]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Repair DQ window centering code
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
14 (struct socfpga_sdr_rw_load_manager *)
15 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
17 (struct socfpga_sdr_rw_load_jump_manager *)
18 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
19 static struct socfpga_sdr_reg_file *sdr_reg_file =
20 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
22 (struct socfpga_sdr_scc_mgr *)
23 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
25 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
27 (struct socfpga_phy_mgr_cfg *)
28 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
29 static struct socfpga_data_mgr *data_mgr =
30 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
31 static struct socfpga_sdr_ctrl *sdr_ctrl =
32 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
33
34 const struct socfpga_sdram_rw_mgr_config *rwcfg;
35 const struct socfpga_sdram_io_config *iocfg;
36 const struct socfpga_sdram_misc_config *misccfg;
37
38 #define DELTA_D 1
39
40 /*
41 * In order to reduce ROM size, most of the selectable calibration steps are
42 * decided at compile time based on the user's calibration mode selection,
43 * as captured by the STATIC_CALIB_STEPS selection below.
44 *
45 * However, to support simulation-time selection of fast simulation mode, where
46 * we skip everything except the bare minimum, we need a few of the steps to
47 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
48 * check, which is based on the rtl-supplied value, or we dynamically compute
49 * the value to use based on the dynamically-chosen calibration mode
50 */
51
52 #define DLEVEL 0
53 #define STATIC_IN_RTL_SIM 0
54 #define STATIC_SKIP_DELAY_LOOPS 0
55
56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
57 STATIC_SKIP_DELAY_LOOPS)
58
59 /* calibration steps requested by the rtl */
60 static u16 dyn_calib_steps;
61
62 /*
63 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
64 * instead of static, we use boolean logic to select between
65 * non-skip and skip values
66 *
67 * The mask is set to include all bits when not-skipping, but is
68 * zero when skipping
69 */
70
71 static u16 skip_delay_mask; /* mask off bits when skipping/not-skipping */
72
73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
74 ((non_skip_value) & skip_delay_mask)
75
76 static struct gbl_type *gbl;
77 static struct param_type *param;
78
79 static void set_failing_group_stage(u32 group, u32 stage,
80 u32 substage)
81 {
82 /*
83 * Only set the global stage if there was not been any other
84 * failing group
85 */
86 if (gbl->error_stage == CAL_STAGE_NIL) {
87 gbl->error_substage = substage;
88 gbl->error_stage = stage;
89 gbl->error_group = group;
90 }
91 }
92
93 static void reg_file_set_group(u16 set_group)
94 {
95 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
96 }
97
98 static void reg_file_set_stage(u8 set_stage)
99 {
100 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
101 }
102
103 static void reg_file_set_sub_stage(u8 set_sub_stage)
104 {
105 set_sub_stage &= 0xff;
106 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
107 }
108
109 /**
110 * phy_mgr_initialize() - Initialize PHY Manager
111 *
112 * Initialize PHY Manager.
113 */
114 static void phy_mgr_initialize(void)
115 {
116 u32 ratio;
117
118 debug("%s:%d\n", __func__, __LINE__);
119 /* Calibration has control over path to memory */
120 /*
121 * In Hard PHY this is a 2-bit control:
122 * 0: AFI Mux Select
123 * 1: DDIO Mux Select
124 */
125 writel(0x3, &phy_mgr_cfg->mux_sel);
126
127 /* USER memory clock is not stable we begin initialization */
128 writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130 /* USER calibration status all set to zero */
131 writel(0, &phy_mgr_cfg->cal_status);
132
133 writel(0, &phy_mgr_cfg->cal_debug_info);
134
135 /* Init params only if we do NOT skip calibration. */
136 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
137 return;
138
139 ratio = rwcfg->mem_dq_per_read_dqs /
140 rwcfg->mem_virtual_groups_per_read_dqs;
141 param->read_correct_mask_vg = (1 << ratio) - 1;
142 param->write_correct_mask_vg = (1 << ratio) - 1;
143 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
144 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
145 }
146
147 /**
148 * set_rank_and_odt_mask() - Set Rank and ODT mask
149 * @rank: Rank mask
150 * @odt_mode: ODT mode, OFF or READ_WRITE
151 *
152 * Set Rank and ODT mask (On-Die Termination).
153 */
154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
155 {
156 u32 odt_mask_0 = 0;
157 u32 odt_mask_1 = 0;
158 u32 cs_and_odt_mask;
159
160 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
161 odt_mask_0 = 0x0;
162 odt_mask_1 = 0x0;
163 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
164 switch (rwcfg->mem_number_of_ranks) {
165 case 1: /* 1 Rank */
166 /* Read: ODT = 0 ; Write: ODT = 1 */
167 odt_mask_0 = 0x0;
168 odt_mask_1 = 0x1;
169 break;
170 case 2: /* 2 Ranks */
171 if (rwcfg->mem_number_of_cs_per_dimm == 1) {
172 /*
173 * - Dual-Slot , Single-Rank (1 CS per DIMM)
174 * OR
175 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
176 *
177 * Since MEM_NUMBER_OF_RANKS is 2, they
178 * are both single rank with 2 CS each
179 * (special for RDIMM).
180 *
181 * Read: Turn on ODT on the opposite rank
182 * Write: Turn on ODT on all ranks
183 */
184 odt_mask_0 = 0x3 & ~(1 << rank);
185 odt_mask_1 = 0x3;
186 } else {
187 /*
188 * - Single-Slot , Dual-Rank (2 CS per DIMM)
189 *
190 * Read: Turn on ODT off on all ranks
191 * Write: Turn on ODT on active rank
192 */
193 odt_mask_0 = 0x0;
194 odt_mask_1 = 0x3 & (1 << rank);
195 }
196 break;
197 case 4: /* 4 Ranks */
198 /* Read:
199 * ----------+-----------------------+
200 * | ODT |
201 * Read From +-----------------------+
202 * Rank | 3 | 2 | 1 | 0 |
203 * ----------+-----+-----+-----+-----+
204 * 0 | 0 | 1 | 0 | 0 |
205 * 1 | 1 | 0 | 0 | 0 |
206 * 2 | 0 | 0 | 0 | 1 |
207 * 3 | 0 | 0 | 1 | 0 |
208 * ----------+-----+-----+-----+-----+
209 *
210 * Write:
211 * ----------+-----------------------+
212 * | ODT |
213 * Write To +-----------------------+
214 * Rank | 3 | 2 | 1 | 0 |
215 * ----------+-----+-----+-----+-----+
216 * 0 | 0 | 1 | 0 | 1 |
217 * 1 | 1 | 0 | 1 | 0 |
218 * 2 | 0 | 1 | 0 | 1 |
219 * 3 | 1 | 0 | 1 | 0 |
220 * ----------+-----+-----+-----+-----+
221 */
222 switch (rank) {
223 case 0:
224 odt_mask_0 = 0x4;
225 odt_mask_1 = 0x5;
226 break;
227 case 1:
228 odt_mask_0 = 0x8;
229 odt_mask_1 = 0xA;
230 break;
231 case 2:
232 odt_mask_0 = 0x1;
233 odt_mask_1 = 0x5;
234 break;
235 case 3:
236 odt_mask_0 = 0x2;
237 odt_mask_1 = 0xA;
238 break;
239 }
240 break;
241 }
242 }
243
244 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
245 ((0xFF & odt_mask_0) << 8) |
246 ((0xFF & odt_mask_1) << 16);
247 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
248 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
249 }
250
251 /**
252 * scc_mgr_set() - Set SCC Manager register
253 * @off: Base offset in SCC Manager space
254 * @grp: Read/Write group
255 * @val: Value to be set
256 *
257 * This function sets the SCC Manager (Scan Chain Control Manager) register.
258 */
259 static void scc_mgr_set(u32 off, u32 grp, u32 val)
260 {
261 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
262 }
263
264 /**
265 * scc_mgr_initialize() - Initialize SCC Manager registers
266 *
267 * Initialize SCC Manager registers.
268 */
269 static void scc_mgr_initialize(void)
270 {
271 /*
272 * Clear register file for HPS. 16 (2^4) is the size of the
273 * full register file in the scc mgr:
274 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
275 * MEM_IF_READ_DQS_WIDTH - 1);
276 */
277 int i;
278
279 for (i = 0; i < 16; i++) {
280 debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
281 __func__, __LINE__, i);
282 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
283 }
284 }
285
286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
287 {
288 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
289 }
290
291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
292 {
293 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
294 }
295
296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
297 {
298 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
302 {
303 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
307 {
308 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
309 }
310
311 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
312 {
313 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
314 delay);
315 }
316
317 static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
318 {
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
320 rwcfg->mem_dq_per_write_dqs + 1 + dm,
321 delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
325 {
326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(u32 delay)
330 {
331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
332 delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
336 {
337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 rwcfg->mem_dq_per_write_dqs + 1 + dm,
339 delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(u32 dqs)
344 {
345 writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(u32 dq_in_group)
356 {
357 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(u32 dm)
362 {
363 writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368 * @off: Base offset in SCC Manager space
369 * @grp: Read/Write group
370 * @val: Value to be set
371 * @update: If non-zero, trigger SCC Manager update for all ranks
372 *
373 * This function sets the SCC Manager (Scan Chain Control Manager) register
374 * and optionally triggers the SCC update for all ranks.
375 */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 const int update)
378 {
379 u32 r;
380
381 for (r = 0; r < rwcfg->mem_number_of_ranks;
382 r += NUM_RANKS_PER_SHADOW_REG) {
383 scc_mgr_set(off, grp, val);
384
385 if (update || (r == 0)) {
386 writel(grp, &sdr_scc_mgr->dqs_ena);
387 writel(0, &sdr_scc_mgr->update);
388 }
389 }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 /*
395 * USER although the h/w doesn't support different phases per
396 * shadow register, for simplicity our scc manager modeling
397 * keeps different phase settings per shadow reg, and it's
398 * important for us to keep them in sync to match h/w.
