param->write_correct_mask_vg = (1 << ratio) - 1;
152 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
153 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
154 }
155
156 /**
157 * set_rank_and_odt_mask() - Set Rank and ODT mask
158 * @rank: Rank mask
159 * @odt_mode: ODT mode, OFF or READ_WRITE
160 *
161 * Set Rank and ODT mask (On-Die Termination).
162 */
163 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
164 {
165 u32 odt_mask_0 = 0;
166 u32 odt_mask_1 = 0;
167 u32 cs_and_odt_mask;
168
169 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
170 odt_mask_0 = 0x0;
171 odt_mask_1 = 0x0;
172 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
173 switch (rwcfg->mem_number_of_ranks) {
174 case 1: /* 1 Rank */
175 /* Read: ODT = 0 ; Write: ODT = 1 */
176 odt_mask_0 = 0x0;
177 odt_mask_1 = 0x1;
178 break;
179 case 2: /* 2 Ranks */
180 if (rwcfg->mem_number_of_cs_per_dimm == 1) {
181 /*
182 * - Dual-Slot , Single-Rank (1 CS per DIMM)
183 * OR
184 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
185 *
186 * Since MEM_NUMBER_OF_RANKS is 2, they
187 * are both single rank with 2 CS each
188 * (special for RDIMM).
189 *
190 * Read: Turn on ODT on the opposite rank
191 * Write: Turn on ODT on all ranks
192 */
193 odt_mask_0 = 0x3 & ~(1 << rank);
194 odt_mask_1 = 0x3;
195 } else {
196 /*
197 * - Single-Slot , Dual-Rank (2 CS per DIMM)
198 *
199 * Read: Turn on ODT off on all ranks
200 * Write: Turn on ODT on active rank
201 */
202 odt_mask_0 = 0x0;
203 odt_mask_1 = 0x3 & (1 << rank);
204 }
205 break;
206 case 4: /* 4 Ranks */
207 /* Read:
208 * ----------+-----------------------+
209 * | ODT |
210 * Read From +-----------------------+
211 * Rank | 3 | 2 | 1 | 0 |
212 * ----------+-----+-----+-----+-----+
213 * 0 | 0 | 1 | 0 | 0 |
214 * 1 | 1 | 0 | 0 | 0 |
215 * 2 | 0 | 0 | 0 | 1 |
216 * 3 | 0 | 0 | 1 | 0 |
217 * ----------+-----+-----+-----+-----+
218 *
219 * Write:
220 * ----------+-----------------------+
221 * | ODT |
222 * Write To +-----------------------+
223 * Rank | 3 | 2 | 1 | 0 |
224 * ----------+-----+-----+-----+-----+
225 * 0 | 0 | 1 | 0 | 1 |
226 * 1 | 1 | 0 | 1 | 0 |
227 * 2 | 0 | 1 | 0 | 1 |
228 * 3 | 1 | 0 | 1 | 0 |
229 * ----------+-----+-----+-----+-----+
230 */
231 switch (rank) {
232 case 0:
233 odt_mask_0 = 0x4;
234 odt_mask_1 = 0x5;
235 break;
236 case 1:
237 odt_mask_0 = 0x8;
238 odt_mask_1 = 0xA;
239 break;
240 case 2:
241 odt_mask_0 = 0x1;
242 odt_mask_1 = 0x5;
243 break;
244 case 3:
245 odt_mask_0 = 0x2;
246 odt_mask_1 = 0xA;
247 break;
248 }
249 break;
250 }
251 }
252
253 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
254 ((0xFF & odt_mask_0) << 8) |
255 ((0xFF & odt_mask_1) << 16);
256 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
257 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
258 }
259
260 /**
261 * scc_mgr_set() - Set SCC Manager register
262 * @off: Base offset in SCC Manager space
263 * @grp: Read/Write group
264 * @val: Value to be set
265 *
266 * This function sets the SCC Manager (Scan Chain Control Manager) register.
267 */
268 static void scc_mgr_set(u32 off, u32 grp, u32 val)
269 {
270 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
271 }
272
273 /**
274 * scc_mgr_initialize() - Initialize SCC Manager registers
275 *
276 * Initialize SCC Manager registers.
277 */
278 static void scc_mgr_initialize(void)
279 {
280 /*
281 * Clear register file for HPS. 16 (2^4) is the size of the
282 * full register file in the scc mgr:
283 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
284 * MEM_IF_READ_DQS_WIDTH - 1);
285 */
286 int i;
287
288 for (i = 0; i < 16; i++) {
289 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
290 __func__, __LINE__, i);
291 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
292 }
293 }
294
295 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
296 {
297 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
298 }
299
300 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
301 {
302 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
303 }
304
305 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
306 {
307 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
308 }
309
310 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
311 {
312 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
313 }
314
315 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
316 {
317 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
318 delay);
319 }
320
321 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
322 {
323 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
324 }
325
326 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
327 {
328 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
329 }
330
331 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
332 {
333 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
334 delay);
335 }
336
337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
338 {
339 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
340 rwcfg->mem_dq_per_write_dqs + 1 + dm,
341 delay);
342 }
343
344 /* load up dqs config settings */
345 static void scc_mgr_load_dqs(uint32_t dqs)
346 {
347 writel(dqs, &sdr_scc_mgr->dqs_ena);
348 }
349
350 /* load up dqs io config settings */
351 static void scc_mgr_load_dqs_io(void)
352 {
353 writel(0, &sdr_scc_mgr->dqs_io_ena);
354 }
355
356 /* load up dq config settings */
357 static void scc_mgr_load_dq(uint32_t dq_in_group)
358 {
359 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
360 }
361
362 /* load up dm config settings */
363 static void scc_mgr_load_dm(uint32_t dm)
364 {
365 writel(dm, &sdr_scc_mgr->dm_ena);
366 }
367
368 /**
369 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
370 * @off: Base offset in SCC Manager space
371 * @grp: Read/Write group
372 * @val: Value to be set
373 * @update: If non-zero, trigger SCC Manager update for all ranks
374 *
375 * This function sets the SCC Manager (Scan Chain Control Manager) register
376 * and optionally triggers the SCC update for all ranks.
377 */
378 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
379 const int update)
380 {
381 u32 r;
382
383 for (r = 0; r < rwcfg->mem_number_of_ranks;
384 r += NUM_RANKS_PER_SHADOW_REG) {
385 scc_mgr_set(off, grp, val);
386
387 if (update || (r == 0)) {
388 writel(grp, &sdr_scc_mgr->dqs_ena);
389 writel(0, &sdr_scc_mgr->update);
390 }
391 }
392 }
393
394 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
395 {
396 /*
397 * USER although the h/w doesn't support different phases per
398 * shadow register, for simplicity our scc manager modeling
399 * keeps different phase settings per shadow reg, and it's
400 * important for us to keep them in sync to match h/w.
401 * for efficiency, the scan chain update should occur only
402 * once to sr0.
403 */
404 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
405 read_group, phase, 0);
406 }
407
408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
409 uint32_t phase)
410 {
411 /*
412 * USER although the h/w doesn't support different phases per
413 * shadow register, for simplicity our scc manager modeling
414 * keeps different phase settings per shadow reg, and it's
415 * important for us to keep them in sync to match h/w.
416 * for efficiency, the scan chain update should occur only
417 * once to sr0.
418 */
419 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
420 write_group, phase, 0);
421 }
422
423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
424 uint32_t delay)
425 {
426 /*
427 * In shadow register mode, the T11 settings are stored in
428 * registers in the core, which are updated by the DQS_ENA
429 * signals. Not issuing the SCC_MGR_UPD command allows us to
430 * save lots of rank switching overhead, by calling
431 * select_shadow_regs_for_update with update_scan_chains
432 * set to 0.
433 */
434 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
435 read_group, delay, 1);
436 writel(0, &sdr_scc_mgr->update);
437 }
438
439 /**
440 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
441 * @write_group: Write group
442 * @delay: Delay value
443 *
444 * This function sets the OCT output delay in SCC manager.
445 */
446 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
447 {
448 const int ratio = rwcfg->mem_if_read_dqs_width /
449 rwcfg->mem_if_write_dqs_width;
450 const int base = write_group * ratio;
451 int i;
452 /*
453 * Load the setting in the SCC manager
454 * Although OCT affects only write data, the OCT delay is controlled
455 * by the DQS logic block which is instantiated once per read group.
456 * For protocols where a write group consists of multiple read groups,
457 * the setting must be set multiple times.
458 */
459 for (i = 0; i < ratio; i++)
460 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
461 }
462
463 /**
464 * scc_mgr_set_hhp_extras() - Set HHP extras.
465 *
466 * Load the fixed setting in the SCC manager HHP extras.
467 */
468 static void scc_mgr_set_hhp_extras(void)
469 {
470 /*
471 * Load the fixed setting in the SCC manager
472 * bits: 0:0 = 1'b1 - DQS bypass
473 * bits: 1:1 = 1'b1 - DQ bypass
474 * bits: 4:2 = 3'b001 - rfifo_mode
475 * bits: 6:5 = 2'b01 - rfifo clock_select
476 * bits: 7:7 = 1'b0 - separate gating from ungating setting
477 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
478 */
479 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
480 (1 << 2) | (1 << 1) | (1 << 0);
481 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
482 SCC_MGR_HHP_GLOBALS_OFFSET |
483 SCC_MGR_HHP_EXTRAS_OFFSET;
484
485 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
486 __func__, __LINE__);
487 writel(value, addr);
488 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
489 __func__, __LINE__);
490 }
491
492 /**
493 * scc_mgr_zero_all() - Zero all DQS config
494 *
495 * Zero all DQS config.
496 */
497 static void scc_mgr_zero_all(void)
498 {
499 int i, r;
500
501 /*
502 * USER Zero all DQS config settings, across all groups and all
503 * shadow registers
504 */
505 for (r = 0; r < rwcfg->mem_number_of_ranks;
506 r += NUM_RANKS_PER_SHADOW_REG) {
507 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
508 /*
509 * The phases actually don't exist on a per-rank basis,
510 * but there's no harm updating them several times, so
511 * let's keep the code simple.
512 */
513 scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
514 scc_mgr_set_dqs_en_phase(i, 0);
515 scc_mgr_set_dqs_en_delay(i, 0);
516 }
517
518 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
519 scc_mgr_set_dqdqs_output_phase(i, 0);
520 /* Arria V/Cyclone V don't have out2. */
521 scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
522 }
523 }
524
525 /* Multicast to all DQS group enables. */
526 writel(0xff, &sdr_scc_mgr->dqs_ena);
527 writel(0, &sdr_scc_mgr->update);
528 }
529
530 /**
531 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
532 * @write_group: Write group
533 *
534 * Set bypass mode and trigger SCC update.
535 */
536 static void scc_set_bypass_mode(const u32 write_group)
537 {
538 /* Multicast to all DQ enables. */
539 writel(0xff, &sdr_scc_mgr->dq_ena);
540 writel(0xff, &sdr_scc_mgr->dm_ena);
541
542 /* Update current DQS IO enable. */
543 writel(0, &sdr_scc_mgr->dqs_io_ena);
544
545 /* Update the DQS logic. */
546 writel(write_group, &sdr_scc_mgr->dqs_ena);
547
548 /* Hit update. */
549 writel(0, &sdr_scc_mgr->update);
550 }
551
552 /**
553 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
554 * @write_group: Write group
555 *
556 * Load DQS settings for Write Group, do not trigger SCC update.
557 */
558 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
559 {
560 const int ratio = rwcfg->mem_if_read_dqs_width /
561 rwcfg->mem_if_write_dqs_width;
562 const int base = write_group * ratio;
563 int i;
564 /*
565 * Load the setting in the SCC manager
566 * Although OCT affects only write data, the OCT delay is controlled
567 * by the DQS logic block which is instantiated once per read group.
568 * For protocols where a write group consists of multiple read groups,
569 * the setting must be set multiple times.
570 */
571 for (i = 0; i < ratio; i++)
572 writel(base + i, &sdr_scc_mgr->dqs_ena);
573 }
574
575 /**
576 * scc_mgr_zero_group() - Zero all configs for a group
577 *
578 * Zero DQ, DM, DQS and OCT configs for a group.