399 * for efficiency, the scan chain update should occur only
400 * once to sr0.
401 */
402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
407 u32 phase)
408 {
409 /*
410 * USER although the h/w doesn't support different phases per
411 * shadow register, for simplicity our scc manager modeling
412 * keeps different phase settings per shadow reg, and it's
413 * important for us to keep them in sync to match h/w.
414 * for efficiency, the scan chain update should occur only
415 * once to sr0.
416 */
417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
422 u32 delay)
423 {
424 /*
425 * In shadow register mode, the T11 settings are stored in
426 * registers in the core, which are updated by the DQS_ENA
427 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 * save lots of rank switching overhead, by calling
429 * select_shadow_regs_for_update with update_scan_chains
430 * set to 0.
431 */
432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 read_group, delay, 1);
434 }
435
436 /**
437 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
438 * @write_group: Write group
439 * @delay: Delay value
440 *
441 * This function sets the OCT output delay in SCC manager.
442 */
443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
444 {
445 const int ratio = rwcfg->mem_if_read_dqs_width /
446 rwcfg->mem_if_write_dqs_width;
447 const int base = write_group * ratio;
448 int i;
449 /*
450 * Load the setting in the SCC manager
451 * Although OCT affects only write data, the OCT delay is controlled
452 * by the DQS logic block which is instantiated once per read group.
453 * For protocols where a write group consists of multiple read groups,
454 * the setting must be set multiple times.
455 */
456 for (i = 0; i < ratio; i++)
457 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
458 }
459
460 /**
461 * scc_mgr_set_hhp_extras() - Set HHP extras.
462 *
463 * Load the fixed setting in the SCC manager HHP extras.
464 */
465 static void scc_mgr_set_hhp_extras(void)
466 {
467 /*
468 * Load the fixed setting in the SCC manager
469 * bits: 0:0 = 1'b1 - DQS bypass
470 * bits: 1:1 = 1'b1 - DQ bypass
471 * bits: 4:2 = 3'b001 - rfifo_mode
472 * bits: 6:5 = 2'b01 - rfifo clock_select
473 * bits: 7:7 = 1'b0 - separate gating from ungating setting
474 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
475 */
476 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
477 (1 << 2) | (1 << 1) | (1 << 0);
478 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
479 SCC_MGR_HHP_GLOBALS_OFFSET |
480 SCC_MGR_HHP_EXTRAS_OFFSET;
481
482 debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
483 __func__, __LINE__);
484 writel(value, addr);
485 debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
486 __func__, __LINE__);
487 }
488
489 /**
490 * scc_mgr_zero_all() - Zero all DQS config
491 *
492 * Zero all DQS config.
493 */
494 static void scc_mgr_zero_all(void)
495 {
496 int i, r;
497
498 /*
499 * USER Zero all DQS config settings, across all groups and all
500 * shadow registers
501 */
502 for (r = 0; r < rwcfg->mem_number_of_ranks;
503 r += NUM_RANKS_PER_SHADOW_REG) {
504 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
505 /*
506 * The phases actually don't exist on a per-rank basis,
507 * but there's no harm updating them several times, so
508 * let's keep the code simple.
509 */
510 scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
511 scc_mgr_set_dqs_en_phase(i, 0);
512 scc_mgr_set_dqs_en_delay(i, 0);
513 }
514
515 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
516 scc_mgr_set_dqdqs_output_phase(i, 0);
517 /* Arria V/Cyclone V don't have out2. */
518 scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
519 }
520 }
521
522 /* Multicast to all DQS group enables. */
523 writel(0xff, &sdr_scc_mgr->dqs_ena);
524 writel(0, &sdr_scc_mgr->update);
525 }
526
527 /**
528 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
529 * @write_group: Write group
530 *
531 * Set bypass mode and trigger SCC update.
532 */
533 static void scc_set_bypass_mode(const u32 write_group)
534 {
535 /* Multicast to all DQ enables. */
536 writel(0xff, &sdr_scc_mgr->dq_ena);
537 writel(0xff, &sdr_scc_mgr->dm_ena);
538
539 /* Update current DQS IO enable. */
540 writel(0, &sdr_scc_mgr->dqs_io_ena);
541
542 /* Update the DQS logic. */
543 writel(write_group, &sdr_scc_mgr->dqs_ena);
544
545 /* Hit update. */
546 writel(0, &sdr_scc_mgr->update);
547 }
548
549 /**
550 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
551 * @write_group: Write group
552 *
553 * Load DQS settings for Write Group, do not trigger SCC update.
554 */
555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
556 {
557 const int ratio = rwcfg->mem_if_read_dqs_width /
558 rwcfg->mem_if_write_dqs_width;
559 const int base = write_group * ratio;
560 int i;
561 /*
562 * Load the setting in the SCC manager
563 * Although OCT affects only write data, the OCT delay is controlled
564 * by the DQS logic block which is instantiated once per read group.
565 * For protocols where a write group consists of multiple read groups,
566 * the setting must be set multiple times.
567 */
568 for (i = 0; i < ratio; i++)
569 writel(base + i, &sdr_scc_mgr->dqs_ena);
570 }
571
572 /**
573 * scc_mgr_zero_group() - Zero all configs for a group
574 *
575 * Zero DQ, DM, DQS and OCT configs for a group.
576 */
577 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
578 {
579 int i, r;
580
581 for (r = 0; r < rwcfg->mem_number_of_ranks;
582 r += NUM_RANKS_PER_SHADOW_REG) {
583 /* Zero all DQ config settings. */
584 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
585 scc_mgr_set_dq_out1_delay(i, 0);
586 if (!out_only)
587 scc_mgr_set_dq_in_delay(i, 0);
588 }
589
590 /* Multicast to all DQ enables. */
591 writel(0xff, &sdr_scc_mgr->dq_ena);
592
593 /* Zero all DM config settings. */
594 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
595 if (!out_only)
596 scc_mgr_set_dm_in_delay(i, 0);
597 scc_mgr_set_dm_out1_delay(i, 0);
598 }
599
600 /* Multicast to all DM enables. */
601 writel(0xff, &sdr_scc_mgr->dm_ena);
602
603 /* Zero all DQS IO settings. */
604 if (!out_only)
605 scc_mgr_set_dqs_io_in_delay(0);
606
607 /* Arria V/Cyclone V don't have out2. */
608 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
609 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
610 scc_mgr_load_dqs_for_write_group(write_group);
611
612 /* Multicast to all DQS IO enables (only 1 in total). */
613 writel(0, &sdr_scc_mgr->dqs_io_ena);
614
615 /* Hit update to zero everything. */
616 writel(0, &sdr_scc_mgr->update);
617 }
618 }
619
620 /*
621 * apply and load a particular input delay for the DQ pins in a group
622 * group_bgn is the index of the first dq pin (in the write group)
623 */
624 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
625 {
626 u32 i, p;
627
628 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629 scc_mgr_set_dq_in_delay(p, delay);
630 scc_mgr_load_dq(p);
631 }
632 }
633
634 /**
635 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636 * @delay: Delay value
637 *
638 * Apply and load a particular output delay for the DQ pins in a group.
639 */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642 int i;
643
644 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645 scc_mgr_set_dq_out1_delay(i, delay);
646 scc_mgr_load_dq(i);
647 }
648 }
649
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
652 {
653 u32 i;
654
655 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656 scc_mgr_set_dm_out1_delay(i, delay1);
657 scc_mgr_load_dm(i);
658 }
659 }
660
661
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
664 u32 delay)
665 {
666 scc_mgr_set_dqs_out1_delay(delay);
667 scc_mgr_load_dqs_io();
668
669 scc_mgr_set_oct_out1_delay(write_group, delay);
670 scc_mgr_load_dqs_for_write_group(write_group);
671 }
672
673 /**
674 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675 * @write_group: Write group
676 * @delay: Delay value
677 *
678 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679 */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681 const u32 delay)
682 {
683 u32 i, new_delay;
684
685 /* DQ shift */
686 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687 scc_mgr_load_dq(i);
688
689 /* DM shift */
690 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691 scc_mgr_load_dm(i);
692
693 /* DQS shift */
694 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695 if (new_delay > iocfg->io_out2_delay_max) {
696 debug_cond(DLEVEL >= 1,
697 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698 __func__, __LINE__, write_group, delay, new_delay,
699 iocfg->io_out2_delay_max,
700 new_delay - iocfg->io_out2_delay_max);
701 new_delay -= iocfg->io_out2_delay_max;
702 scc_mgr_set_dqs_out1_delay(new_delay);
703 }
704
705 scc_mgr_load_dqs_io();
706
707 /* OCT shift */
708 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709 if (new_delay > iocfg->io_out2_delay_max) {
710 debug_cond(DLEVEL >= 1,
711 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712 __func__, __LINE__, write_group, delay,
713 new_delay, iocfg->io_out2_delay_max,
714 new_delay - iocfg->io_out2_delay_max);
715 new_delay -= iocfg->io_out2_delay_max;
716 scc_mgr_set_oct_out1_delay(write_group, new_delay);
717 }
718
719 scc_mgr_load_dqs_for_write_group(write_group);
720 }
721
722 /**
723 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724 * @write_group: Write group
725 * @delay: Delay value
726 *
727 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728 */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731 const u32 delay)
732 {
733 int r;
734
735 for (r = 0; r < rwcfg->mem_number_of_ranks;
736 r += NUM_RANKS_PER_SHADOW_REG) {
737 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738 writel(0, &sdr_scc_mgr->update);
739 }
740 }
741
742 /**
743 * set_jump_as_return() - Return instruction optimization
744 *
745 * Optimization used to recover some slots in ddr3 inst_rom could be
746 * applied to other protocols if we wanted to
747 */
748 static void set_jump_as_return(void)
749 {
750 /*
751 * To save space, we replace return with jump to special shared
752 * RETURN instruction so we set the counter to large value so that
753 * we always jump.
754 */
755 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758
759 /**
760 * delay_for_n_mem_clocks() - Delay for N memory clocks
761 * @clocks: Length of the delay
762 *
763 * Delay for N memory clocks.
764 */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767 u32 afi_clocks;
768 u16 c_loop;
769 u8 inner;
770 u8 outer;
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774 /* Scale (rounding up) to get afi clocks. */
775 afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
776 if (afi_clocks) /* Temporary underflow protection */
777 afi_clocks--;
778
779 /*
780 * Note, we don't bother accounting for being off a little
781 * bit because of a few extra instructions in outer loops.
782 * Note, the loops have a test at the end, and do the test
783 * before the decrement, and so always perform the loop
784 * 1 time more than the counter value
785 */
786 c_loop = afi_clocks >> 16;
787 outer = c_loop ? 0xff : (afi_clocks >> 8);
788 inner = outer ? 0xff : afi_clocks;
789
790 /*
791 * rom instructions are structured as follows:
792 *
793 * IDLE_LOOP2: jnz cntr0, TARGET_A
794 * IDLE_LOOP1: jnz cntr1, TARGET_B
795 * return
796 *
797 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798 * TARGET_B is set to IDLE_LOOP2 as well
799 *
800 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802 *
803 * a little confusing, but it helps save precious space in the inst_rom
804 * and sequencer rom and keeps the delays more accurate and reduces
805 * overhead
806 */
807 if (afi_clocks < 0x100) {
808 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809 &sdr_rw_load_mgr_regs->load_cntr1);
810
811 writel(rwcfg->idle_loop1,
812 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
813
814 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816 } else {
817 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818 &sdr_rw_load_mgr_regs->load_cntr0);
819
820 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821 &sdr_rw_load_mgr_regs->load_cntr1);
822
823 writel(rwcfg->idle_loop2,
824 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
825
826 writel(rwcfg->idle_loop2,
827 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828
829 do {
830 writel(rwcfg->idle_loop2,
831 SDR_PHYGRP_RWMGRGRP_ADDRESS |
832 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833 } while (c_loop-- != 0);
834 }
835 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837
838 /**
839 * rw_mgr_mem_init_load_regs() - Load instruction registers
840 * @cntr0: Counter 0 value
841 * @cntr1: Counter 1 value
842 * @cntr2: Counter 2 value
843 * @jump: Jump instruction value
844 *
845 * Load instruction registers.
846 */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851
852 /* Load counters */
853 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854 &sdr_rw_load_mgr_regs->load_cntr0);
855 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856 &sdr_rw_load_mgr_regs->load_cntr1);
857 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858 &sdr_rw_load_mgr_regs->load_cntr2);
859
860 /* Load jump address */
861 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864
865 /* Execute count instruction */
866 writel(jump, grpaddr);
867 }
868
869 /**
870 * rw_mgr_mem_load_user() - Load user calibration values
871 * @fin1: Final instruction 1
872 * @fin2: Final instruction 2
873 * @precharge: If 1, precharge the banks at the end
874 *
875 * Load user calibration values and optionally precharge the banks.
876 */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878 const int precharge)
879 {
880 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882 u32 r;
883
884 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885 /* set rank */
886 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887
888 /* precharge all banks ... */
889 if (precharge)
890 writel(rwcfg->precharge_all, grpaddr);
891
892 /*
893 * USER Use Mirror-ed commands for odd ranks if address
894 * mirrorring is on
895 */
896 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897 set_jump_as_return();
898 writel(rwcfg->mrs2_mirr, grpaddr);
899 delay_for_n_mem_clocks(4);
900 set_jump_as_return();
901 writel(rwcfg->mrs3_mirr, grpaddr);
902 delay_for_n_mem_clocks(4);
903 set_jump_as_return();
904 writel(rwcfg->mrs1_mirr, grpaddr);
905 delay_for_n_mem_clocks(4);
906 set_jump_as_return();
907 writel(fin1, grpaddr);
908 } else {
909 set_jump_as_return();
910 writel(rwcfg->mrs2, grpaddr);
911 delay_for_n_mem_clocks(4);
912 set_jump_as_return();
913 writel(rwcfg->mrs3, grpaddr);
914 delay_for_n_mem_clocks(4);
915 set_jump_as_return();
916 writel(rwcfg->mrs1, grpaddr);
917 set_jump_as_return();
918 writel(fin2, grpaddr);
919 }
920
921 if (precharge)
922 continue;
923
924 set_jump_as_return();
925 writel(rwcfg->zqcl, grpaddr);
926
927 /* tZQinit = tDLLK = 512 ck cycles */
928 delay_for_n_mem_clocks(512);
929 }
930 }
931
932 /**
933 * rw_mgr_mem_initialize() - Initialize RW Manager
934 *
935 * Initialize RW Manager.
936 */
937 static void rw_mgr_mem_initialize(void)
938 {
939 debug("%s:%d\n", __func__, __LINE__);
940
941 /* The reset / cke part of initialization is broadcasted to all ranks */
942 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944
945 /*
946 * Here's how you load register for a loop
947 * Counters are located @ 0x800
948 * Jump address are located @ 0xC00
949 * For both, registers 0 to 3 are selected using bits 3 and 2, like
950 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951 * I know this ain't pretty, but Avalon bus throws away the 2 least
952 * significant bits
953 */
954
955 /* Start with memory RESET activated */
956
957 /* tINIT = 200us */
958
959 /*
960 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961 * If a and b are the number of iteration in 2 nested loops
962 * it takes the following number of cycles to complete the operation:
963 * number_of_cycles = ((2 + n) * a + 2) * b
964 * where n is the number of instruction in the inner loop
965 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966 * b = 6A
967 */
968 rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
969 misccfg->tinit_cntr1_val,
970 misccfg->tinit_cntr2_val,
971 rwcfg->init_reset_0_cke_0);
972
973 /* Indicate that memory is stable. */
974 writel(1, &phy_mgr_cfg->reset_mem_stbl);
975
976 /*
977 * transition the RESET to high
978 * Wait for 500us
979 */
980
981 /*
982 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983 * If a and b are the number of iteration in 2 nested loops
984 * it takes the following number of cycles to complete the operation
985 * number_of_cycles = ((2 + n) * a + 2) * b
986 * where n is the number of instruction in the inner loop
987 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988 * b = FF
989 */
990 rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
991 misccfg->treset_cntr1_val,
992 misccfg->treset_cntr2_val,
993 rwcfg->init_reset_1_cke_0);
994
995 /* Bring up clock enable. */
996
997 /* tXRP < 250 ck cycles */
998 delay_for_n_mem_clocks(250);
999
1000 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1001 0);
1002 }
1003
1004 /**
1005 * rw_mgr_mem_handoff() - Hand off the memory to user
1006 *
1007 * At the end of calibration we have to program the user settings in
1008 * and hand off the memory to the user.
1009 */
1010 static void rw_mgr_mem_handoff(void)
1011 {
1012 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1013 /*
1014 * Need to wait tMOD (12CK or 15ns) time before issuing other
1015 * commands, but we will have plenty of NIOS cycles before actual
1016 * handoff so its okay.
1017 */
1018 }
1019
1020 /**
1021 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1022 * @group: Write Group
1023 * @use_dm: Use DM
1024 *
1025 * Issue write test command. Two variants are provided, one that just tests
1026 * a write pattern and another that tests datamask functionality.
1027 */
1028 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1029 u32 test_dm)
1030 {
1031 const u32 quick_write_mode =
1032 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1033 misccfg->enable_super_quick_calibration;
1034 u32 mcc_instruction;
1035 u32 rw_wl_nop_cycles;
1036
1037 /*
1038 * Set counter and jump addresses for the right
1039 * number of NOP cycles.
1040 * The number of supported NOP cycles can range from -1 to infinity
1041 * Three different cases are handled:
1042 *
1043 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1044 * mechanism will be used to insert the right number of NOPs
1045 *
1046 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1047 * issuing the write command will jump straight to the
1048 * micro-instruction that turns on DQS (for DDRx), or outputs write
1049 * data (for RLD), skipping
1050 * the NOP micro-instruction all together
1051 *
1052 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1053 * turned on in the same micro-instruction that issues the write
1054 * command. Then we need
1055 * to directly jump to the micro-instruction that sends out the data
1056 *
1057 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1058 * (2 and 3). One jump-counter (0) is used to perform multiple
1059 * write-read operations.
1060 * one counter left to issue this command in "multiple-group" mode
1061 */
1062
1063 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1064
1065 if (rw_wl_nop_cycles == -1) {
1066 /*
1067 * CNTR 2 - We want to execute the special write operation that
1068 * turns on DQS right away and then skip directly to the
1069 * instruction that sends out the data. We set the counter to a
1070 * large number so that the jump is always taken.
1071 */
1072 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1073
1074 /* CNTR 3 - Not used */
1075 if (test_dm) {
1076 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1077 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1078 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1079 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1081 } else {
1082 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1083 writel(rwcfg->lfsr_wr_rd_bank_0_data,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1085 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1086 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1087 }
1088 } else if (rw_wl_nop_cycles == 0) {
1089 /*
1090 * CNTR 2 - We want to skip the NOP operation and go straight
1091 * to the DQS enable instruction. We set the counter to a large
1092 * number so that the jump is always taken.
1093 */
1094 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1095
1096 /* CNTR 3 - Not used */
1097 if (test_dm) {
1098 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1099 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1100 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1101 } else {
1102 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1103 writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1104 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1105 }
1106 } else {
1107 /*
1108 * CNTR 2 - In this case we want to execute the next instruction
1109 * and NOT take the jump. So we set the counter to 0. The jump
1110 * address doesn't count.