579 */
580 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
581 {
582 int i, r;
583
584 for (r = 0; r < rwcfg->mem_number_of_ranks;
585 r += NUM_RANKS_PER_SHADOW_REG) {
586 /* Zero all DQ config settings. */
587 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
588 scc_mgr_set_dq_out1_delay(i, 0);
589 if (!out_only)
590 scc_mgr_set_dq_in_delay(i, 0);
591 }
592
593 /* Multicast to all DQ enables. */
594 writel(0xff, &sdr_scc_mgr->dq_ena);
595
596 /* Zero all DM config settings. */
597 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
598 scc_mgr_set_dm_out1_delay(i, 0);
599
600 /* Multicast to all DM enables. */
601 writel(0xff, &sdr_scc_mgr->dm_ena);
602
603 /* Zero all DQS IO settings. */
604 if (!out_only)
605 scc_mgr_set_dqs_io_in_delay(0);
606
607 /* Arria V/Cyclone V don't have out2. */
608 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
609 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
610 scc_mgr_load_dqs_for_write_group(write_group);
611
612 /* Multicast to all DQS IO enables (only 1 in total). */
613 writel(0, &sdr_scc_mgr->dqs_io_ena);
614
615 /* Hit update to zero everything. */
616 writel(0, &sdr_scc_mgr->update);
617 }
618 }
619
620 /*
621 * apply and load a particular input delay for the DQ pins in a group
622 * group_bgn is the index of the first dq pin (in the write group)
623 */
624 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
625 {
626 uint32_t i, p;
627
628 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629 scc_mgr_set_dq_in_delay(p, delay);
630 scc_mgr_load_dq(p);
631 }
632 }
633
634 /**
635 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636 * @delay: Delay value
637 *
638 * Apply and load a particular output delay for the DQ pins in a group.
639 */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642 int i;
643
644 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645 scc_mgr_set_dq_out1_delay(i, delay);
646 scc_mgr_load_dq(i);
647 }
648 }
649
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
652 {
653 uint32_t i;
654
655 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656 scc_mgr_set_dm_out1_delay(i, delay1);
657 scc_mgr_load_dm(i);
658 }
659 }
660
661
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
664 uint32_t delay)
665 {
666 scc_mgr_set_dqs_out1_delay(delay);
667 scc_mgr_load_dqs_io();
668
669 scc_mgr_set_oct_out1_delay(write_group, delay);
670 scc_mgr_load_dqs_for_write_group(write_group);
671 }
672
673 /**
674 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675 * @write_group: Write group
676 * @delay: Delay value
677 *
678 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679 */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681 const u32 delay)
682 {
683 u32 i, new_delay;
684
685 /* DQ shift */
686 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687 scc_mgr_load_dq(i);
688
689 /* DM shift */
690 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691 scc_mgr_load_dm(i);
692
693 /* DQS shift */
694 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695 if (new_delay > iocfg->io_out2_delay_max) {
696 debug_cond(DLEVEL == 1,
697 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698 __func__, __LINE__, write_group, delay, new_delay,
699 iocfg->io_out2_delay_max,
700 new_delay - iocfg->io_out2_delay_max);
701 new_delay -= iocfg->io_out2_delay_max;
702 scc_mgr_set_dqs_out1_delay(new_delay);
703 }
704
705 scc_mgr_load_dqs_io();
706
707 /* OCT shift */
708 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709 if (new_delay > iocfg->io_out2_delay_max) {
710 debug_cond(DLEVEL == 1,
711 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712 __func__, __LINE__, write_group, delay,
713 new_delay, iocfg->io_out2_delay_max,
714 new_delay - iocfg->io_out2_delay_max);
715 new_delay -= iocfg->io_out2_delay_max;
716 scc_mgr_set_oct_out1_delay(write_group, new_delay);
717 }
718
719 scc_mgr_load_dqs_for_write_group(write_group);
720 }
721
722 /**
723 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724 * @write_group: Write group
725 * @delay: Delay value
726 *
727 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728 */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731 const u32 delay)
732 {
733 int r;
734
735 for (r = 0; r < rwcfg->mem_number_of_ranks;
736 r += NUM_RANKS_PER_SHADOW_REG) {
737 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738 writel(0, &sdr_scc_mgr->update);
739 }
740 }
741
742 /**
743 * set_jump_as_return() - Return instruction optimization
744 *
745 * Optimization used to recover some slots in ddr3 inst_rom could be
746 * applied to other protocols if we wanted to
747 */
748 static void set_jump_as_return(void)
749 {
750 /*
751 * To save space, we replace return with jump to special shared
752 * RETURN instruction so we set the counter to large value so that
753 * we always jump.
754 */
755 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758
759 /**
760 * delay_for_n_mem_clocks() - Delay for N memory clocks
761 * @clocks: Length of the delay
762 *
763 * Delay for N memory clocks.
764 */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767 u32 afi_clocks;
768 u16 c_loop;
769 u8 inner;
770 u8 outer;
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774 /* Scale (rounding up) to get afi clocks. */
775 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
776 if (afi_clocks) /* Temporary underflow protection */
777 afi_clocks--;
778
779 /*
780 * Note, we don't bother accounting for being off a little
781 * bit because of a few extra instructions in outer loops.
782 * Note, the loops have a test at the end, and do the test
783 * before the decrement, and so always perform the loop
784 * 1 time more than the counter value
785 */
786 c_loop = afi_clocks >> 16;
787 outer = c_loop ? 0xff : (afi_clocks >> 8);
788 inner = outer ? 0xff : afi_clocks;
789
790 /*
791 * rom instructions are structured as follows:
792 *
793 * IDLE_LOOP2: jnz cntr0, TARGET_A
794 * IDLE_LOOP1: jnz cntr1, TARGET_B
795 * return
796 *
797 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798 * TARGET_B is set to IDLE_LOOP2 as well
799 *
800 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802 *
803 * a little confusing, but it helps save precious space in the inst_rom
804 * and sequencer rom and keeps the delays more accurate and reduces
805 * overhead
806 */
807 if (afi_clocks < 0x100) {
808 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809 &sdr_rw_load_mgr_regs->load_cntr1);
810
811 writel(rwcfg->idle_loop1,
812 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
813
814 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816 } else {
817 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818 &sdr_rw_load_mgr_regs->load_cntr0);
819
820 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821 &sdr_rw_load_mgr_regs->load_cntr1);
822
823 writel(rwcfg->idle_loop2,
824 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
825
826 writel(rwcfg->idle_loop2,
827 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828
829 do {
830 writel(rwcfg->idle_loop2,
831 SDR_PHYGRP_RWMGRGRP_ADDRESS |
832 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833 } while (c_loop-- != 0);
834 }
835 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837
838 /**
839 * rw_mgr_mem_init_load_regs() - Load instruction registers
840 * @cntr0: Counter 0 value
841 * @cntr1: Counter 1 value
842 * @cntr2: Counter 2 value
843 * @jump: Jump instruction value
844 *
845 * Load instruction registers.
846 */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851
852 /* Load counters */
853 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854 &sdr_rw_load_mgr_regs->load_cntr0);
855 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856 &sdr_rw_load_mgr_regs->load_cntr1);
857 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858 &sdr_rw_load_mgr_regs->load_cntr2);
859
860 /* Load jump address */
861 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864
865 /* Execute count instruction */
866 writel(jump, grpaddr);
867 }
868
869 /**
870 * rw_mgr_mem_load_user() - Load user calibration values
871 * @fin1: Final instruction 1
872 * @fin2: Final instruction 2
873 * @precharge: If 1, precharge the banks at the end
874 *
875 * Load user calibration values and optionally precharge the banks.
876 */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878 const int precharge)
879 {
880 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882 u32 r;
883
884 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885 /* set rank */
886 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887
888 /* precharge all banks ... */
889 if (precharge)
890 writel(rwcfg->precharge_all, grpaddr);
891
892 /*
893 * USER Use Mirror-ed commands for odd ranks if address
894 * mirrorring is on
895 */
896 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897 set_jump_as_return();
898 writel(rwcfg->mrs2_mirr, grpaddr);
899 delay_for_n_mem_clocks(4);
900 set_jump_as_return();
901 writel(rwcfg->mrs3_mirr, grpaddr);
902 delay_for_n_mem_clocks(4);
903 set_jump_as_return();
904 writel(rwcfg->mrs1_mirr, grpaddr);
905 delay_for_n_mem_clocks(4);
906 set_jump_as_return();
907 writel(fin1, grpaddr);
908 } else {
909 set_jump_as_return();
910 writel(rwcfg->mrs2, grpaddr);
911 delay_for_n_mem_clocks(4);
912 set_jump_as_return();
913 writel(rwcfg->mrs3, grpaddr);
914 delay_for_n_mem_clocks(4);
915 set_jump_as_return();
916 writel(rwcfg->mrs1, grpaddr);
917 set_jump_as_return();
918 writel(fin2, grpaddr);
919 }
920
921 if (precharge)
922 continue;
923
924 set_jump_as_return();
925 writel(rwcfg->zqcl, grpaddr);
926
927 /* tZQinit = tDLLK = 512 ck cycles */
928 delay_for_n_mem_clocks(512);
929 }
930 }
931
932 /**
933 * rw_mgr_mem_initialize() - Initialize RW Manager
934 *
935 * Initialize RW Manager.
936 */
937 static void rw_mgr_mem_initialize(void)
938 {
939 debug("%s:%d\n", __func__, __LINE__);
940
941 /* The reset / cke part of initialization is broadcasted to all ranks */
942 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944
945 /*
946 * Here's how you load register for a loop
947 * Counters are located @ 0x800
948 * Jump address are located @ 0xC00
949 * For both, registers 0 to 3 are selected using bits 3 and 2, like
950 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951 * I know this ain't pretty, but Avalon bus throws away the 2 least
952 * significant bits
953 */
954
955 /* Start with memory RESET activated */
956
957 /* tINIT = 200us */
958
959 /*
960 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961 * If a and b are the number of iteration in 2 nested loops
962 * it takes the following number of cycles to complete the operation:
963 * number_of_cycles = ((2 + n) * a + 2) * b
964 * where n is the number of instruction in the inner loop
965 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966 * b = 6A
967 */
968 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
969 SEQ_TINIT_CNTR2_VAL,
970 rwcfg->init_reset_0_cke_0);
971
972 /* Indicate that memory is stable. */
973 writel(1, &phy_mgr_cfg->reset_mem_stbl);
974
975 /*
976 * transition the RESET to high
977 * Wait for 500us
978 */
979
980 /*
981 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982 * If a and b are the number of iteration in 2 nested loops
983 * it takes the following number of cycles to complete the operation
984 * number_of_cycles = ((2 + n) * a + 2) * b
985 * where n is the number of instruction in the inner loop
986 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987 * b = FF
988 */
989 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
990 SEQ_TRESET_CNTR2_VAL,
991 rwcfg->init_reset_1_cke_0);
992
993 /* Bring up clock enable. */
994
995 /* tXRP < 250 ck cycles */
996 delay_for_n_mem_clocks(250);
997
998 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
999 0);
1000 }
1001
1002 /**
1003 * rw_mgr_mem_handoff() - Hand off the memory to user
1004 *
1005 * At the end of calibration we have to program the user settings in
1006 * and hand off the memory to the user.
1007 */
1008 static void rw_mgr_mem_handoff(void)
1009 {
1010 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1011 /*
1012 * Need to wait tMOD (12CK or 15ns) time before issuing other
1013 * commands, but we will have plenty of NIOS cycles before actual
1014 * handoff so its okay.
1015 */
1016 }
1017
1018 /**
1019 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1020 * @group: Write Group
1021 * @use_dm: Use DM
1022 *
1023 * Issue write test command. Two variants are provided, one that just tests
1024 * a write pattern and another that tests datamask functionality.
1025 */
1026 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1027 u32 test_dm)
1028 {
1029 const u32 quick_write_mode =
1030 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1031 ENABLE_SUPER_QUICK_CALIBRATION;
1032 u32 mcc_instruction;
1033 u32 rw_wl_nop_cycles;
1034
1035 /*
1036 * Set counter and jump addresses for the right
1037 * number of NOP cycles.
1038 * The number of supported NOP cycles can range from -1 to infinity
1039 * Three different cases are handled:
1040 *
1041 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1042 * mechanism will be used to insert the right number of NOPs
1043 *
1044 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1045 * issuing the write command will jump straight to the
1046 * micro-instruction that turns on DQS (for DDRx), or outputs write
1047 * data (for RLD), skipping
1048 * the NOP micro-instruction all together
1049 *
1050 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1051 * turned on in the same micro-instruction that issues the write
1052 * command. Then we need
1053 * to directly jump to the micro-instruction that sends out the data
1054 *
1055 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1056 * (2 and 3). One jump-counter (0) is used to perform multiple
1057 * write-read operations.
1058 * one counter left to issue this command in "multiple-group" mode
1059 */
1060
1061 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1062
1063 if (rw_wl_nop_cycles == -1) {
1064 /*
1065 * CNTR 2 - We want to execute the special write operation that
1066 * turns on DQS right away and then skip directly to the
1067 * instruction that sends out the data. We set the counter to a
1068 * large number so that the jump is always taken.
1069 */
1070 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1071
1072 /* CNTR 3 - Not used */
1073 if (test_dm) {
1074 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1075 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1076 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1077 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1078 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1079 } else {
1080 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1081 writel(rwcfg->lfsr_wr_rd_bank_0_data,
1082 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1083 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1085 }
1086 } else if (rw_wl_nop_cycles == 0) {
1087 /*
1088 * CNTR 2 - We want to skip the NOP operation and go straight
1089 * to the DQS enable instruction. We set the counter to a large
1090 * number so that the jump is always taken.