1111 */
1112 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1113 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1114
1115 /*
1116 * CNTR 3 - Set the nop counter to the number of cycles we
1117 * need to loop for, minus 1.
1118 */
1119 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1120 if (test_dm) {
1121 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1122 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1123 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1124 } else {
1125 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1126 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1127 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1128 }
1129 }
1130
1131 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1132 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1133
1134 if (quick_write_mode)
1135 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1136 else
1137 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1138
1139 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1140
1141 /*
1142 * CNTR 1 - This is used to ensure enough time elapses
1143 * for read data to come back.
1144 */
1145 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1146
1147 if (test_dm) {
1148 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1149 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1150 } else {
1151 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1152 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1153 }
1154
1155 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1156 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1157 (group << 2));
1158 }
1159
1160 /**
1161 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1162 * @rank_bgn: Rank number
1163 * @write_group: Write Group
1164 * @use_dm: Use DM
1165 * @all_correct: All bits must be correct in the mask
1166 * @bit_chk: Resulting bit mask after the test
1167 * @all_ranks: Test all ranks
1168 *
1169 * Test writes, can check for a single bit pass or multiple bit pass.
1170 */
1171 static int
1172 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1173 const u32 use_dm, const u32 all_correct,
1174 u32 *bit_chk, const u32 all_ranks)
1175 {
1176 const u32 rank_end = all_ranks ?
1177 rwcfg->mem_number_of_ranks :
1178 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1179 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1180 rwcfg->mem_virtual_groups_per_write_dqs;
1181 const u32 correct_mask_vg = param->write_correct_mask_vg;
1182
1183 u32 tmp_bit_chk, base_rw_mgr;
1184 int vg, r;
1185
1186 *bit_chk = param->write_correct_mask;
1187
1188 for (r = rank_bgn; r < rank_end; r++) {
1189 /* Set rank */
1190 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1191
1192 tmp_bit_chk = 0;
1193 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1194 vg >= 0; vg--) {
1195 /* Reset the FIFOs to get pointers to known state. */
1196 writel(0, &phy_mgr_cmd->fifo_reset);
1197
1198 rw_mgr_mem_calibrate_write_test_issue(
1199 write_group *
1200 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1201 use_dm);
1202
1203 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1204 tmp_bit_chk <<= shift_ratio;
1205 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1206 }
1207
1208 *bit_chk &= tmp_bit_chk;
1209 }
1210
1211 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1212 if (all_correct) {
1213 debug_cond(DLEVEL >= 2,
1214 "write_test(%u,%u,ALL) : %u == %u => %i\n",
1215 write_group, use_dm, *bit_chk,
1216 param->write_correct_mask,
1217 *bit_chk == param->write_correct_mask);
1218 return *bit_chk == param->write_correct_mask;
1219 } else {
1220 debug_cond(DLEVEL >= 2,
1221 "write_test(%u,%u,ONE) : %u != %i => %i\n",
1222 write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1223 return *bit_chk != 0x00;
1224 }
1225 }
1226
1227 /**
1228 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1229 * @rank_bgn: Rank number
1230 * @group: Read/Write Group
1231 * @all_ranks: Test all ranks
1232 *
1233 * Performs a guaranteed read on the patterns we are going to use during a
1234 * read test to ensure memory works.
1235 */
1236 static int
1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1238 const u32 all_ranks)
1239 {
1240 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1241 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242 const u32 addr_offset =
1243 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1244 const u32 rank_end = all_ranks ?
1245 rwcfg->mem_number_of_ranks :
1246 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1247 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1248 rwcfg->mem_virtual_groups_per_read_dqs;
1249 const u32 correct_mask_vg = param->read_correct_mask_vg;
1250
1251 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1252 int vg, r;
1253 int ret = 0;
1254
1255 bit_chk = param->read_correct_mask;
1256
1257 for (r = rank_bgn; r < rank_end; r++) {
1258 /* Set rank */
1259 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1260
1261 /* Load up a constant bursts of read commands */
1262 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1263 writel(rwcfg->guaranteed_read,
1264 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1265
1266 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1267 writel(rwcfg->guaranteed_read_cont,
1268 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1269
1270 tmp_bit_chk = 0;
1271 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1272 vg >= 0; vg--) {
1273 /* Reset the FIFOs to get pointers to known state. */
1274 writel(0, &phy_mgr_cmd->fifo_reset);
1275 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1277 writel(rwcfg->guaranteed_read,
1278 addr + addr_offset + (vg << 2));
1279
1280 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1281 tmp_bit_chk <<= shift_ratio;
1282 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1283 }
1284
1285 bit_chk &= tmp_bit_chk;
1286 }
1287
1288 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1289
1290 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1291
1292 if (bit_chk != param->read_correct_mask)
1293 ret = -EIO;
1294
1295 debug_cond(DLEVEL >= 1,
1296 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1297 __func__, __LINE__, group, bit_chk,
1298 param->read_correct_mask, ret);
1299
1300 return ret;
1301 }
1302
1303 /**
1304 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1305 * @rank_bgn: Rank number
1306 * @all_ranks: Test all ranks
1307 *
1308 * Load up the patterns we are going to use during a read test.
1309 */
1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1311 const int all_ranks)
1312 {
1313 const u32 rank_end = all_ranks ?
1314 rwcfg->mem_number_of_ranks :
1315 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1316 u32 r;
1317
1318 debug("%s:%d\n", __func__, __LINE__);
1319
1320 for (r = rank_bgn; r < rank_end; r++) {
1321 /* set rank */
1322 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1323
1324 /* Load up a constant bursts */
1325 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1326
1327 writel(rwcfg->guaranteed_write_wait0,
1328 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1329
1330 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1331
1332 writel(rwcfg->guaranteed_write_wait1,
1333 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1334
1335 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1336
1337 writel(rwcfg->guaranteed_write_wait2,
1338 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1339
1340 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1341
1342 writel(rwcfg->guaranteed_write_wait3,
1343 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1344
1345 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1346 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1347 }
1348
1349 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1350 }
1351
1352 /**
1353 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1354 * @rank_bgn: Rank number
1355 * @group: Read/Write group
1356 * @num_tries: Number of retries of the test
1357 * @all_correct: All bits must be correct in the mask
1358 * @bit_chk: Resulting bit mask after the test
1359 * @all_groups: Test all R/W groups
1360 * @all_ranks: Test all ranks
1361 *
1362 * Try a read and see if it returns correct data back. Test has dummy reads
1363 * inserted into the mix used to align DQS enable. Test has more thorough
1364 * checks than the regular read test.
1365 */
1366 static int
1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1368 const u32 num_tries, const u32 all_correct,
1369 u32 *bit_chk,
1370 const u32 all_groups, const u32 all_ranks)
1371 {
1372 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1373 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1374 const u32 quick_read_mode =
1375 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1376 misccfg->enable_super_quick_calibration);
1377 u32 correct_mask_vg = param->read_correct_mask_vg;
1378 u32 tmp_bit_chk;
1379 u32 base_rw_mgr;
1380 u32 addr;
1381
1382 int r, vg, ret;
1383
1384 *bit_chk = param->read_correct_mask;
1385
1386 for (r = rank_bgn; r < rank_end; r++) {
1387 /* set rank */
1388 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1389
1390 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1391
1392 writel(rwcfg->read_b2b_wait1,
1393 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1396 writel(rwcfg->read_b2b_wait2,
1397 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1398
1399 if (quick_read_mode)
1400 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1401 /* need at least two (1+1) reads to capture failures */
1402 else if (all_groups)
1403 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1404 else
1405 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1406
1407 writel(rwcfg->read_b2b,
1408 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1409 if (all_groups)
1410 writel(rwcfg->mem_if_read_dqs_width *
1411 rwcfg->mem_virtual_groups_per_read_dqs - 1,
1412 &sdr_rw_load_mgr_regs->load_cntr3);
1413 else
1414 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1415
1416 writel(rwcfg->read_b2b,
1417 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1418
1419 tmp_bit_chk = 0;
1420 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1421 vg--) {
1422 /* Reset the FIFOs to get pointers to known state. */
1423 writel(0, &phy_mgr_cmd->fifo_reset);
1424 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1426
1427 if (all_groups) {
1428 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1429 RW_MGR_RUN_ALL_GROUPS_OFFSET;
1430 } else {
1431 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1432 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1433 }
1434
1435 writel(rwcfg->read_b2b, addr +
1436 ((group *
1437 rwcfg->mem_virtual_groups_per_read_dqs +
1438 vg) << 2));
1439
1440 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1441 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1442 rwcfg->mem_virtual_groups_per_read_dqs;
1443 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1444 }
1445
1446 *bit_chk &= tmp_bit_chk;
1447 }
1448
1449 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1450 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1451
1452 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1453
1454 if (all_correct) {
1455 ret = (*bit_chk == param->read_correct_mask);
1456 debug_cond(DLEVEL >= 2,
1457 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1458 __func__, __LINE__, group, all_groups, *bit_chk,
1459 param->read_correct_mask, ret);
1460 } else {
1461 ret = (*bit_chk != 0x00);
1462 debug_cond(DLEVEL >= 2,
1463 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1464 __func__, __LINE__, group, all_groups, *bit_chk,
1465 0, ret);
1466 }
1467
1468 return ret;
1469 }
1470
1471 /**
1472 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1473 * @grp: Read/Write group
1474 * @num_tries: Number of retries of the test
1475 * @all_correct: All bits must be correct in the mask
1476 * @all_groups: Test all R/W groups
1477 *
1478 * Perform a READ test across all memory ranks.
1479 */
1480 static int
1481 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1482 const u32 all_correct,
1483 const u32 all_groups)
1484 {
1485 u32 bit_chk;
1486 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1487 &bit_chk, all_groups, 1);
1488 }
1489
1490 /**
1491 * rw_mgr_incr_vfifo() - Increase VFIFO value
1492 * @grp: Read/Write group
1493 *
1494 * Increase VFIFO value.
1495 */
1496 static void rw_mgr_incr_vfifo(const u32 grp)
1497 {
1498 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1499 }
1500
1501 /**
1502 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1503 * @grp: Read/Write group
1504 *
1505 * Decrease VFIFO value.
1506 */
1507 static void rw_mgr_decr_vfifo(const u32 grp)
1508 {
1509 u32 i;
1510
1511 for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1512 rw_mgr_incr_vfifo(grp);
1513 }
1514
1515 /**
1516 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1517 * @grp: Read/Write group
1518 *
1519 * Push VFIFO until a failing read happens.
1520 */
1521 static int find_vfifo_failing_read(const u32 grp)
1522 {
1523 u32 v, ret, fail_cnt = 0;
1524
1525 for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1526 debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1527 __func__, __LINE__, v);
1528 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1529 PASS_ONE_BIT, 0);
1530 if (!ret) {
1531 fail_cnt++;
1532
1533 if (fail_cnt == 2)
1534 return v;
1535 }
1536
1537 /* Fiddle with FIFO. */
1538 rw_mgr_incr_vfifo(grp);
1539 }
1540
1541 /* No failing read found! Something must have gone wrong. */
1542 debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1543 return 0;
1544 }
1545
1546 /**
1547 * sdr_find_phase_delay() - Find DQS enable phase or delay
1548 * @working: If 1, look for working phase/delay, if 0, look for non-working
1549 * @delay: If 1, look for delay, if 0, look for phase
1550 * @grp: Read/Write group
1551 * @work: Working window position
1552 * @work_inc: Working window increment
1553 * @pd: DQS Phase/Delay Iterator
1554 *
1555 * Find working or non-working DQS enable phase setting.
1556 */
1557 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1558 u32 *work, const u32 work_inc, u32 *pd)
1559 {
1560 const u32 max = delay ? iocfg->dqs_en_delay_max :
1561 iocfg->dqs_en_phase_max;
1562 u32 ret;
1563
1564 for (; *pd <= max; (*pd)++) {
1565 if (delay)
1566 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1567 else
1568 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1569
1570 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1571 PASS_ONE_BIT, 0);
1572 if (!working)
1573 ret = !ret;
1574
1575 if (ret)
1576 return 0;
1577
1578 if (work)
1579 *work += work_inc;
1580 }
1581
1582 return -EINVAL;
1583 }
1584 /**
1585 * sdr_find_phase() - Find DQS enable phase
1586 * @working: If 1, look for working phase, if 0, look for non-working phase
1587 * @grp: Read/Write group
1588 * @work: Working window position
1589 * @i: Iterator
1590 * @p: DQS Phase Iterator
1591 *
1592 * Find working or non-working DQS enable phase setting.
1593 */
1594 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1595 u32 *i, u32 *p)
1596 {
1597 const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1598 int ret;
1599
1600 for (; *i < end; (*i)++) {
1601 if (working)
1602 *p = 0;
1603
1604 ret = sdr_find_phase_delay(working, 0, grp, work,
1605 iocfg->delay_per_opa_tap, p);
1606 if (!ret)
1607 return 0;
1608
1609 if (*p > iocfg->dqs_en_phase_max) {
1610 /* Fiddle with FIFO. */
1611 rw_mgr_incr_vfifo(grp);
1612 if (!working)
1613 *p = 0;
1614 }
1615 }
1616
1617 return -EINVAL;
1618 }
1619
1620 /**
1621 * sdr_working_phase() - Find working DQS enable phase
1622 * @grp: Read/Write group
1623 * @work_bgn: Working window start position
1624 * @d: dtaps output value
1625 * @p: DQS Phase Iterator
1626 * @i: Iterator
1627 *
1628 * Find working DQS enable phase setting.
1629 */
1630 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1631 u32 *p, u32 *i)
1632 {
1633 const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1634 iocfg->delay_per_dqs_en_dchain_tap;
1635 int ret;
1636
1637 *work_bgn = 0;
1638
1639 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1640 *i = 0;
1641 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1642 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1643 if (!ret)
1644 return 0;
1645 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1646 }
1647
1648 /* Cannot find working solution */
1649 debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1650 __func__, __LINE__);
1651 return -EINVAL;
1652 }
1653
1654 /**
1655 * sdr_backup_phase() - Find DQS enable backup phase
1656 * @grp: Read/Write group
1657 * @work_bgn: Working window start position
1658 * @p: DQS Phase Iterator
1659 *
1660 * Find DQS enable backup phase setting.
1661 */
1662 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1663 {
1664 u32 tmp_delay, d;
1665 int ret;
1666
1667 /* Special case code for backing up a phase */
1668 if (*p == 0) {
1669 *p = iocfg->dqs_en_phase_max;
1670 rw_mgr_decr_vfifo(grp);
1671 } else {
1672 (*p)--;
1673 }
1674 tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1675 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1676
1677 for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1678 d++) {
1679 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1680
1681 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1682 PASS_ONE_BIT, 0);
1683 if (ret) {
1684 *work_bgn = tmp_delay;
1685 break;
1686 }
1687
1688 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1689 }
1690
1691 /* Restore VFIFO to old state before we decremented it (if needed). */
1692 (*p)++;
1693 if (*p > iocfg->dqs_en_phase_max) {
1694 *p = 0;
1695 rw_mgr_incr_vfifo(grp);
1696 }
1697
1698 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1699 }
1700
1701 /**
1702 * sdr_nonworking_phase() - Find non-working DQS enable phase
1703 * @grp: Read/Write group
1704 * @work_end: Working window end position
1705 * @p: DQS Phase Iterator
1706 * @i: Iterator
1707 *
1708 * Find non-working DQS enable phase setting.
1709 */
1710 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1711 {
1712 int ret;
1713
1714 (*p)++;
1715 *work_end += iocfg->delay_per_opa_tap;
1716 if (*p > iocfg->dqs_en_phase_max) {
1717 /* Fiddle with FIFO. */
1718 *p = 0;
1719 rw_mgr_incr_vfifo(grp);
1720 }
1721
1722 ret = sdr_find_phase(0, grp, work_end, i, p);
1723 if (ret) {
1724 /* Cannot see edge of failing read. */
1725 debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1726 __func__, __LINE__);
1727 }
1728
1729 return ret;
1730 }
1731
1732 /**
1733 * sdr_find_window_center() - Find center of the working DQS window.
1734 * @grp: Read/Write group
1735 * @work_bgn: First working settings
1736 * @work_end: Last working settings
1737 *
1738 * Find center of the working DQS enable window.
1739 */
1740 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1741 const u32 work_end)
1742 {
1743 u32 work_mid;
1744 int tmp_delay = 0;
1745 int i, p, d;
1746
1747 work_mid = (work_bgn + work_end) / 2;
1748
1749 debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1750 work_bgn, work_end, work_mid);
1751 /* Get the middle delay to be less than a VFIFO delay */
1752 tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1753
1754 debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1755 work_mid %= tmp_delay;
1756 debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1757
1758 tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1759 if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1760 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1761 p = tmp_delay / iocfg->delay_per_opa_tap;
1762
1763 debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1764
1765 d = DIV_ROUND_UP(work_mid - tmp_delay,
1766 iocfg->delay_per_dqs_en_dchain_tap);
1767 if (d > iocfg->dqs_en_delay_max)
1768 d = iocfg->dqs_en_delay_max;
1769 tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1770
1771 debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1772
1773 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1774 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1775
1776 /*
1777 * push vfifo until we can successfully calibrate. We can do this
1778 * because the largest possible margin in 1 VFIFO cycle.
1779 */
1780 for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1781 debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1782 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1783 PASS_ONE_BIT,
1784 0)) {
1785 debug_cond(DLEVEL >= 2,
1786 "%s:%d center: found: ptap=%u dtap=%u\n",
1787 __func__, __LINE__, p, d);
1788 return 0;
1789 }
1790
1791 /* Fiddle with FIFO. */
1792 rw_mgr_incr_vfifo(grp);
1793 }
1794
1795 debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1796 __func__, __LINE__);
1797 return -EINVAL;
1798 }
1799
1800 /**
1801 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1802 * @grp: Read/Write Group
1803 *
1804 * Find a good DQS enable to use.
1805 */
1806 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1807 {
1808 u32 d, p, i;
1809 u32 dtaps_per_ptap;
1810 u32 work_bgn, work_end;
1811 u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1812 int ret;
1813
1814 debug("%s:%d %u\n", __func__, __LINE__, grp);
1815
1816 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1817
1818 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1819 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1820
1821 /* Step 0: Determine number of delay taps for each phase tap. */
1822 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1823 iocfg->delay_per_dqs_en_dchain_tap;
1824
1825 /* Step 1: First push vfifo until we get a failing read. */
1826 find_vfifo_failing_read(grp);
1827
1828 /* Step 2: Find first working phase, increment in ptaps. */
1829 work_bgn = 0;
1830 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1831 if (ret)
1832 return ret;
1833
1834 work_end = work_bgn;
1835
1836 /*
1837 * If d is 0 then the working window covers a phase tap and we can
1838 * follow the old procedure. Otherwise, we've found the beginning
1839 * and we need to increment the dtaps until we find the end.
1840 */
1841 if (d == 0) {
1842 /*
1843 * Step 3a: If we have room, back off by one and
1844 * increment in dtaps.