1091 */
1092 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1093
1094 /* CNTR 3 - Not used */
1095 if (test_dm) {
1096 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1097 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1098 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1099 } else {
1100 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1101 writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1102 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1103 }
1104 } else {
1105 /*
1106 * CNTR 2 - In this case we want to execute the next instruction
1107 * and NOT take the jump. So we set the counter to 0. The jump
1108 * address doesn't count.
1109 */
1110 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1111 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1112
1113 /*
1114 * CNTR 3 - Set the nop counter to the number of cycles we
1115 * need to loop for, minus 1.
1116 */
1117 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1118 if (test_dm) {
1119 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1120 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1121 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1122 } else {
1123 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1124 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1125 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1126 }
1127 }
1128
1129 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1130 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1131
1132 if (quick_write_mode)
1133 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1134 else
1135 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1136
1137 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1138
1139 /*
1140 * CNTR 1 - This is used to ensure enough time elapses
1141 * for read data to come back.
1142 */
1143 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1144
1145 if (test_dm) {
1146 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1147 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1148 } else {
1149 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1150 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1151 }
1152
1153 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1154 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1155 (group << 2));
1156 }
1157
1158 /**
1159 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1160 * @rank_bgn: Rank number
1161 * @write_group: Write Group
1162 * @use_dm: Use DM
1163 * @all_correct: All bits must be correct in the mask
1164 * @bit_chk: Resulting bit mask after the test
1165 * @all_ranks: Test all ranks
1166 *
1167 * Test writes, can check for a single bit pass or multiple bit pass.
1168 */
1169 static int
1170 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1171 const u32 use_dm, const u32 all_correct,
1172 u32 *bit_chk, const u32 all_ranks)
1173 {
1174 const u32 rank_end = all_ranks ?
1175 rwcfg->mem_number_of_ranks :
1176 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1177 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1178 rwcfg->mem_virtual_groups_per_write_dqs;
1179 const u32 correct_mask_vg = param->write_correct_mask_vg;
1180
1181 u32 tmp_bit_chk, base_rw_mgr;
1182 int vg, r;
1183
1184 *bit_chk = param->write_correct_mask;
1185
1186 for (r = rank_bgn; r < rank_end; r++) {
1187 /* Set rank */
1188 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1189
1190 tmp_bit_chk = 0;
1191 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1192 vg >= 0; vg--) {
1193 /* Reset the FIFOs to get pointers to known state. */
1194 writel(0, &phy_mgr_cmd->fifo_reset);
1195
1196 rw_mgr_mem_calibrate_write_test_issue(
1197 write_group *
1198 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1199 use_dm);
1200
1201 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1202 tmp_bit_chk <<= shift_ratio;
1203 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1204 }
1205
1206 *bit_chk &= tmp_bit_chk;
1207 }
1208
1209 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1210 if (all_correct) {
1211 debug_cond(DLEVEL == 2,
1212 "write_test(%u,%u,ALL) : %u == %u => %i\n",
1213 write_group, use_dm, *bit_chk,
1214 param->write_correct_mask,
1215 *bit_chk == param->write_correct_mask);
1216 return *bit_chk == param->write_correct_mask;
1217 } else {
1218 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1219 debug_cond(DLEVEL == 2,
1220 "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221 write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222 return *bit_chk != 0x00;
1223 }
1224 }
1225
1226 /**
1227 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228 * @rank_bgn: Rank number
1229 * @group: Read/Write Group
1230 * @all_ranks: Test all ranks
1231 *
1232 * Performs a guaranteed read on the patterns we are going to use during a
1233 * read test to ensure memory works.
1234 */
1235 static int
1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237 const u32 all_ranks)
1238 {
1239 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241 const u32 addr_offset =
1242 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243 const u32 rank_end = all_ranks ?
1244 rwcfg->mem_number_of_ranks :
1245 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247 rwcfg->mem_virtual_groups_per_read_dqs;
1248 const u32 correct_mask_vg = param->read_correct_mask_vg;
1249
1250 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251 int vg, r;
1252 int ret = 0;
1253
1254 bit_chk = param->read_correct_mask;
1255
1256 for (r = rank_bgn; r < rank_end; r++) {
1257 /* Set rank */
1258 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259
1260 /* Load up a constant bursts of read commands */
1261 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262 writel(rwcfg->guaranteed_read,
1263 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264
1265 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266 writel(rwcfg->guaranteed_read_cont,
1267 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268
1269 tmp_bit_chk = 0;
1270 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271 vg >= 0; vg--) {
1272 /* Reset the FIFOs to get pointers to known state. */
1273 writel(0, &phy_mgr_cmd->fifo_reset);
1274 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276 writel(rwcfg->guaranteed_read,
1277 addr + addr_offset + (vg << 2));
1278
1279 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280 tmp_bit_chk <<= shift_ratio;
1281 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282 }
1283
1284 bit_chk &= tmp_bit_chk;
1285 }
1286
1287 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288
1289 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290
1291 if (bit_chk != param->read_correct_mask)
1292 ret = -EIO;
1293
1294 debug_cond(DLEVEL == 1,
1295 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296 __func__, __LINE__, group, bit_chk,
1297 param->read_correct_mask, ret);
1298
1299 return ret;
1300 }
1301
1302 /**
1303 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304 * @rank_bgn: Rank number
1305 * @all_ranks: Test all ranks
1306 *
1307 * Load up the patterns we are going to use during a read test.
1308 */
1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310 const int all_ranks)
1311 {
1312 const u32 rank_end = all_ranks ?
1313 rwcfg->mem_number_of_ranks :
1314 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315 u32 r;
1316
1317 debug("%s:%d\n", __func__, __LINE__);
1318
1319 for (r = rank_bgn; r < rank_end; r++) {
1320 /* set rank */
1321 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322
1323 /* Load up a constant bursts */
1324 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325
1326 writel(rwcfg->guaranteed_write_wait0,
1327 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328
1329 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330
1331 writel(rwcfg->guaranteed_write_wait1,
1332 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333
1334 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335
1336 writel(rwcfg->guaranteed_write_wait2,
1337 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338
1339 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340
1341 writel(rwcfg->guaranteed_write_wait3,
1342 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343
1344 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346 }
1347
1348 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349 }
1350
1351 /**
1352 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353 * @rank_bgn: Rank number
1354 * @group: Read/Write group
1355 * @num_tries: Number of retries of the test
1356 * @all_correct: All bits must be correct in the mask
1357 * @bit_chk: Resulting bit mask after the test
1358 * @all_groups: Test all R/W groups
1359 * @all_ranks: Test all ranks
1360 *
1361 * Try a read and see if it returns correct data back. Test has dummy reads
1362 * inserted into the mix used to align DQS enable. Test has more thorough
1363 * checks than the regular read test.
1364 */
1365 static int
1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367 const u32 num_tries, const u32 all_correct,
1368 u32 *bit_chk,
1369 const u32 all_groups, const u32 all_ranks)
1370 {
1371 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373 const u32 quick_read_mode =
1374 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375 ENABLE_SUPER_QUICK_CALIBRATION);
1376 u32 correct_mask_vg = param->read_correct_mask_vg;
1377 u32 tmp_bit_chk;
1378 u32 base_rw_mgr;
1379 u32 addr;
1380
1381 int r, vg, ret;
1382
1383 *bit_chk = param->read_correct_mask;
1384
1385 for (r = rank_bgn; r < rank_end; r++) {
1386 /* set rank */
1387 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388
1389 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390
1391 writel(rwcfg->read_b2b_wait1,
1392 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393
1394 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395 writel(rwcfg->read_b2b_wait2,
1396 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397
1398 if (quick_read_mode)
1399 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400 /* need at least two (1+1) reads to capture failures */
1401 else if (all_groups)
1402 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403 else
1404 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405
1406 writel(rwcfg->read_b2b,
1407 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408 if (all_groups)
1409 writel(rwcfg->mem_if_read_dqs_width *
1410 rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411 &sdr_rw_load_mgr_regs->load_cntr3);
1412 else
1413 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414
1415 writel(rwcfg->read_b2b,
1416 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417
1418 tmp_bit_chk = 0;
1419 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420 vg--) {
1421 /* Reset the FIFOs to get pointers to known state. */
1422 writel(0, &phy_mgr_cmd->fifo_reset);
1423 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425
1426 if (all_groups) {
1427 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428 RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429 } else {
1430 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432 }
1433
1434 writel(rwcfg->read_b2b, addr +
1435 ((group * rwcfg->mem_virtual_groups_per_read_dqs +
1436 vg) << 2));
1437
1438 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1439 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1440 rwcfg->mem_virtual_groups_per_read_dqs;
1441 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1442 }
1443
1444 *bit_chk &= tmp_bit_chk;
1445 }
1446
1447 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1448 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1449
1450 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1451
1452 if (all_correct) {
1453 ret = (*bit_chk == param->read_correct_mask);
1454 debug_cond(DLEVEL == 2,
1455 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1456 __func__, __LINE__, group, all_groups, *bit_chk,
1457 param->read_correct_mask, ret);
1458 } else {
1459 ret = (*bit_chk != 0x00);
1460 debug_cond(DLEVEL == 2,
1461 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1462 __func__, __LINE__, group, all_groups, *bit_chk,
1463 0, ret);
1464 }
1465
1466 return ret;
1467 }
1468
1469 /**
1470 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1471 * @grp: Read/Write group
1472 * @num_tries: Number of retries of the test
1473 * @all_correct: All bits must be correct in the mask
1474 * @all_groups: Test all R/W groups
1475 *
1476 * Perform a READ test across all memory ranks.
1477 */
1478 static int
1479 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1480 const u32 all_correct,
1481 const u32 all_groups)
1482 {
1483 u32 bit_chk;
1484 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1485 &bit_chk, all_groups, 1);
1486 }
1487
1488 /**
1489 * rw_mgr_incr_vfifo() - Increase VFIFO value
1490 * @grp: Read/Write group
1491 *
1492 * Increase VFIFO value.
1493 */
1494 static void rw_mgr_incr_vfifo(const u32 grp)
1495 {
1496 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1497 }
1498
1499 /**
1500 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1501 * @grp: Read/Write group
1502 *
1503 * Decrease VFIFO value.
1504 */
1505 static void rw_mgr_decr_vfifo(const u32 grp)
1506 {
1507 u32 i;
1508
1509 for (i = 0; i < VFIFO_SIZE - 1; i++)
1510 rw_mgr_incr_vfifo(grp);
1511 }
1512
1513 /**
1514 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1515 * @grp: Read/Write group
1516 *
1517 * Push VFIFO until a failing read happens.
1518 */
1519 static int find_vfifo_failing_read(const u32 grp)
1520 {
1521 u32 v, ret, fail_cnt = 0;
1522
1523 for (v = 0; v < VFIFO_SIZE; v++) {
1524 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1525 __func__, __LINE__, v);
1526 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1527 PASS_ONE_BIT, 0);
1528 if (!ret) {
1529 fail_cnt++;
1530
1531 if (fail_cnt == 2)
1532 return v;
1533 }
1534
1535 /* Fiddle with FIFO. */
1536 rw_mgr_incr_vfifo(grp);
1537 }
1538
1539 /* No failing read found! Something must have gone wrong. */
1540 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1541 return 0;
1542 }
1543
1544 /**
1545 * sdr_find_phase_delay() - Find DQS enable phase or delay
1546 * @working: If 1, look for working phase/delay, if 0, look for non-working
1547 * @delay: If 1, look for delay, if 0, look for phase
1548 * @grp: Read/Write group
1549 * @work: Working window position
1550 * @work_inc: Working window increment
1551 * @pd: DQS Phase/Delay Iterator
1552 *
1553 * Find working or non-working DQS enable phase setting.
1554 */
1555 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1556 u32 *work, const u32 work_inc, u32 *pd)
1557 {
1558 const u32 max = delay ? iocfg->dqs_en_delay_max : iocfg->dqs_en_phase_max;
1559 u32 ret;
1560
1561 for (; *pd <= max; (*pd)++) {
1562 if (delay)
1563 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1564 else
1565 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1566
1567 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1568 PASS_ONE_BIT, 0);
1569 if (!working)
1570 ret = !ret;
1571
1572 if (ret)
1573 return 0;
1574
1575 if (work)
1576 *work += work_inc;
1577 }
1578
1579 return -EINVAL;
1580 }
1581 /**
1582 * sdr_find_phase() - Find DQS enable phase
1583 * @working: If 1, look for working phase, if 0, look for non-working phase
1584 * @grp: Read/Write group
1585 * @work: Working window position
1586 * @i: Iterator
1587 * @p: DQS Phase Iterator
1588 *
1589 * Find working or non-working DQS enable phase setting.