1845 */
1846 sdr_backup_phase(grp, &work_bgn, &p);
1847
1848 /*
1849 * Step 4a: go forward from working phase to non working
1850 * phase, increment in ptaps.
1851 */
1852 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1853 if (ret)
1854 return ret;
1855
1856 /* Step 5a: Back off one from last, increment in dtaps. */
1857
1858 /* Special case code for backing up a phase */
1859 if (p == 0) {
1860 p = iocfg->dqs_en_phase_max;
1861 rw_mgr_decr_vfifo(grp);
1862 } else {
1863 p = p - 1;
1864 }
1865
1866 work_end -= iocfg->delay_per_opa_tap;
1867 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1868
1869 d = 0;
1870
1871 debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1872 __func__, __LINE__, p);
1873 }
1874
1875 /* The dtap increment to find the failing edge is done here. */
1876 sdr_find_phase_delay(0, 1, grp, &work_end,
1877 iocfg->delay_per_dqs_en_dchain_tap, &d);
1878
1879 /* Go back to working dtap */
1880 if (d != 0)
1881 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1882
1883 debug_cond(DLEVEL >= 2,
1884 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1885 __func__, __LINE__, p, d - 1, work_end);
1886
1887 if (work_end < work_bgn) {
1888 /* nil range */
1889 debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1890 __func__, __LINE__);
1891 return -EINVAL;
1892 }
1893
1894 debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1895 __func__, __LINE__, work_bgn, work_end);
1896
1897 /*
1898 * We need to calculate the number of dtaps that equal a ptap.
1899 * To do that we'll back up a ptap and re-find the edge of the
1900 * window using dtaps
1901 */
1902 debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1903 __func__, __LINE__);
1904
1905 /* Special case code for backing up a phase */
1906 if (p == 0) {
1907 p = iocfg->dqs_en_phase_max;
1908 rw_mgr_decr_vfifo(grp);
1909 debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1910 __func__, __LINE__, p);
1911 } else {
1912 p = p - 1;
1913 debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1914 __func__, __LINE__, p);
1915 }
1916
1917 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1918
1919 /*
1920 * Increase dtap until we first see a passing read (in case the
1921 * window is smaller than a ptap), and then a failing read to
1922 * mark the edge of the window again.
1923 */
1924
1925 /* Find a passing read. */
1926 debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1927 __func__, __LINE__);
1928
1929 initial_failing_dtap = d;
1930
1931 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1932 if (found_passing_read) {
1933 /* Find a failing read. */
1934 debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1935 __func__, __LINE__);
1936 d++;
1937 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1938 &d);
1939 } else {
1940 debug_cond(DLEVEL >= 1,
1941 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1942 __func__, __LINE__);
1943 }
1944
1945 /*
1946 * The dynamically calculated dtaps_per_ptap is only valid if we
1947 * found a passing/failing read. If we didn't, it means d hit the max
1948 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1949 * statically calculated value.
1950 */
1951 if (found_passing_read && found_failing_read)
1952 dtaps_per_ptap = d - initial_failing_dtap;
1953
1954 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1955 debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1956 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1957
1958 /* Step 6: Find the centre of the window. */
1959 ret = sdr_find_window_center(grp, work_bgn, work_end);
1960
1961 return ret;
1962 }
1963
1964 /**
1965 * search_stop_check() - Check if the detected edge is valid
1966 * @write: Perform read (Stage 2) or write (Stage 3) calibration
1967 * @d: DQS delay
1968 * @rank_bgn: Rank number
1969 * @write_group: Write Group
1970 * @read_group: Read Group
1971 * @bit_chk: Resulting bit mask after the test
1972 * @sticky_bit_chk: Resulting sticky bit mask after the test
1973 * @use_read_test: Perform read test
1974 *
1975 * Test if the found edge is valid.
1976 */
1977 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1978 const u32 write_group, const u32 read_group,
1979 u32 *bit_chk, u32 *sticky_bit_chk,
1980 const u32 use_read_test)
1981 {
1982 const u32 ratio = rwcfg->mem_if_read_dqs_width /
1983 rwcfg->mem_if_write_dqs_width;
1984 const u32 correct_mask = write ? param->write_correct_mask :
1985 param->read_correct_mask;
1986 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1987 rwcfg->mem_dq_per_read_dqs;
1988 u32 ret;
1989 /*
1990 * Stop searching when the read test doesn't pass AND when
1991 * we've seen a passing read on every bit.
1992 */
1993 if (write) { /* WRITE-ONLY */
1994 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1995 0, PASS_ONE_BIT,
1996 bit_chk, 0);
1997 } else if (use_read_test) { /* READ-ONLY */
1998 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1999 NUM_READ_PB_TESTS,
2000 PASS_ONE_BIT, bit_chk,
2001 0, 0);
2002 } else { /* READ-ONLY */
2003 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2004 PASS_ONE_BIT, bit_chk, 0);
2005 *bit_chk = *bit_chk >> (per_dqs *
2006 (read_group - (write_group * ratio)));
2007 ret = (*bit_chk == 0);
2008 }
2009 *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2010 ret = ret && (*sticky_bit_chk == correct_mask);
2011 debug_cond(DLEVEL >= 2,
2012 "%s:%d center(left): dtap=%u => %u == %u && %u",
2013 __func__, __LINE__, d,
2014 *sticky_bit_chk, correct_mask, ret);
2015 return ret;
2016 }
2017
2018 /**
2019 * search_left_edge() - Find left edge of DQ/DQS working phase
2020 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2021 * @rank_bgn: Rank number
2022 * @write_group: Write Group
2023 * @read_group: Read Group
2024 * @test_bgn: Rank number to begin the test
2025 * @sticky_bit_chk: Resulting sticky bit mask after the test
2026 * @left_edge: Left edge of the DQ/DQS phase
2027 * @right_edge: Right edge of the DQ/DQS phase
2028 * @use_read_test: Perform read test
2029 *
2030 * Find left edge of DQ/DQS working phase.
2031 */
2032 static void search_left_edge(const int write, const int rank_bgn,
2033 const u32 write_group, const u32 read_group, const u32 test_bgn,
2034 u32 *sticky_bit_chk,
2035 int *left_edge, int *right_edge, const u32 use_read_test)
2036 {
2037 const u32 delay_max = write ? iocfg->io_out1_delay_max :
2038 iocfg->io_in_delay_max;
2039 const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2040 iocfg->dqs_in_delay_max;
2041 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2042 rwcfg->mem_dq_per_read_dqs;
2043 u32 stop, bit_chk;
2044 int i, d;
2045
2046 for (d = 0; d <= dqs_max; d++) {
2047 if (write)
2048 scc_mgr_apply_group_dq_out1_delay(d);
2049 else
2050 scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2051
2052 writel(0, &sdr_scc_mgr->update);
2053
2054 stop = search_stop_check(write, d, rank_bgn, write_group,
2055 read_group, &bit_chk, sticky_bit_chk,
2056 use_read_test);
2057 if (stop == 1)
2058 break;
2059
2060 /* stop != 1 */
2061 for (i = 0; i < per_dqs; i++) {
2062 if (bit_chk & 1) {
2063 /*
2064 * Remember a passing test as
2065 * the left_edge.
2066 */
2067 left_edge[i] = d;
2068 } else {
2069 /*
2070 * If a left edge has not been seen
2071 * yet, then a future passing test
2072 * will mark this edge as the right
2073 * edge.
2074 */
2075 if (left_edge[i] == delay_max + 1)
2076 right_edge[i] = -(d + 1);
2077 }
2078 bit_chk >>= 1;
2079 }
2080 }
2081
2082 /* Reset DQ delay chains to 0 */
2083 if (write)
2084 scc_mgr_apply_group_dq_out1_delay(0);
2085 else
2086 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2087
2088 *sticky_bit_chk = 0;
2089 for (i = per_dqs - 1; i >= 0; i--) {
2090 debug_cond(DLEVEL >= 2,
2091 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2092 __func__, __LINE__, i, left_edge[i],
2093 i, right_edge[i]);
2094
2095 /*
2096 * Check for cases where we haven't found the left edge,
2097 * which makes our assignment of the the right edge invalid.
2098 * Reset it to the illegal value.
2099 */
2100 if ((left_edge[i] == delay_max + 1) &&
2101 (right_edge[i] != delay_max + 1)) {
2102 right_edge[i] = delay_max + 1;
2103 debug_cond(DLEVEL >= 2,
2104 "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2105 __func__, __LINE__, i, right_edge[i]);
2106 }
2107
2108 /*
2109 * Reset sticky bit
2110 * READ: except for bits where we have seen both
2111 * the left and right edge.
2112 * WRITE: except for bits where we have seen the
2113 * left edge.
2114 */
2115 *sticky_bit_chk <<= 1;
2116 if (write) {
2117 if (left_edge[i] != delay_max + 1)
2118 *sticky_bit_chk |= 1;
2119 } else {
2120 if ((left_edge[i] != delay_max + 1) &&
2121 (right_edge[i] != delay_max + 1))
2122 *sticky_bit_chk |= 1;
2123 }
2124 }
2125 }
2126
2127 /**
2128 * search_right_edge() - Find right edge of DQ/DQS working phase
2129 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2130 * @rank_bgn: Rank number
2131 * @write_group: Write Group
2132 * @read_group: Read Group
2133 * @start_dqs: DQS start phase
2134 * @start_dqs_en: DQS enable start phase
2135 * @sticky_bit_chk: Resulting sticky bit mask after the test
2136 * @left_edge: Left edge of the DQ/DQS phase
2137 * @right_edge: Right edge of the DQ/DQS phase
2138 * @use_read_test: Perform read test
2139 *
2140 * Find right edge of DQ/DQS working phase.