1590 */
1591 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1592 u32 *i, u32 *p)
1593 {
1594 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1595 int ret;
1596
1597 for (; *i < end; (*i)++) {
1598 if (working)
1599 *p = 0;
1600
1601 ret = sdr_find_phase_delay(working, 0, grp, work,
1602 iocfg->delay_per_opa_tap, p);
1603 if (!ret)
1604 return 0;
1605
1606 if (*p > iocfg->dqs_en_phase_max) {
1607 /* Fiddle with FIFO. */
1608 rw_mgr_incr_vfifo(grp);
1609 if (!working)
1610 *p = 0;
1611 }
1612 }
1613
1614 return -EINVAL;
1615 }
1616
1617 /**
1618 * sdr_working_phase() - Find working DQS enable phase
1619 * @grp: Read/Write group
1620 * @work_bgn: Working window start position
1621 * @d: dtaps output value
1622 * @p: DQS Phase Iterator
1623 * @i: Iterator
1624 *
1625 * Find working DQS enable phase setting.
1626 */
1627 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1628 u32 *p, u32 *i)
1629 {
1630 const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1631 iocfg->delay_per_dqs_en_dchain_tap;
1632 int ret;
1633
1634 *work_bgn = 0;
1635
1636 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1637 *i = 0;
1638 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1639 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1640 if (!ret)
1641 return 0;
1642 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1643 }
1644
1645 /* Cannot find working solution */
1646 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1647 __func__, __LINE__);
1648 return -EINVAL;
1649 }
1650
1651 /**
1652 * sdr_backup_phase() - Find DQS enable backup phase
1653 * @grp: Read/Write group
1654 * @work_bgn: Working window start position
1655 * @p: DQS Phase Iterator
1656 *
1657 * Find DQS enable backup phase setting.
1658 */
1659 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1660 {
1661 u32 tmp_delay, d;
1662 int ret;
1663
1664 /* Special case code for backing up a phase */
1665 if (*p == 0) {
1666 *p = iocfg->dqs_en_phase_max;
1667 rw_mgr_decr_vfifo(grp);
1668 } else {
1669 (*p)--;
1670 }
1671 tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1672 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1673
1674 for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn; d++) {
1675 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1676
1677 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1678 PASS_ONE_BIT, 0);
1679 if (ret) {
1680 *work_bgn = tmp_delay;
1681 break;
1682 }
1683
1684 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1685 }
1686
1687 /* Restore VFIFO to old state before we decremented it (if needed). */
1688 (*p)++;
1689 if (*p > iocfg->dqs_en_phase_max) {
1690 *p = 0;
1691 rw_mgr_incr_vfifo(grp);
1692 }
1693
1694 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1695 }
1696
1697 /**
1698 * sdr_nonworking_phase() - Find non-working DQS enable phase
1699 * @grp: Read/Write group
1700 * @work_end: Working window end position
1701 * @p: DQS Phase Iterator
1702 * @i: Iterator
1703 *
1704 * Find non-working DQS enable phase setting.
1705 */
1706 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1707 {
1708 int ret;
1709
1710 (*p)++;
1711 *work_end += iocfg->delay_per_opa_tap;
1712 if (*p > iocfg->dqs_en_phase_max) {
1713 /* Fiddle with FIFO. */
1714 *p = 0;
1715 rw_mgr_incr_vfifo(grp);
1716 }
1717
1718 ret = sdr_find_phase(0, grp, work_end, i, p);
1719 if (ret) {
1720 /* Cannot see edge of failing read. */
1721 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1722 __func__, __LINE__);
1723 }
1724
1725 return ret;
1726 }
1727
1728 /**
1729 * sdr_find_window_center() - Find center of the working DQS window.
1730 * @grp: Read/Write group
1731 * @work_bgn: First working settings
1732 * @work_end: Last working settings
1733 *
1734 * Find center of the working DQS enable window.
1735 */
1736 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1737 const u32 work_end)
1738 {
1739 u32 work_mid;
1740 int tmp_delay = 0;
1741 int i, p, d;
1742
1743 work_mid = (work_bgn + work_end) / 2;
1744
1745 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1746 work_bgn, work_end, work_mid);
1747 /* Get the middle delay to be less than a VFIFO delay */
1748 tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1749
1750 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1751 work_mid %= tmp_delay;
1752 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1753
1754 tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1755 if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1756 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1757 p = tmp_delay / iocfg->delay_per_opa_tap;
1758
1759 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1760
1761 d = DIV_ROUND_UP(work_mid - tmp_delay, iocfg->delay_per_dqs_en_dchain_tap);
1762 if (d > iocfg->dqs_en_delay_max)
1763 d = iocfg->dqs_en_delay_max;
1764 tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1765
1766 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1767
1768 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1769 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1770
1771 /*
1772 * push vfifo until we can successfully calibrate. We can do this
1773 * because the largest possible margin in 1 VFIFO cycle.
1774 */
1775 for (i = 0; i < VFIFO_SIZE; i++) {
1776 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1777 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1778 PASS_ONE_BIT,
1779 0)) {
1780 debug_cond(DLEVEL == 2,
1781 "%s:%d center: found: ptap=%u dtap=%u\n",
1782 __func__, __LINE__, p, d);
1783 return 0;
1784 }
1785
1786 /* Fiddle with FIFO. */
1787 rw_mgr_incr_vfifo(grp);
1788 }
1789
1790 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1791 __func__, __LINE__);
1792 return -EINVAL;
1793 }
1794
1795 /**
1796 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1797 * @grp: Read/Write Group
1798 *
1799 * Find a good DQS enable to use.
1800 */
1801 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1802 {
1803 u32 d, p, i;
1804 u32 dtaps_per_ptap;
1805 u32 work_bgn, work_end;
1806 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1807 int ret;
1808
1809 debug("%s:%d %u\n", __func__, __LINE__, grp);
1810
1811 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1812
1813 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1814 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1815
1816 /* Step 0: Determine number of delay taps for each phase tap. */
1817 dtaps_per_ptap = iocfg->delay_per_opa_tap / iocfg->delay_per_dqs_en_dchain_tap;
1818
1819 /* Step 1: First push vfifo until we get a failing read. */
1820 find_vfifo_failing_read(grp);
1821
1822 /* Step 2: Find first working phase, increment in ptaps. */
1823 work_bgn = 0;
1824 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1825 if (ret)
1826 return ret;
1827
1828 work_end = work_bgn;
1829
1830 /*
1831 * If d is 0 then the working window covers a phase tap and we can
1832 * follow the old procedure. Otherwise, we've found the beginning
1833 * and we need to increment the dtaps until we find the end.
1834 */
1835 if (d == 0) {
1836 /*
1837 * Step 3a: If we have room, back off by one and
1838 * increment in dtaps.
1839 */
1840 sdr_backup_phase(grp, &work_bgn, &p);
1841
1842 /*
1843 * Step 4a: go forward from working phase to non working
1844 * phase, increment in ptaps.
1845 */
1846 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1847 if (ret)
1848 return ret;
1849
1850 /* Step 5a: Back off one from last, increment in dtaps. */
1851
1852 /* Special case code for backing up a phase */
1853 if (p == 0) {
1854 p = iocfg->dqs_en_phase_max;
1855 rw_mgr_decr_vfifo(grp);
1856 } else {
1857 p = p - 1;
1858 }
1859
1860 work_end -= iocfg->delay_per_opa_tap;
1861 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1862
1863 d = 0;
1864
1865 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1866 __func__, __LINE__, p);
1867 }
1868
1869 /* The dtap increment to find the failing edge is done here. */
1870 sdr_find_phase_delay(0, 1, grp, &work_end,
1871 iocfg->delay_per_dqs_en_dchain_tap, &d);
1872
1873 /* Go back to working dtap */
1874 if (d != 0)
1875 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1876
1877 debug_cond(DLEVEL == 2,
1878 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1879 __func__, __LINE__, p, d - 1, work_end);
1880
1881 if (work_end < work_bgn) {
1882 /* nil range */
1883 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1884 __func__, __LINE__);
1885 return -EINVAL;
1886 }
1887
1888 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1889 __func__, __LINE__, work_bgn, work_end);
1890
1891 /*
1892 * We need to calculate the number of dtaps that equal a ptap.
1893 * To do that we'll back up a ptap and re-find the edge of the
1894 * window using dtaps
1895 */
1896 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1897 __func__, __LINE__);
1898
1899 /* Special case code for backing up a phase */
1900 if (p == 0) {
1901 p = iocfg->dqs_en_phase_max;
1902 rw_mgr_decr_vfifo(grp);
1903 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1904 __func__, __LINE__, p);
1905 } else {
1906 p = p - 1;
1907 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1908 __func__, __LINE__, p);
1909 }
1910
1911 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1912
1913 /*
1914 * Increase dtap until we first see a passing read (in case the
1915 * window is smaller than a ptap), and then a failing read to
1916 * mark the edge of the window again.
1917 */
1918
1919 /* Find a passing read. */
1920 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1921 __func__, __LINE__);
1922
1923 initial_failing_dtap = d;
1924
1925 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1926 if (found_passing_read) {
1927 /* Find a failing read. */
1928 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1929 __func__, __LINE__);
1930 d++;
1931 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1932 &d);
1933 } else {
1934 debug_cond(DLEVEL == 1,
1935 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1936 __func__, __LINE__);
1937 }
1938
1939 /*
1940 * The dynamically calculated dtaps_per_ptap is only valid if we
1941 * found a passing/failing read. If we didn't, it means d hit the max
1942 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1943 * statically calculated value.
1944 */
1945 if (found_passing_read && found_failing_read)
1946 dtaps_per_ptap = d - initial_failing_dtap;
1947
1948 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1949 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1950 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1951
1952 /* Step 6: Find the centre of the window. */
1953 ret = sdr_find_window_center(grp, work_bgn, work_end);
1954
1955 return ret;
1956 }
1957
1958 /**
1959 * search_stop_check() - Check if the detected edge is valid
1960 * @write: Perform read (Stage 2) or write (Stage 3) calibration
1961 * @d: DQS delay
1962 * @rank_bgn: Rank number
1963 * @write_group: Write Group
1964 * @read_group: Read Group
1965 * @bit_chk: Resulting bit mask after the test
1966 * @sticky_bit_chk: Resulting sticky bit mask after the test
1967 * @use_read_test: Perform read test
1968 *
1969 * Test if the found edge is valid.
1970 */
1971 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1972 const u32 write_group, const u32 read_group,
1973 u32 *bit_chk, u32 *sticky_bit_chk,
1974 const u32 use_read_test)
1975 {
1976 const u32 ratio = rwcfg->mem_if_read_dqs_width /
1977 rwcfg->mem_if_write_dqs_width;
1978 const u32 correct_mask = write ? param->write_correct_mask :
1979 param->read_correct_mask;
1980 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1981 rwcfg->mem_dq_per_read_dqs;
1982 u32 ret;
1983 /*
1984 * Stop searching when the read test doesn't pass AND when
1985 * we've seen a passing read on every bit.
1986 */
1987 if (write) { /* WRITE-ONLY */
1988 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1989 0, PASS_ONE_BIT,
1990 bit_chk, 0);
1991 } else if (use_read_test) { /* READ-ONLY */
1992 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1993 NUM_READ_PB_TESTS,
1994 PASS_ONE_BIT, bit_chk,
1995 0, 0);
1996 } else { /* READ-ONLY */
1997 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1998 PASS_ONE_BIT, bit_chk, 0);
1999 *bit_chk = *bit_chk >> (per_dqs *
2000 (read_group - (write_group * ratio)));
2001 ret = (*bit_chk == 0);
2002 }
2003 *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2004 ret = ret && (*sticky_bit_chk == correct_mask);
2005 debug_cond(DLEVEL == 2,
2006 "%s:%d center(left): dtap=%u => %u == %u && %u",
2007 __func__, __LINE__, d,
2008 *sticky_bit_chk, correct_mask, ret);
2009 return ret;
2010 }
2011
2012 /**
2013 * search_left_edge() - Find left edge of DQ/DQS working phase
2014 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2015 * @rank_bgn: Rank number
2016 * @write_group: Write Group
2017 * @read_group: Read Group
2018 * @test_bgn: Rank number to begin the test
2019 * @sticky_bit_chk: Resulting sticky bit mask after the test
2020 * @left_edge: Left edge of the DQ/DQS phase
2021 * @right_edge: Right edge of the DQ/DQS phase
2022 * @use_read_test: Perform read test
2023 *
2024 * Find left edge of DQ/DQS working phase.
2025 */
2026 static void search_left_edge(const int write, const int rank_bgn,
2027 const u32 write_group, const u32 read_group, const u32 test_bgn,
2028 u32 *sticky_bit_chk,
2029 int *left_edge, int *right_edge, const u32 use_read_test)
2030 {
2031 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2032 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2033 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2034 rwcfg->mem_dq_per_read_dqs;
2035 u32 stop, bit_chk;
2036 int i, d;
2037
2038 for (d = 0; d <= dqs_max; d++) {
2039 if (write)
2040 scc_mgr_apply_group_dq_out1_delay(d);
2041 else
2042 scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2043
2044 writel(0, &sdr_scc_mgr->update);
2045
2046 stop = search_stop_check(write, d, rank_bgn, write_group,
2047 read_group, &bit_chk, sticky_bit_chk,
2048 use_read_test);
2049 if (stop == 1)
2050 break;
2051
2052 /* stop != 1 */
2053 for (i = 0; i < per_dqs; i++) {
2054 if (bit_chk & 1) {
2055 /*
2056 * Remember a passing test as
2057 * the left_edge.
2058 */
2059 left_edge[i] = d;
2060 } else {
2061 /*
2062 * If a left edge has not been seen
2063 * yet, then a future passing test
2064 * will mark this edge as the right
2065 * edge.
2066 */
2067 if (left_edge[i] == delay_max + 1)
2068 right_edge[i] = -(d + 1);
2069 }
2070 bit_chk >>= 1;
2071 }
2072 }
2073
2074 /* Reset DQ delay chains to 0 */
2075 if (write)
2076 scc_mgr_apply_group_dq_out1_delay(0);
2077 else
2078 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2079
2080 *sticky_bit_chk = 0;
2081 for (i = per_dqs - 1; i >= 0; i--) {
2082 debug_cond(DLEVEL == 2,
2083 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2084 __func__, __LINE__, i, left_edge[i],
2085 i, right_edge[i]);
2086
2087 /*
2088 * Check for cases where we haven't found the left edge,
2089 * which makes our assignment of the the right edge invalid.
2090 * Reset it to the illegal value.
2091 */
2092 if ((left_edge[i] == delay_max + 1) &&
2093 (right_edge[i] != delay_max + 1)) {
2094 right_edge[i] = delay_max + 1;
2095 debug_cond(DLEVEL == 2,
2096 "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2097 __func__, __LINE__, i, right_edge[i]);
2098 }
2099
2100 /*
2101 * Reset sticky bit
2102 * READ: except for bits where we have seen both
2103 * the left and right edge.
2104 * WRITE: except for bits where we have seen the
2105 * left edge.
2106 */
2107 *sticky_bit_chk <<= 1;
2108 if (write) {
2109 if (left_edge[i] != delay_max + 1)
2110 *sticky_bit_chk |= 1;
2111 } else {
2112 if ((left_edge[i] != delay_max + 1) &&
2113 (right_edge[i] != delay_max + 1))
2114 *sticky_bit_chk |= 1;
2115 }
2116 }
2117
2118
2119 }
2120
2121 /**
2122 * search_right_edge() - Find right edge of DQ/DQS working phase
2123 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2124 * @rank_bgn: Rank number
2125 * @write_group: Write Group
2126 * @read_group: Read Group
2127 * @start_dqs: DQS start phase
2128 * @start_dqs_en: DQS enable start phase
2129 * @sticky_bit_chk: Resulting sticky bit mask after the test
2130 * @left_edge: Left edge of the DQ/DQS phase
2131 * @right_edge: Right edge of the DQ/DQS phase
2132 * @use_read_test: Perform read test
2133 *
2134 * Find right edge of DQ/DQS working phase.
2135 */
2136 static int search_right_edge(const int write, const int rank_bgn,
2137 const u32 write_group, const u32 read_group,
2138 const int start_dqs, const int start_dqs_en,
2139 u32 *sticky_bit_chk,
2140 int *left_edge, int *right_edge, const u32 use_read_test)
2141 {
2142 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2143 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2144 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2145 rwcfg->mem_dq_per_read_dqs;
2146 u32 stop, bit_chk;
2147 int i, d;
2148
2149 for (d = 0; d <= dqs_max - start_dqs; d++) {
2150 if (write) { /* WRITE-ONLY */
2151 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2152 d + start_dqs);
2153 } else { /* READ-ONLY */
2154 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2155 if (iocfg->shift_dqs_en_when_shift_dqs) {
2156 uint32_t delay = d + start_dqs_en;
2157 if (delay > iocfg->dqs_en_delay_max)
2158 delay = iocfg->dqs_en_delay_max;
2159 scc_mgr_set_dqs_en_delay(read_group, delay);
2160 }
2161 scc_mgr_load_dqs(read_group);
2162 }
2163
2164 writel(0, &sdr_scc_mgr->update);
2165
2166 stop = search_stop_check(write, d, rank_bgn, write_group,
2167 read_group, &bit_chk, sticky_bit_chk,
2168 use_read_test);
2169 if (stop == 1) {
2170 if (write && (d == 0)) { /* WRITE-ONLY */
2171 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2172 /*
2173 * d = 0 failed, but it passed when
2174 * testing the left edge, so it must be
2175 * marginal, set it to -1
2176 */
2177 if (right_edge[i] == delay_max + 1 &&
2178 left_edge[i] != delay_max + 1)
2179 right_edge[i] = -1;
2180 }
2181 }
2182 break;
2183 }
2184
2185 /* stop != 1 */
2186 for (i = 0; i < per_dqs; i++) {
2187 if (bit_chk & 1) {
2188 /*
2189 * Remember a passing test as
2190 * the right_edge.
2191 */
2192 right_edge[i] = d;
2193 } else {
2194 if (d != 0) {
2195 /*
2196 * If a right edge has not
2197 * been seen yet, then a future
2198 * passing test will mark this
2199 * edge as the left edge.
2200 */
2201 if (right_edge[i] == delay_max + 1)
2202 left_edge[i] = -(d + 1);
2203 } else {
2204 /*
2205 * d = 0 failed, but it passed
2206 * when testing the left edge,
2207 * so it must be marginal, set
2208 * it to -1
2209 */
2210 if (right_edge[i] == delay_max + 1 &&
2211 left_edge[i] != delay_max + 1)
2212 right_edge[i] = -1;
2213 /*
2214 * If a right edge has not been
2215 * seen yet, then a future
2216 * passing test will mark this
2217 * edge as the left edge.
2218 */
2219 else if (right_edge[i] == delay_max + 1)
2220 left_edge[i] = -(d + 1);
2221 }
2222 }
2223
2224 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2225 __func__, __LINE__, d);
2226 debug_cond(DLEVEL == 2,
2227 "bit_chk_test=%i left_edge[%u]: %d ",
2228 bit_chk & 1, i, left_edge[i]);
2229 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2230 right_edge[i]);
2231 bit_chk >>= 1;
2232 }
2233 }
2234
2235 /* Check that all bits have a window */
2236 for (i = 0; i < per_dqs; i++) {
2237 debug_cond(DLEVEL == 2,
2238 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2239 __func__, __LINE__, i, left_edge[i],
2240 i, right_edge[i]);
2241 if ((left_edge[i] == dqs_max + 1) ||
2242 (right_edge[i] == dqs_max + 1))
2243 return i + 1; /* FIXME: If we fail, retval > 0 */
2244 }
2245
2246 return 0;
2247 }
2248
2249 /**
2250 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2251 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2252 * @left_edge: Left edge of the DQ/DQS phase
2253 * @right_edge: Right edge of the DQ/DQS phase
2254 * @mid_min: Best DQ/DQS phase middle setting
2255 *
2256 * Find index and value of the middle of the DQ/DQS working phase.
2257 */
2258 static int get_window_mid_index(const int write, int *left_edge,
2259 int *right_edge, int *mid_min)
2260 {
2261 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2262 rwcfg->mem_dq_per_read_dqs;
2263 int i, mid, min_index;
2264
2265 /* Find middle of window for each DQ bit */
2266 *mid_min = left_edge[0] - right_edge[0];
2267 min_index = 0;
2268 for (i = 1; i < per_dqs; i++) {
2269 mid = left_edge[i] - right_edge[i];
2270 if (mid < *mid_min) {
2271 *mid_min = mid;
2272 min_index = i;
2273 }
2274 }
2275
2276 /*
2277 * -mid_min/2 represents the amount that we need to move DQS.
2278 * If mid_min is odd and positive we'll need to add one to make
2279 * sure the rounding in further calculations is correct (always
2280 * bias to the right), so just add 1 for all positive values.
2281 */
2282 if (*mid_min > 0)
2283 (*mid_min)++;
2284 *mid_min = *mid_min / 2;
2285
2286 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2287 __func__, __LINE__, *mid_min, min_index);
2288 return min_index;
2289 }
2290
2291 /**
2292 * center_dq_windows() - Center the DQ/DQS windows
2293 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2294 * @left_edge: Left edge of the DQ/DQS phase
2295 * @right_edge: Right edge of the DQ/DQS phase
2296 * @mid_min: Adjusted DQ/DQS phase middle setting
2297 * @orig_mid_min: Original DQ/DQS phase middle setting
2298 * @min_index: DQ/DQS phase middle setting index
2299 * @test_bgn: Rank number to begin the test
2300 * @dq_margin: Amount of shift for the DQ
2301 * @dqs_margin: Amount of shift for the DQS
2302 *
2303 * Align the DQ/DQS windows in each group.
2304 */
2305 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2306 const int mid_min, const int orig_mid_min,
2307 const int min_index, const int test_bgn,
2308 int *dq_margin, int *dqs_margin)
2309 {
2310 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2311 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2312 rwcfg->mem_dq_per_read_dqs;
2313 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2314 SCC_MGR_IO_IN_DELAY_OFFSET;
2315 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2316
2317 u32 temp_dq_io_delay1, temp_dq_io_delay2;
2318 int shift_dq, i, p;
2319
2320 /* Initialize data for export structures */
2321 *dqs_margin = delay_max + 1;
2322 *dq_margin = delay_max + 1;
2323
2324 /* add delay to bring centre of all DQ windows to the same "level" */
2325 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2326 /* Use values before divide by 2 to reduce round off error */
2327 shift_dq = (left_edge[i] - right_edge[i] -
2328 (left_edge[min_index] - right_edge[min_index]))/2 +
2329 (orig_mid_min - mid_min);
2330
2331 debug_cond(DLEVEL == 2,
2332 "vfifo_center: before: shift_dq[%u]=%d\n",
2333 i, shift_dq);
2334
2335 temp_dq_io_delay1 = readl(addr + (p << 2));
2336 temp_dq_io_delay2 = readl(addr + (i << 2));
2337
2338 if (shift_dq + temp_dq_io_delay1 > delay_max)
2339 shift_dq = delay_max - temp_dq_io_delay2;
2340 else if (shift_dq + temp_dq_io_delay1 < 0)
2341 shift_dq = -temp_dq_io_delay1;
2342
2343 debug_cond(DLEVEL == 2,
2344 "vfifo_center: after: shift_dq[%u]=%d\n",
2345 i, shift_dq);
2346
2347 if (write)
2348 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2349 else
2350 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2351
2352 scc_mgr_load_dq(p);
2353
2354 debug_cond(DLEVEL == 2,
2355 "vfifo_center: margin[%u]=[%d,%d]\n", i,
2356 left_edge[i] - shift_dq + (-mid_min),
2357 right_edge[i] + shift_dq - (-mid_min));
2358
2359 /* To determine values for export structures */
2360 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2361 *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2362
2363 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2364 *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2365 }
2366
2367 }
2368
2369 /**
2370 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2371 * @rank_bgn: Rank number
2372 * @rw_group: Read/Write Group
2373 * @test_bgn: Rank at which the test begins
2374 * @use_read_test: Perform a read test
2375 * @update_fom: Update FOM
2376 *
2377 * Per-bit deskew DQ and centering.
2378 */
2379 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2380 const u32 rw_group, const u32 test_bgn,
2381 const int use_read_test, const int update_fom)
2382 {
2383 const u32 addr =
2384 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2385 (rw_group << 2);
2386 /*
2387 * Store these as signed since there are comparisons with
2388 * signed numbers.
2389 */
2390 uint32_t sticky_bit_chk;
2391 int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2392 int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2393 int32_t orig_mid_min, mid_min;
2394 int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2395 int32_t dq_margin, dqs_margin;
2396 int i, min_index;
2397 int ret;
2398
2399 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2400
2401 start_dqs = readl(addr);
2402 if (iocfg->shift_dqs_en_when_shift_dqs)
2403 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2404
2405 /* set the left and right edge of each bit to an illegal value */
2406 /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2407 sticky_bit_chk = 0;
2408 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2409 left_edge[i] = iocfg->io_in_delay_max + 1;
2410 right_edge[i] = iocfg->io_in_delay_max + 1;
2411 }
2412
2413 /* Search for the left edge of the window for each bit */
2414 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2415 &sticky_bit_chk,
2416 left_edge, right_edge, use_read_test);
2417
2418
2419 /* Search for the right edge of the window for each bit */
2420 ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2421 start_dqs, start_dqs_en,
2422 &sticky_bit_chk,
2423 left_edge, right_edge, use_read_test);
2424 if (ret) {
2425 /*
2426 * Restore delay chain settings before letting the loop
2427 * in rw_mgr_mem_calibrate_vfifo to retry different
2428 * dqs/ck relationships.