2141 */
2142 static int search_right_edge(const int write, const int rank_bgn,
2143 const u32 write_group, const u32 read_group,
2144 const int start_dqs, const int start_dqs_en,
2145 u32 *sticky_bit_chk,
2146 int *left_edge, int *right_edge, const u32 use_read_test)
2147 {
2148 const u32 delay_max = write ? iocfg->io_out1_delay_max :
2149 iocfg->io_in_delay_max;
2150 const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2151 iocfg->dqs_in_delay_max;
2152 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2153 rwcfg->mem_dq_per_read_dqs;
2154 u32 stop, bit_chk;
2155 int i, d;
2156
2157 for (d = 0; d <= dqs_max - start_dqs; d++) {
2158 if (write) { /* WRITE-ONLY */
2159 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2160 d + start_dqs);
2161 } else { /* READ-ONLY */
2162 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2163 if (iocfg->shift_dqs_en_when_shift_dqs) {
2164 u32 delay = d + start_dqs_en;
2165 if (delay > iocfg->dqs_en_delay_max)
2166 delay = iocfg->dqs_en_delay_max;
2167 scc_mgr_set_dqs_en_delay(read_group, delay);
2168 }
2169 scc_mgr_load_dqs(read_group);
2170 }
2171
2172 writel(0, &sdr_scc_mgr->update);
2173
2174 stop = search_stop_check(write, d, rank_bgn, write_group,
2175 read_group, &bit_chk, sticky_bit_chk,
2176 use_read_test);
2177 if (stop == 1) {
2178 if (write && (d == 0)) { /* WRITE-ONLY */
2179 for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2180 i++) {
2181 /*
2182 * d = 0 failed, but it passed when
2183 * testing the left edge, so it must be
2184 * marginal, set it to -1
2185 */
2186 if (right_edge[i] == delay_max + 1 &&
2187 left_edge[i] != delay_max + 1)
2188 right_edge[i] = -1;
2189 }
2190 }
2191 break;
2192 }
2193
2194 /* stop != 1 */
2195 for (i = 0; i < per_dqs; i++) {
2196 if (bit_chk & 1) {
2197 /*
2198 * Remember a passing test as
2199 * the right_edge.
2200 */
2201 right_edge[i] = d;
2202 } else {
2203 if (d != 0) {
2204 /*
2205 * If a right edge has not
2206 * been seen yet, then a future
2207 * passing test will mark this
2208 * edge as the left edge.
2209 */
2210 if (right_edge[i] == delay_max + 1)
2211 left_edge[i] = -(d + 1);
2212 } else {
2213 /*
2214 * d = 0 failed, but it passed
2215 * when testing the left edge,
2216 * so it must be marginal, set
2217 * it to -1
2218 */
2219 if (right_edge[i] == delay_max + 1 &&
2220 left_edge[i] != delay_max + 1)
2221 right_edge[i] = -1;
2222 /*
2223 * If a right edge has not been
2224 * seen yet, then a future
2225 * passing test will mark this
2226 * edge as the left edge.
2227 */
2228 else if (right_edge[i] == delay_max + 1)
2229 left_edge[i] = -(d + 1);
2230 }
2231 }
2232
2233 debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2234 __func__, __LINE__, d);
2235 debug_cond(DLEVEL >= 2,
2236 "bit_chk_test=%i left_edge[%u]: %d ",
2237 bit_chk & 1, i, left_edge[i]);
2238 debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2239 right_edge[i]);
2240 bit_chk >>= 1;
2241 }
2242 }
2243
2244 /* Check that all bits have a window */
2245 for (i = 0; i < per_dqs; i++) {
2246 debug_cond(DLEVEL >= 2,
2247 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2248 __func__, __LINE__, i, left_edge[i],
2249 i, right_edge[i]);
2250 if ((left_edge[i] == dqs_max + 1) ||
2251 (right_edge[i] == dqs_max + 1))
2252 return i + 1; /* FIXME: If we fail, retval > 0 */
2253 }
2254
2255 return 0;
2256 }
2257
2258 /**
2259 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2260 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2261 * @left_edge: Left edge of the DQ/DQS phase
2262 * @right_edge: Right edge of the DQ/DQS phase
2263 * @mid_min: Best DQ/DQS phase middle setting
2264 *
2265 * Find index and value of the middle of the DQ/DQS working phase.
2266 */
2267 static int get_window_mid_index(const int write, int *left_edge,
2268 int *right_edge, int *mid_min)
2269 {
2270 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2271 rwcfg->mem_dq_per_read_dqs;
2272 int i, mid, min_index;
2273
2274 /* Find middle of window for each DQ bit */
2275 *mid_min = left_edge[0] - right_edge[0];
2276 min_index = 0;
2277 for (i = 1; i < per_dqs; i++) {
2278 mid = left_edge[i] - right_edge[i];
2279 if (mid < *mid_min) {
2280 *mid_min = mid;
2281 min_index = i;
2282 }
2283 }
2284
2285 /*
2286 * -mid_min/2 represents the amount that we need to move DQS.
2287 * If mid_min is odd and positive we'll need to add one to make
2288 * sure the rounding in further calculations is correct (always
2289 * bias to the right), so just add 1 for all positive values.
2290 */
2291 if (*mid_min > 0)
2292 (*mid_min)++;
2293 *mid_min = *mid_min / 2;
2294
2295 debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2296 __func__, __LINE__, *mid_min, min_index);
2297 return min_index;
2298 }
2299
2300 /**
2301 * center_dq_windows() - Center the DQ/DQS windows
2302 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2303 * @left_edge: Left edge of the DQ/DQS phase
2304 * @right_edge: Right edge of the DQ/DQS phase
2305 * @mid_min: Adjusted DQ/DQS phase middle setting
2306 * @orig_mid_min: Original DQ/DQS phase middle setting
2307 * @min_index: DQ/DQS phase middle setting index
2308 * @test_bgn: Rank number to begin the test
2309 * @dq_margin: Amount of shift for the DQ
2310 * @dqs_margin: Amount of shift for the DQS
2311 *
2312 * Align the DQ/DQS windows in each group.
2313 */
2314 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2315 const int mid_min, const int orig_mid_min,
2316 const int min_index, const int test_bgn,
2317 int *dq_margin, int *dqs_margin)
2318 {
2319 const s32 delay_max = write ? iocfg->io_out1_delay_max :
2320 iocfg->io_in_delay_max;
2321 const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2322 rwcfg->mem_dq_per_read_dqs;
2323 const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2324 SCC_MGR_IO_IN_DELAY_OFFSET;
2325 const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2326
2327 s32 temp_dq_io_delay1;
2328 int shift_dq, i, p;
2329
2330 /* Initialize data for export structures */
2331 *dqs_margin = delay_max + 1;
2332 *dq_margin = delay_max + 1;
2333
2334 /* add delay to bring centre of all DQ windows to the same "level" */
2335 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2336 /* Use values before divide by 2 to reduce round off error */
2337 shift_dq = (left_edge[i] - right_edge[i] -
2338 (left_edge[min_index] - right_edge[min_index]))/2 +
2339 (orig_mid_min - mid_min);
2340
2341 debug_cond(DLEVEL >= 2,
2342 "vfifo_center: before: shift_dq[%u]=%d\n",
2343 i, shift_dq);
2344
2345 temp_dq_io_delay1 = readl(addr + (i << 2));
2346
2347 if (shift_dq + temp_dq_io_delay1 > delay_max)
2348 shift_dq = delay_max - temp_dq_io_delay1;
2349 else if (shift_dq + temp_dq_io_delay1 < 0)
2350 shift_dq = -temp_dq_io_delay1;
2351
2352 debug_cond(DLEVEL >= 2,
2353 "vfifo_center: after: shift_dq[%u]=%d\n",
2354 i, shift_dq);
2355
2356 if (write)
2357 scc_mgr_set_dq_out1_delay(i,
2358 temp_dq_io_delay1 + shift_dq);
2359 else
2360 scc_mgr_set_dq_in_delay(p,
2361 temp_dq_io_delay1 + shift_dq);
2362
2363 scc_mgr_load_dq(p);
2364
2365 debug_cond(DLEVEL >= 2,
2366 "vfifo_center: margin[%u]=[%d,%d]\n", i,
2367 left_edge[i] - shift_dq + (-mid_min),
2368 right_edge[i] + shift_dq - (-mid_min));
2369
2370 /* To determine values for export structures */
2371 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2372 *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2373
2374 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2375 *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2376 }
2377 }
2378
2379 /**
2380 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2381 * @rank_bgn: Rank number
2382 * @rw_group: Read/Write Group
2383 * @test_bgn: Rank at which the test begins
2384 * @use_read_test: Perform a read test
2385 * @update_fom: Update FOM
2386 *
2387 * Per-bit deskew DQ and centering.
2388 */
2389 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2390 const u32 rw_group, const u32 test_bgn,
2391 const int use_read_test, const int update_fom)
2392 {
2393 const u32 addr =
2394 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2395 (rw_group << 2);
2396 /*
2397 * Store these as signed since there are comparisons with
2398 * signed numbers.
2399 */
2400 u32 sticky_bit_chk;
2401 int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2402 int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2403 int32_t orig_mid_min, mid_min;
2404 int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2405 int32_t dq_margin, dqs_margin;
2406 int i, min_index;
2407 int ret;
2408
2409 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2410
2411 start_dqs = readl(addr);
2412 if (iocfg->shift_dqs_en_when_shift_dqs)
2413 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2414
2415 /* set the left and right edge of each bit to an illegal value */
2416 /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2417 sticky_bit_chk = 0;
2418 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2419 left_edge[i] = iocfg->io_in_delay_max + 1;
2420 right_edge[i] = iocfg->io_in_delay_max + 1;
2421 }
2422
2423 /* Search for the left edge of the window for each bit */
2424 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2425 &sticky_bit_chk,
2426 left_edge, right_edge, use_read_test);
2427
2428
2429 /* Search for the right edge of the window for each bit */
2430 ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2431 start_dqs, start_dqs_en,
2432 &sticky_bit_chk,
2433 left_edge, right_edge, use_read_test);
2434 if (ret) {
2435 /*
2436 * Restore delay chain settings before letting the loop
2437 * in rw_mgr_mem_calibrate_vfifo to retry different
2438 * dqs/ck relationships.