2429 */
2430 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2431 if (iocfg->shift_dqs_en_when_shift_dqs)
2432 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2433
2434 scc_mgr_load_dqs(rw_group);
2435 writel(0, &sdr_scc_mgr->update);
2436
2437 debug_cond(DLEVEL == 1,
2438 "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2439 __func__, __LINE__, i, left_edge[i], right_edge[i]);
2440 if (use_read_test) {
2441 set_failing_group_stage(rw_group *
2442 rwcfg->mem_dq_per_read_dqs + i,
2443 CAL_STAGE_VFIFO,
2444 CAL_SUBSTAGE_VFIFO_CENTER);
2445 } else {
2446 set_failing_group_stage(rw_group *
2447 rwcfg->mem_dq_per_read_dqs + i,
2448 CAL_STAGE_VFIFO_AFTER_WRITES,
2449 CAL_SUBSTAGE_VFIFO_CENTER);
2450 }
2451 return -EIO;
2452 }
2453
2454 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2455
2456 /* Determine the amount we can change DQS (which is -mid_min) */
2457 orig_mid_min = mid_min;
2458 new_dqs = start_dqs - mid_min;
2459 if (new_dqs > iocfg->dqs_in_delay_max)
2460 new_dqs = iocfg->dqs_in_delay_max;
2461 else if (new_dqs < 0)
2462 new_dqs = 0;
2463
2464 mid_min = start_dqs - new_dqs;
2465 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2466 mid_min, new_dqs);
2467
2468 if (iocfg->shift_dqs_en_when_shift_dqs) {
2469 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2470 mid_min += start_dqs_en - mid_min - iocfg->dqs_en_delay_max;
2471 else if (start_dqs_en - mid_min < 0)
2472 mid_min += start_dqs_en - mid_min;
2473 }
2474 new_dqs = start_dqs - mid_min;
2475
2476 debug_cond(DLEVEL == 1,
2477 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2478 start_dqs,
2479 iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2480 new_dqs, mid_min);
2481
2482 /* Add delay to bring centre of all DQ windows to the same "level". */
2483 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2484 min_index, test_bgn, &dq_margin, &dqs_margin);
2485
2486 /* Move DQS-en */
2487 if (iocfg->shift_dqs_en_when_shift_dqs) {
2488 final_dqs_en = start_dqs_en - mid_min;
2489 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2490 scc_mgr_load_dqs(rw_group);
2491 }
2492
2493 /* Move DQS */
2494 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2495 scc_mgr_load_dqs(rw_group);
2496 debug_cond(DLEVEL == 2,
2497 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2498 __func__, __LINE__, dq_margin, dqs_margin);
2499
2500 /*
2501 * Do not remove this line as it makes sure all of our decisions
2502 * have been applied. Apply the update bit.
2503 */
2504 writel(0, &sdr_scc_mgr->update);
2505
2506 if ((dq_margin < 0) || (dqs_margin < 0))
2507 return -EINVAL;
2508
2509 return 0;
2510 }
2511
2512 /**
2513 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2514 * @rw_group: Read/Write Group
2515 * @phase: DQ/DQS phase
2516 *
2517 * Because initially no communication ca be reliably performed with the memory
2518 * device, the sequencer uses a guaranteed write mechanism to write data into
2519 * the memory device.
2520 */
2521 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2522 const u32 phase)
2523 {
2524 int ret;
2525
2526 /* Set a particular DQ/DQS phase. */
2527 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2528
2529 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2530 __func__, __LINE__, rw_group, phase);
2531
2532 /*
2533 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2534 * Load up the patterns used by read calibration using the
2535 * current DQDQS phase.
2536 */
2537 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2538
2539 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2540 return 0;
2541
2542 /*
2543 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2544 * Back-to-Back reads of the patterns used for calibration.
2545 */
2546 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2547 if (ret)
2548 debug_cond(DLEVEL == 1,
2549 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2550 __func__, __LINE__, rw_group, phase);
2551 return ret;
2552 }
2553
2554 /**
2555 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2556 * @rw_group: Read/Write Group
2557 * @test_bgn: Rank at which the test begins
2558 *
2559 * DQS enable calibration ensures reliable capture of the DQ signal without
2560 * glitches on the DQS line.
2561 */
2562 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2563 const u32 test_bgn)
2564 {
2565 /*
2566 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2567 * DQS and DQS Eanble Signal Relationships.
2568 */
2569
2570 /* We start at zero, so have one less dq to devide among */
2571 const u32 delay_step = iocfg->io_in_delay_max /
2572 (rwcfg->mem_dq_per_read_dqs - 1);
2573 int ret;
2574 u32 i, p, d, r;
2575
2576 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2577
2578 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2579 for (r = 0; r < rwcfg->mem_number_of_ranks;
2580 r += NUM_RANKS_PER_SHADOW_REG) {
2581 for (i = 0, p = test_bgn, d = 0;
2582 i < rwcfg->mem_dq_per_read_dqs;
2583 i++, p++, d += delay_step) {
2584 debug_cond(DLEVEL == 1,
2585 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2586 __func__, __LINE__, rw_group, r, i, p, d);
2587
2588 scc_mgr_set_dq_in_delay(p, d);
2589 scc_mgr_load_dq(p);
2590 }
2591
2592 writel(0, &sdr_scc_mgr->update);
2593 }
2594
2595 /*
2596 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2597 * dq_in_delay values
2598 */
2599 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2600
2601 debug_cond(DLEVEL == 1,
2602 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2603 __func__, __LINE__, rw_group, !ret);
2604
2605 for (r = 0; r < rwcfg->mem_number_of_ranks;
2606 r += NUM_RANKS_PER_SHADOW_REG) {
2607 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2608 writel(0, &sdr_scc_mgr->update);
2609 }
2610
2611 return ret;
2612 }
2613
2614 /**
2615 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2616 * @rw_group: Read/Write Group
2617 * @test_bgn: Rank at which the test begins
2618 * @use_read_test: Perform a read test
2619 * @update_fom: Update FOM
2620 *
2621 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2622 * within a group.
2623 */
2624 static int
2625 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2626 const int use_read_test,
2627 const int update_fom)
2628
2629 {
2630 int ret, grp_calibrated;
2631 u32 rank_bgn, sr;
2632
2633 /*
2634 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2635 * Read per-bit deskew can be done on a per shadow register basis.
2636 */
2637 grp_calibrated = 1;
2638 for (rank_bgn = 0, sr = 0;
2639 rank_bgn < rwcfg->mem_number_of_ranks;
2640 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2641 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2642 test_bgn,
2643 use_read_test,
2644 update_fom);
2645 if (!ret)
2646 continue;
2647
2648 grp_calibrated = 0;
2649 }
2650
2651 if (!grp_calibrated)
2652 return -EIO;
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2659 * @rw_group: Read/Write Group
2660 * @test_bgn: Rank at which the test begins
2661 *
2662 * Stage 1: Calibrate the read valid prediction FIFO.
2663 *
2664 * This function implements UniPHY calibration Stage 1, as explained in
2665 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2666 *
2667 * - read valid prediction will consist of finding:
2668 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2669 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2670 * - we also do a per-bit deskew on the DQ lines.
2671 */
2672 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2673 {
2674 uint32_t p, d;
2675 uint32_t dtaps_per_ptap;
2676 uint32_t failed_substage;
2677
2678 int ret;
2679
2680 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2681
2682 /* Update info for sims */
2683 reg_file_set_group(rw_group);
2684 reg_file_set_stage(CAL_STAGE_VFIFO);
2685 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2686
2687 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2688
2689 /* USER Determine number of delay taps for each phase tap. */
2690 dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2691 iocfg->delay_per_dqs_en_dchain_tap) - 1;
2692
2693 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2694 /*
2695 * In RLDRAMX we may be messing the delay of pins in
2696 * the same write rw_group but outside of the current read
2697 * the rw_group, but that's ok because we haven't calibrated
2698 * output side yet.
2699 */
2700 if (d > 0) {
2701 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2702 rw_group, d);
2703 }
2704
2705 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2706 /* 1) Guaranteed Write */
2707 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2708 if (ret)
2709 break;
2710
2711 /* 2) DQS Enable Calibration */
2712 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2713 test_bgn);
2714 if (ret) {
2715 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2716 continue;
2717 }
2718
2719 /* 3) Centering DQ/DQS */
2720 /*
2721 * If doing read after write calibration, do not update
2722 * FOM now. Do it then.
2723 */
2724 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2725 test_bgn, 1, 0);
2726 if (ret) {
2727 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2728 continue;
2729 }
2730
2731 /* All done. */
2732 goto cal_done_ok;
2733 }
2734 }
2735
2736 /* Calibration Stage 1 failed. */
2737 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2738 return 0;
2739
2740 /* Calibration Stage 1 completed OK. */
2741 cal_done_ok:
2742 /*
2743 * Reset the delay chains back to zero if they have moved > 1
2744 * (check for > 1 because loop will increase d even when pass in
2745 * first case).
2746 */
2747 if (d > 2)
2748 scc_mgr_zero_group(rw_group, 1);
2749
2750 return 1;
2751 }
2752
2753 /**
2754 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2755 * @rw_group: Read/Write Group
2756 * @test_bgn: Rank at which the test begins
2757 *
2758 * Stage 3: DQ/DQS Centering.
2759 *
2760 * This function implements UniPHY calibration Stage 3, as explained in
2761 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2762 */
2763 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2764 const u32 test_bgn)
2765 {
2766 int ret;
2767
2768 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2769
2770 /* Update info for sims. */
2771 reg_file_set_group(rw_group);
2772 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2773 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2774
2775 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2776 if (ret)
2777 set_failing_group_stage(rw_group,
2778 CAL_STAGE_VFIFO_AFTER_WRITES,
2779 CAL_SUBSTAGE_VFIFO_CENTER);
2780 return ret;
2781 }
2782
2783 /**
2784 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2785 *
2786 * Stage 4: Minimize latency.
2787 *
2788 * This function implements UniPHY calibration Stage 4, as explained in
2789 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2790 * Calibrate LFIFO to find smallest read latency.
2791 */
2792 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2793 {
2794 int found_one = 0;
2795
2796 debug("%s:%d\n", __func__, __LINE__);
2797
2798 /* Update info for sims. */
2799 reg_file_set_stage(CAL_STAGE_LFIFO);
2800 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2801
2802 /* Load up the patterns used by read calibration for all ranks */
2803 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2804
2805 do {
2806 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2807 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2808 __func__, __LINE__, gbl->curr_read_lat);
2809
2810 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2811 PASS_ALL_BITS, 1))
2812 break;
2813
2814 found_one = 1;
2815 /*
2816 * Reduce read latency and see if things are
2817 * working correctly.
2818 */
2819 gbl->curr_read_lat--;
2820 } while (gbl->curr_read_lat > 0);
2821
2822 /* Reset the fifos to get pointers to known state. */
2823 writel(0, &phy_mgr_cmd->fifo_reset);
2824
2825 if (found_one) {
2826 /* Add a fudge factor to the read latency that was determined */
2827 gbl->curr_read_lat += 2;
2828 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2829 debug_cond(DLEVEL == 2,
2830 "%s:%d lfifo: success: using read_lat=%u\n",
2831 __func__, __LINE__, gbl->curr_read_lat);
2832 } else {
2833 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2834 CAL_SUBSTAGE_READ_LATENCY);
2835
2836 debug_cond(DLEVEL == 2,
2837 "%s:%d lfifo: failed at initial read_lat=%u\n",
2838 __func__, __LINE__, gbl->curr_read_lat);
2839 }
2840
2841 return found_one;
2842 }
2843
2844 /**
2845 * search_window() - Search for the/part of the window with DM/DQS shift
2846 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
2847 * @rank_bgn: Rank number
2848 * @write_group: Write Group
2849 * @bgn_curr: Current window begin
2850 * @end_curr: Current window end
2851 * @bgn_best: Current best window begin
2852 * @end_best: Current best window end
2853 * @win_best: Size of the best window
2854 * @new_dqs: New DQS value (only applicable if search_dm = 0).
2855 *
2856 * Search for the/part of the window with DM/DQS shift.
2857 */
2858 static void search_window(const int search_dm,
2859 const u32 rank_bgn, const u32 write_group,
2860 int *bgn_curr, int *end_curr, int *bgn_best,
2861 int *end_best, int *win_best, int new_dqs)
2862 {
2863 u32 bit_chk;
2864 const int max = iocfg->io_out1_delay_max - new_dqs;
2865 int d, di;
2866
2867 /* Search for the/part of the window with DM/DQS shift. */
2868 for (di = max; di >= 0; di -= DELTA_D) {
2869 if (search_dm) {
2870 d = di;
2871 scc_mgr_apply_group_dm_out1_delay(d);
2872 } else {
2873 /* For DQS, we go from 0...max */
2874 d = max - di;
2875 /*
2876 * Note: This only shifts DQS, so are we limiting ourselve to
2877 * width of DQ unnecessarily.
2878 */
2879 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2880 d + new_dqs);
2881 }
2882
2883 writel(0, &sdr_scc_mgr->update);
2884
2885 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2886 PASS_ALL_BITS, &bit_chk,
2887 0)) {
2888 /* Set current end of the window. */
2889 *end_curr = search_dm ? -d : d;
2890
2891 /*
2892 * If a starting edge of our window has not been seen
2893 * this is our current start of the DM window.
2894 */
2895 if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2896 *bgn_curr = search_dm ? -d : d;
2897
2898 /*
2899 * If current window is bigger than best seen.
2900 * Set best seen to be current window.
2901 */
2902 if ((*end_curr - *bgn_curr + 1) > *win_best) {
2903 *win_best = *end_curr - *bgn_curr + 1;
2904 *bgn_best = *bgn_curr;
2905 *end_best = *end_curr;
2906 }
2907 } else {
2908 /* We just saw a failing test. Reset temp edge. */
2909 *bgn_curr = iocfg->io_out1_delay_max + 1;
2910 *end_curr = iocfg->io_out1_delay_max + 1;
2911
2912 /* Early exit is only applicable to DQS. */
2913 if (search_dm)
2914 continue;
2915
2916 /*
2917 * Early exit optimization: if the remaining delay
2918 * chain space is less than already seen largest
2919 * window we can exit.
2920 */
2921 if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2922 break;
2923 }
2924 }
2925 }
2926
2927 /*
2928 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2929 * @rank_bgn: Rank number
2930 * @write_group: Write group
2931 * @test_bgn: Rank at which the test begins
2932 *
2933 * Center all windows. Do per-bit-deskew to possibly increase size of
2934 * certain windows.
2935 */
2936 static int
2937 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2938 const u32 test_bgn)
2939 {
2940 int i;
2941 u32 sticky_bit_chk;
2942 u32 min_index;
2943 int left_edge[rwcfg->mem_dq_per_write_dqs];
2944 int right_edge[rwcfg->mem_dq_per_write_dqs];
2945 int mid;
2946 int mid_min, orig_mid_min;
2947 int new_dqs, start_dqs;
2948 int dq_margin, dqs_margin, dm_margin;
2949 int bgn_curr = iocfg->io_out1_delay_max + 1;
2950 int end_curr = iocfg->io_out1_delay_max + 1;
2951 int bgn_best = iocfg->io_out1_delay_max + 1;
2952 int end_best = iocfg->io_out1_delay_max + 1;
2953 int win_best = 0;
2954
2955 int ret;
2956
2957 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2958
2959 dm_margin = 0;
2960
2961 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2962 SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2963 (rwcfg->mem_dq_per_write_dqs << 2));
2964
2965 /* Per-bit deskew. */
2966
2967 /*
2968 * Set the left and right edge of each bit to an illegal value.
2969 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2970 */
2971 sticky_bit_chk = 0;
2972 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2973 left_edge[i] = iocfg->io_out1_delay_max + 1;
2974 right_edge[i] = iocfg->io_out1_delay_max + 1;
2975 }
2976
2977 /* Search for the left edge of the window for each bit. */
2978 search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2979 &sticky_bit_chk,
2980 left_edge, right_edge, 0);
2981
2982 /* Search for the right edge of the window for each bit. */
2983 ret = search_right_edge(1, rank_bgn, write_group, 0,
2984 start_dqs, 0,
2985 &sticky_bit_chk,
2986 left_edge, right_edge, 0);
2987 if (ret) {
2988 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2989 CAL_SUBSTAGE_WRITES_CENTER);
2990 return -EINVAL;
2991 }
2992
2993 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2994
2995 /* Determine the amount we can change DQS (which is -mid_min). */
2996 orig_mid_min = mid_min;
2997 new_dqs = start_dqs;
2998 mid_min = 0;
2999 debug_cond(DLEVEL == 1,
3000 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3001 __func__, __LINE__, start_dqs, new_dqs, mid_min);
3002
3003 /* Add delay to bring centre of all DQ windows to the same "level". */
3004 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3005 min_index, 0, &dq_margin, &dqs_margin);
3006
3007 /* Move DQS */
3008 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3009 writel(0, &sdr_scc_mgr->update);
3010
3011 /* Centre DM */
3012 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3013
3014 /*
3015 * Set the left and right edge of each bit to an illegal value.
3016 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3017 */
3018 left_edge[0] = iocfg->io_out1_delay_max + 1;
3019 right_edge[0] = iocfg->io_out1_delay_max + 1;
3020
3021 /* Search for the/part of the window with DM shift. */
3022 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3023 &bgn_best, &end_best, &win_best, 0);
3024
3025 /* Reset DM delay chains to 0. */
3026 scc_mgr_apply_group_dm_out1_delay(0);
3027
3028 /*
3029 * Check to see if the current window nudges up aganist 0 delay.
3030 * If so we need to continue the search by shifting DQS otherwise DQS
3031 * search begins as a new search.
3032 */
3033 if (end_curr != 0) {
3034 bgn_curr = iocfg->io_out1_delay_max + 1;
3035 end_curr = iocfg->io_out1_delay_max + 1;
3036 }
3037
3038 /* Search for the/part of the window with DQS shifts. */
3039 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3040 &bgn_best, &end_best, &win_best, new_dqs);
3041
3042 /* Assign left and right edge for cal and reporting. */
3043 left_edge[0] = -1 * bgn_best;
3044 right_edge[0] = end_best;
3045
3046 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3047 __func__, __LINE__, left_edge[0], right_edge[0]);
3048
3049 /* Move DQS (back to orig). */
3050 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3051
3052 /* Move DM */
3053
3054 /* Find middle of window for the DM bit. */
3055 mid = (left_edge[0] - right_edge[0]) / 2;
3056
3057 /* Only move right, since we are not moving DQS/DQ. */
3058 if (mid < 0)
3059 mid = 0;
3060
3061 /* dm_marign should fail if we never find a window. */
3062 if (win_best == 0)
3063 dm_margin = -1;
3064 else
3065 dm_margin = left_edge[0] - mid;
3066
3067 scc_mgr_apply_group_dm_out1_delay(mid);
3068 writel(0, &sdr_scc_mgr->update);
3069
3070 debug_cond(DLEVEL == 2,
3071 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3072 __func__, __LINE__, left_edge[0], right_edge[0],
3073 mid, dm_margin);
3074 /* Export values. */
3075 gbl->fom_out += dq_margin + dqs_margin;
3076
3077 debug_cond(DLEVEL == 2,
3078 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3079 __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3080
3081 /*
3082 * Do not remove this line as it makes sure all of our
3083 * decisions have been applied.
3084 */
3085 writel(0, &sdr_scc_mgr->update);
3086
3087 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3088 return -EINVAL;
3089
3090 return 0;
3091 }
3092
3093 /**
3094 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3095 * @rank_bgn: Rank number
3096 * @group: Read/Write Group
3097 * @test_bgn: Rank at which the test begins
3098 *
3099 * Stage 2: Write Calibration Part One.
3100 *
3101 * This function implements UniPHY calibration Stage 2, as explained in
3102 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3103 */
3104 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3105 const u32 test_bgn)
3106 {
3107 int ret;
3108
3109 /* Update info for sims */
3110 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3111
3112 reg_file_set_group(group);
3113 reg_file_set_stage(CAL_STAGE_WRITES);
3114 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3115
3116 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3117 if (ret)
3118 set_failing_group_stage(group, CAL_STAGE_WRITES,
3119 CAL_SUBSTAGE_WRITES_CENTER);
3120
3121 return ret;
3122 }
3123
3124 /**
3125 * mem_precharge_and_activate() - Precharge all banks and activate
3126 *
3127 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3128 */
3129 static void mem_precharge_and_activate(void)
3130 {
3131 int r;
3132
3133 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3134 /* Set rank. */
3135 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3136
3137 /* Precharge all banks. */
3138 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3139 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3140
3141 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3142 writel(rwcfg->activate_0_and_1_wait1,
3143 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3144
3145 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3146 writel(rwcfg->activate_0_and_1_wait2,
3147 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3148
3149 /* Activate rows. */
3150 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3151 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3152 }
3153 }
3154
3155 /**
3156 * mem_init_latency() - Configure memory RLAT and WLAT settings
3157 *
3158 * Configure memory RLAT and WLAT parameters.
3159 */
3160 static void mem_init_latency(void)
3161 {
3162 /*
3163 * For AV/CV, LFIFO is hardened and always runs at full rate
3164 * so max latency in AFI clocks, used here, is correspondingly
3165 * smaller.
3166 */
3167 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3168 u32 rlat, wlat;
3169
3170 debug("%s:%d\n", __func__, __LINE__);
3171
3172 /*
3173 * Read in write latency.
3174 * WL for Hard PHY does not include additive latency.
3175 */
3176 wlat = readl(&data_mgr->t_wl_add);
3177 wlat += readl(&data_mgr->mem_t_add);
3178
3179 gbl->rw_wl_nop_cycles = wlat - 1;
3180
3181 /* Read in readl latency. */
3182 rlat = readl(&data_mgr->t_rl_add);
3183
3184 /* Set a pretty high read latency initially. */
3185 gbl->curr_read_lat = rlat + 16;
3186 if (gbl->curr_read_lat > max_latency)
3187 gbl->curr_read_lat = max_latency;
3188
3189 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3190
3191 /* Advertise write latency. */
3192 writel(wlat, &phy_mgr_cfg->afi_wlat);
3193 }
3194
3195 /**
3196 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3197 *
3198 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3199 */
3200 static void mem_skip_calibrate(void)
3201 {
3202 uint32_t vfifo_offset;
3203 uint32_t i, j, r;
3204
3205 debug("%s:%d\n", __func__, __LINE__);
3206 /* Need to update every shadow register set used by the interface */
3207 for (r = 0; r < rwcfg->mem_number_of_ranks;
3208 r += NUM_RANKS_PER_SHADOW_REG) {
3209 /*
3210 * Set output phase alignment settings appropriate for
3211 * skip calibration.
3212 */
3213 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3214 scc_mgr_set_dqs_en_phase(i, 0);
3215 if (iocfg->dll_chain_length == 6)
3216 scc_mgr_set_dqdqs_output_phase(i, 6);
3217 else
3218 scc_mgr_set_dqdqs_output_phase(i, 7);
3219 /*
3220 * Case:33398
3221 *
3222 * Write data arrives to the I/O two cycles before write
3223 * latency is reached (720 deg).
3224 * -> due to bit-slip in a/c bus
3225 * -> to allow board skew where dqs is longer than ck
3226 * -> how often can this happen!?
3227 * -> can claim back some ptaps for high freq
3228 * support if we can relax this, but i digress...
3229 *
3230 * The write_clk leads mem_ck by 90 deg
3231 * The minimum ptap of the OPA is 180 deg
3232 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3233 * The write_clk is always delayed by 2 ptaps
3234 *
3235 * Hence, to make DQS aligned to CK, we need to delay
3236 * DQS by:
3237 * (720 - 90 - 180 - 2 * (360 / iocfg->dll_chain_length))
3238 *
3239 * Dividing the above by (360 / iocfg->dll_chain_length)
3240 * gives us the number of ptaps, which simplies to:
3241 *
3242 * (1.25 * iocfg->dll_chain_length - 2)
3243 */
3244 scc_mgr_set_dqdqs_output_phase(i,
3245 1.25 * iocfg->dll_chain_length - 2);
3246 }
3247 writel(0xff, &sdr_scc_mgr->dqs_ena);
3248 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3249
3250 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3251 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3252 SCC_MGR_GROUP_COUNTER_OFFSET);
3253 }
3254 writel(0xff, &sdr_scc_mgr->dq_ena);
3255 writel(0xff, &sdr_scc_mgr->dm_ena);
3256 writel(0, &sdr_scc_mgr->update);
3257 }
3258
3259 /* Compensate for simulation model behaviour */
3260 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3261 scc_mgr_set_dqs_bus_in_delay(i, 10);
3262 scc_mgr_load_dqs(i);
3263 }
3264 writel(0, &sdr_scc_mgr->update);
3265
3266 /*
3267 * ArriaV has hard FIFOs that can only be initialized by incrementing
3268 * in sequencer.
3269 */
3270 vfifo_offset = CALIB_VFIFO_OFFSET;
3271 for (j = 0; j < vfifo_offset; j++)
3272 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3273 writel(0, &phy_mgr_cmd->fifo_reset);
3274
3275 /*
3276 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3277 * setting from generation-time constant.
3278 */
3279 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3280 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3281 }
3282
3283 /**
3284 * mem_calibrate() - Memory calibration entry point.
3285 *
3286 * Perform memory calibration.
3287 */
3288 static uint32_t mem_calibrate(void)
3289 {
3290 uint32_t i;
3291 uint32_t rank_bgn, sr;
3292 uint32_t write_group, write_test_bgn;
3293 uint32_t read_group, read_test_bgn;
3294 uint32_t run_groups, current_run;
3295 uint32_t failing_groups = 0;
3296 uint32_t group_failed = 0;
3297
3298 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3299 rwcfg->mem_if_write_dqs_width;
3300
3301 debug("%s:%d\n", __func__, __LINE__);
3302
3303 /* Initialize the data settings */
3304 gbl->error_substage = CAL_SUBSTAGE_NIL;
3305 gbl->error_stage = CAL_STAGE_NIL;
3306 gbl->error_group = 0xff;
3307 gbl->fom_in = 0;
3308 gbl->fom_out = 0;
3309
3310 /* Initialize WLAT and RLAT. */
3311 mem_init_latency();
3312
3313 /* Initialize bit slips. */
3314 mem_precharge_and_activate();
3315
3316 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3317 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3318 SCC_MGR_GROUP_COUNTER_OFFSET);
3319 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3320 if (i == 0)
3321 scc_mgr_set_hhp_extras();
3322
3323 scc_set_bypass_mode(i);
3324 }
3325
3326 /* Calibration is skipped. */
3327 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3328 /*
3329 * Set VFIFO and LFIFO to instant-on settings in skip
3330 * calibration mode.
3331 */
3332 mem_skip_calibrate();
3333
3334 /*
3335 * Do not remove this line as it makes sure all of our
3336 * decisions have been applied.
3337 */
3338 writel(0, &sdr_scc_mgr->update);
3339 return 1;
3340 }
3341
3342 /* Calibration is not skipped. */
3343 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3344 /*
3345 * Zero all delay chain/phase settings for all
3346 * groups and all shadow register sets.
3347 */
3348 scc_mgr_zero_all();
3349
3350 run_groups = ~0;
3351
3352 for (write_group = 0, write_test_bgn = 0; write_group
3353 < rwcfg->mem_if_write_dqs_width; write_group++,
3354 write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3355
3356 /* Initialize the group failure */
3357 group_failed = 0;
3358
3359 current_run = run_groups & ((1 <<
3360 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3361 run_groups = run_groups >>
3362 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3363
3364 if (current_run == 0)
3365 continue;
3366
3367 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3368 SCC_MGR_GROUP_COUNTER_OFFSET);
3369 scc_mgr_zero_group(write_group, 0);
3370
3371 for (read_group = write_group * rwdqs_ratio,
3372 read_test_bgn = 0;
3373 read_group < (write_group + 1) * rwdqs_ratio;
3374 read_group++,
3375 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3376 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3377 continue;
3378
3379 /* Calibrate the VFIFO */
3380 if (rw_mgr_mem_calibrate_vfifo(read_group,
3381 read_test_bgn))
3382 continue;
3383
3384 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3385 return 0;
3386
3387 /* The group failed, we're done. */
3388 goto grp_failed;
3389 }
3390
3391 /* Calibrate the output side */
3392 for (rank_bgn = 0, sr = 0;
3393 rank_bgn < rwcfg->mem_number_of_ranks;
3394 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3395 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3396 continue;
3397
3398 /* Not needed in quick mode! */
3399 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3400 continue;
3401
3402 /* Calibrate WRITEs */
3403 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3404 write_group, write_test_bgn))
3405 continue;
3406
3407 group_failed = 1;
3408 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3409 return 0;
3410 }
3411
3412 /* Some group failed, we're done. */
3413 if (group_failed)
3414 goto grp_failed;
3415
3416 for (read_group = write_group * rwdqs_ratio,
3417 read_test_bgn = 0;
3418 read_group < (write_group + 1) * rwdqs_ratio;
3419 read_group++,
3420 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3421 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3422 continue;
3423
3424 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3425 read_test_bgn))
3426 continue;
3427
3428 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3429 return 0;
3430
3431 /* The group failed, we're done. */
3432 goto grp_failed;
3433 }
3434
3435 /* No group failed, continue as usual. */
3436 continue;
3437
3438 grp_failed: /* A group failed, increment the counter. */
3439 failing_groups++;
3440 }
3441
3442 /*
3443 * USER If there are any failing groups then report
3444 * the failure.
3445 */
3446 if (failing_groups != 0)
3447 return 0;
3448
3449 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3450 continue;
3451
3452 /* Calibrate the LFIFO */
3453 if (!rw_mgr_mem_calibrate_lfifo())
3454 return 0;
3455 }
3456
3457 /*
3458 * Do not remove this line as it makes sure all of our decisions
3459 * have been applied.
3460 */
3461 writel(0, &sdr_scc_mgr->update);
3462 return 1;
3463 }
3464
3465 /**
3466 * run_mem_calibrate() - Perform memory calibration
3467 *
3468 * This function triggers the entire memory calibration procedure.
3469 */
3470 static int run_mem_calibrate(void)
3471 {
3472 int pass;
3473
3474 debug("%s:%d\n", __func__, __LINE__);
3475
3476 /* Reset pass/fail status shown on afi_cal_success/fail */
3477 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3478
3479 /* Stop tracking manager. */
3480 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3481
3482 phy_mgr_initialize();
3483 rw_mgr_mem_initialize();
3484
3485 /* Perform the actual memory calibration. */
3486 pass = mem_calibrate();
3487
3488 mem_precharge_and_activate();
3489 writel(0, &phy_mgr_cmd->fifo_reset);
3490
3491 /* Handoff. */
3492 rw_mgr_mem_handoff();
3493 /*
3494 * In Hard PHY this is a 2-bit control:
3495 * 0: AFI Mux Select
3496 * 1: DDIO Mux Select
3497 */
3498 writel(0x2, &phy_mgr_cfg->mux_sel);
3499
3500 /* Start tracking manager. */
3501 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3502
3503 return pass;
3504 }
3505
3506 /**
3507 * debug_mem_calibrate() - Report result of memory calibration
3508 * @pass: Value indicating whether calibration passed or failed
3509 *
3510 * This function reports the results of the memory calibration
3511 * and writes debug information into the register file.
3512 */
3513 static void debug_mem_calibrate(int pass)
3514 {
3515 uint32_t debug_info;
3516
3517 if (pass) {
3518 printf("%s: CALIBRATION PASSED\n", __FILE__);
3519
3520 gbl->fom_in /= 2;
3521 gbl->fom_out /= 2;
3522
3523 if (gbl->fom_in > 0xff)
3524 gbl->fom_in = 0xff;
3525
3526 if (gbl->fom_out > 0xff)
3527 gbl->fom_out = 0xff;
3528
3529 /* Update the FOM in the register file */
3530 debug_info = gbl->fom_in;
3531 debug_info |= gbl->fom_out << 8;
3532 writel(debug_info, &sdr_reg_file->fom);
3533
3534 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3535 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3536 } else {
3537 printf("%s: CALIBRATION FAILED\n", __FILE__);
3538
3539 debug_info = gbl->error_stage;
3540 debug_info |= gbl->error_substage << 8;
3541 debug_info |= gbl->error_group << 16;
3542
3543 writel(debug_info, &sdr_reg_file->failing_stage);
3544 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3545 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3546
3547 /* Update the failing group/stage in the register file */
3548 debug_info = gbl->error_stage;
3549 debug_info |= gbl->error_substage << 8;
3550 debug_info |= gbl->error_group << 16;
3551 writel(debug_info, &sdr_reg_file->failing_stage);
3552 }
3553
3554 printf("%s: Calibration complete\n", __FILE__);
3555 }
3556
3557 /**
3558 * hc_initialize_rom_data() - Initialize ROM data
3559 *
3560 * Initialize ROM data.
3561 */
3562 static void hc_initialize_rom_data(void)
3563 {
3564 unsigned int nelem = 0;
3565 const u32 *rom_init;
3566 u32 i, addr;
3567
3568 socfpga_get_seq_inst_init(&rom_init, &nelem);
3569 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3570 for (i = 0; i < nelem; i++)
3571 writel(rom_init[i], addr + (i << 2));
3572
3573 socfpga_get_seq_ac_init(&rom_init, &nelem);
3574 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3575 for (i = 0; i < nelem; i++)
3576 writel(rom_init[i], addr + (i << 2));
3577 }
3578
3579 /**
3580 * initialize_reg_file() - Initialize SDR register file
3581 *
3582 * Initialize SDR register file.
3583 */
3584 static void initialize_reg_file(void)
3585 {
3586 /* Initialize the register file with the correct data */
3587 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3588 writel(0, &sdr_reg_file->debug_data_addr);
3589 writel(0, &sdr_reg_file->cur_stage);
3590 writel(0, &sdr_reg_file->fom);
3591 writel(0, &sdr_reg_file->failing_stage);
3592 writel(0, &sdr_reg_file->debug1);
3593 writel(0, &sdr_reg_file->debug2);
3594 }
3595
3596 /**
3597 * initialize_hps_phy() - Initialize HPS PHY
3598 *
3599 * Initialize HPS PHY.
3600 */
3601 static void initialize_hps_phy(void)
3602 {
3603 uint32_t reg;
3604 /*
3605 * Tracking also gets configured here because it's in the
3606 * same register.
3607 */
3608 uint32_t trk_sample_count = 7500;
3609 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3610 /*
3611 * Format is number of outer loops in the 16 MSB, sample
3612 * count in 16 LSB.
3613 */
3614
3615 reg = 0;
3616 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3622 /*
3623 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3624 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3625 */
3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3628 trk_sample_count);
3629 writel(reg, &sdr_ctrl->phy_ctrl0);
3630
3631 reg = 0;
3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3633 trk_sample_count >>
3634 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3636 trk_long_idle_sample_count);
3637 writel(reg, &sdr_ctrl->phy_ctrl1);
3638
3639 reg = 0;
3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3641 trk_long_idle_sample_count >>
3642 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3643 writel(reg, &sdr_ctrl->phy_ctrl2);
3644 }
3645
3646 /**
3647 * initialize_tracking() - Initialize tracking
3648 *
3649 * Initialize the register file with usable initial data.
3650 */
3651 static void initialize_tracking(void)
3652 {
3653 /*
3654 * Initialize the register file with the correct data.
3655 * Compute usable version of value in case we skip full
3656 * computation later.
3657 */
3658 writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap) - 1,
3659 &sdr_reg_file->dtaps_per_ptap);
3660
3661 /* trk_sample_count */
3662 writel(7500, &sdr_reg_file->trk_sample_count);
3663
3664 /* longidle outer loop [15:0] */
3665 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3666
3667 /*
3668 * longidle sample count [31:24]
3669 * trfc, worst case of 933Mhz 4Gb [23:16]
3670 * trcd, worst case [15:8]
3671 * vfifo wait [7:0]
3672 */
3673 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3674 &sdr_reg_file->delays);
3675
3676 /* mux delay */
3677 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3678 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3679 &sdr_reg_file->trk_rw_mgr_addr);
3680
3681 writel(rwcfg->mem_if_read_dqs_width,
3682 &sdr_reg_file->trk_read_dqs_width);
3683
3684 /* trefi [7:0] */
3685 writel((rwcfg->refresh_all << 24) | (1000 << 0),
3686 &sdr_reg_file->trk_rfsh);
3687 }
3688
3689 int sdram_calibration_full(void)
3690 {
3691 struct param_type my_param;
3692 struct gbl_type my_gbl;
3693 uint32_t pass;
3694
3695 memset(&my_param, 0, sizeof(my_param));
3696 memset(&my_gbl, 0, sizeof(my_gbl));
3697
3698 param = &my_param;
3699 gbl = &my_gbl;
3700
3701 rwcfg = socfpga_get_sdram_rwmgr_config();
3702 iocfg = socfpga_get_sdram_io_config();
3703
3704 /* Set the calibration enabled by default */
3705 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3706 /*
3707 * Only sweep all groups (regardless of fail state) by default
3708 * Set enabled read test by default.
3709 */
3710 #if DISABLE_GUARANTEED_READ
3711 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3712 #endif
3713 /* Initialize the register file */
3714 initialize_reg_file();
3715
3716 /* Initialize any PHY CSR */
3717 initialize_hps_phy();
3718
3719 scc_mgr_initialize();
3720
3721 initialize_tracking();
3722
3723 printf("%s: Preparing to start memory calibration\n", __FILE__);
3724
3725 debug("%s:%d\n", __func__, __LINE__);
3726 debug_cond(DLEVEL == 1,
3727 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3728 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3729 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3730 rwcfg->mem_virtual_groups_per_read_dqs,
3731 rwcfg->mem_virtual_groups_per_write_dqs);
3732 debug_cond(DLEVEL == 1,
3733 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3734 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3735 rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3736 iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3737 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3738 iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3739 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3740 iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3741 iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3742 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3743 iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3744 iocfg->io_out2_delay_max);
3745 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3746 iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3747
3748 hc_initialize_rom_data();
3749
3750 /* update info for sims */
3751 reg_file_set_stage(CAL_STAGE_NIL);
3752 reg_file_set_group(0);
3753
3754 /*
3755 * Load global needed for those actions that require
3756 * some dynamic calibration support.
3757 */
3758 dyn_calib_steps = STATIC_CALIB_STEPS;
3759 /*
3760 * Load global to allow dynamic selection of delay loop settings
3761 * based on calibration mode.
3762 */
3763 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3764 skip_delay_mask = 0xff;
3765 else
3766 skip_delay_mask = 0x0;
3767
3768 pass = run_mem_calibrate();
3769 debug_mem_calibrate(pass);
3770 return pass;
3771 }