2439 */
2440 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2441 if (iocfg->shift_dqs_en_when_shift_dqs)
2442 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2443
2444 scc_mgr_load_dqs(rw_group);
2445 writel(0, &sdr_scc_mgr->update);
2446
2447 debug_cond(DLEVEL >= 1,
2448 "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2449 __func__, __LINE__, i, left_edge[i], right_edge[i]);
2450 if (use_read_test) {
2451 set_failing_group_stage(rw_group *
2452 rwcfg->mem_dq_per_read_dqs + i,
2453 CAL_STAGE_VFIFO,
2454 CAL_SUBSTAGE_VFIFO_CENTER);
2455 } else {
2456 set_failing_group_stage(rw_group *
2457 rwcfg->mem_dq_per_read_dqs + i,
2458 CAL_STAGE_VFIFO_AFTER_WRITES,
2459 CAL_SUBSTAGE_VFIFO_CENTER);
2460 }
2461 return -EIO;
2462 }
2463
2464 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2465
2466 /* Determine the amount we can change DQS (which is -mid_min) */
2467 orig_mid_min = mid_min;
2468 new_dqs = start_dqs - mid_min;
2469 if (new_dqs > iocfg->dqs_in_delay_max)
2470 new_dqs = iocfg->dqs_in_delay_max;
2471 else if (new_dqs < 0)
2472 new_dqs = 0;
2473
2474 mid_min = start_dqs - new_dqs;
2475 debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2476 mid_min, new_dqs);
2477
2478 if (iocfg->shift_dqs_en_when_shift_dqs) {
2479 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2480 mid_min += start_dqs_en - mid_min -
2481 iocfg->dqs_en_delay_max;
2482 else if (start_dqs_en - mid_min < 0)
2483 mid_min += start_dqs_en - mid_min;
2484 }
2485 new_dqs = start_dqs - mid_min;
2486
2487 debug_cond(DLEVEL >= 1,
2488 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2489 start_dqs,
2490 iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2491 new_dqs, mid_min);
2492
2493 /* Add delay to bring centre of all DQ windows to the same "level". */
2494 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2495 min_index, test_bgn, &dq_margin, &dqs_margin);
2496
2497 /* Move DQS-en */
2498 if (iocfg->shift_dqs_en_when_shift_dqs) {
2499 final_dqs_en = start_dqs_en - mid_min;
2500 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2501 scc_mgr_load_dqs(rw_group);
2502 }
2503
2504 /* Move DQS */
2505 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2506 scc_mgr_load_dqs(rw_group);
2507 debug_cond(DLEVEL >= 2,
2508 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2509 __func__, __LINE__, dq_margin, dqs_margin);
2510
2511 /*
2512 * Do not remove this line as it makes sure all of our decisions
2513 * have been applied. Apply the update bit.
2514 */
2515 writel(0, &sdr_scc_mgr->update);
2516
2517 if ((dq_margin < 0) || (dqs_margin < 0))
2518 return -EINVAL;
2519
2520 return 0;
2521 }
2522
2523 /**
2524 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2525 * @rw_group: Read/Write Group
2526 * @phase: DQ/DQS phase
2527 *
2528 * Because initially no communication ca be reliably performed with the memory
2529 * device, the sequencer uses a guaranteed write mechanism to write data into
2530 * the memory device.
2531 */
2532 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2533 const u32 phase)
2534 {
2535 int ret;
2536
2537 /* Set a particular DQ/DQS phase. */
2538 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2539
2540 debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2541 __func__, __LINE__, rw_group, phase);
2542
2543 /*
2544 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2545 * Load up the patterns used by read calibration using the
2546 * current DQDQS phase.
2547 */
2548 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2549
2550 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2551 return 0;
2552
2553 /*
2554 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2555 * Back-to-Back reads of the patterns used for calibration.
2556 */
2557 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2558 if (ret)
2559 debug_cond(DLEVEL >= 1,
2560 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2561 __func__, __LINE__, rw_group, phase);
2562 return ret;
2563 }
2564
2565 /**
2566 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2567 * @rw_group: Read/Write Group
2568 * @test_bgn: Rank at which the test begins
2569 *
2570 * DQS enable calibration ensures reliable capture of the DQ signal without
2571 * glitches on the DQS line.
2572 */
2573 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2574 const u32 test_bgn)
2575 {
2576 /*
2577 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2578 * DQS and DQS Eanble Signal Relationships.
2579 */
2580
2581 /* We start at zero, so have one less dq to devide among */
2582 const u32 delay_step = iocfg->io_in_delay_max /
2583 (rwcfg->mem_dq_per_read_dqs - 1);
2584 int ret;
2585 u32 i, p, d, r;
2586
2587 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2588
2589 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2590 for (r = 0; r < rwcfg->mem_number_of_ranks;
2591 r += NUM_RANKS_PER_SHADOW_REG) {
2592 for (i = 0, p = test_bgn, d = 0;
2593 i < rwcfg->mem_dq_per_read_dqs;
2594 i++, p++, d += delay_step) {
2595 debug_cond(DLEVEL >= 1,
2596 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2597 __func__, __LINE__, rw_group, r, i, p, d);
2598
2599 scc_mgr_set_dq_in_delay(p, d);
2600 scc_mgr_load_dq(p);
2601 }
2602
2603 writel(0, &sdr_scc_mgr->update);
2604 }
2605
2606 /*
2607 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2608 * dq_in_delay values
2609 */
2610 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2611
2612 debug_cond(DLEVEL >= 1,
2613 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2614 __func__, __LINE__, rw_group, !ret);
2615
2616 for (r = 0; r < rwcfg->mem_number_of_ranks;
2617 r += NUM_RANKS_PER_SHADOW_REG) {
2618 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2619 writel(0, &sdr_scc_mgr->update);
2620 }
2621
2622 return ret;
2623 }
2624
2625 /**
2626 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2627 * @rw_group: Read/Write Group
2628 * @test_bgn: Rank at which the test begins
2629 * @use_read_test: Perform a read test
2630 * @update_fom: Update FOM
2631 *
2632 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2633 * within a group.
2634 */
2635 static int
2636 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2637 const int use_read_test,
2638 const int update_fom)
2639
2640 {
2641 int ret, grp_calibrated;
2642 u32 rank_bgn, sr;
2643
2644 /*
2645 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2646 * Read per-bit deskew can be done on a per shadow register basis.
2647 */
2648 grp_calibrated = 1;
2649 for (rank_bgn = 0, sr = 0;
2650 rank_bgn < rwcfg->mem_number_of_ranks;
2651 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2652 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2653 test_bgn,
2654 use_read_test,
2655 update_fom);
2656 if (!ret)
2657 continue;
2658
2659 grp_calibrated = 0;
2660 }
2661
2662 if (!grp_calibrated)
2663 return -EIO;
2664
2665 return 0;
2666 }
2667
2668 /**
2669 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2670 * @rw_group: Read/Write Group
2671 * @test_bgn: Rank at which the test begins
2672 *
2673 * Stage 1: Calibrate the read valid prediction FIFO.
2674 *
2675 * This function implements UniPHY calibration Stage 1, as explained in
2676 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2677 *
2678 * - read valid prediction will consist of finding:
2679 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2680 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2681 * - we also do a per-bit deskew on the DQ lines.
2682 */
2683 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2684 {
2685 u32 p, d;
2686 u32 dtaps_per_ptap;
2687 u32 failed_substage;
2688
2689 int ret;
2690
2691 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2692
2693 /* Update info for sims */
2694 reg_file_set_group(rw_group);
2695 reg_file_set_stage(CAL_STAGE_VFIFO);
2696 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2697
2698 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2699
2700 /* USER Determine number of delay taps for each phase tap. */
2701 dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2702 iocfg->delay_per_dqs_en_dchain_tap) - 1;
2703
2704 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2705 /*
2706 * In RLDRAMX we may be messing the delay of pins in
2707 * the same write rw_group but outside of the current read
2708 * the rw_group, but that's ok because we haven't calibrated
2709 * output side yet.
2710 */
2711 if (d > 0) {
2712 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2713 rw_group, d);
2714 }
2715
2716 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2717 /* 1) Guaranteed Write */
2718 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2719 if (ret)
2720 break;
2721
2722 /* 2) DQS Enable Calibration */
2723 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2724 test_bgn);
2725 if (ret) {
2726 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2727 continue;
2728 }
2729
2730 /* 3) Centering DQ/DQS */
2731 /*
2732 * If doing read after write calibration, do not update
2733 * FOM now. Do it then.
2734 */
2735 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2736 test_bgn, 1, 0);
2737 if (ret) {
2738 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2739 continue;
2740 }
2741
2742 /* All done. */
2743 goto cal_done_ok;
2744 }
2745 }
2746
2747 /* Calibration Stage 1 failed. */
2748 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2749 return 0;
2750
2751 /* Calibration Stage 1 completed OK. */
2752 cal_done_ok:
2753 /*
2754 * Reset the delay chains back to zero if they have moved > 1
2755 * (check for > 1 because loop will increase d even when pass in
2756 * first case).
2757 */
2758 if (d > 2)
2759 scc_mgr_zero_group(rw_group, 1);
2760
2761 return 1;
2762 }
2763
2764 /**
2765 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2766 * @rw_group: Read/Write Group
2767 * @test_bgn: Rank at which the test begins
2768 *
2769 * Stage 3: DQ/DQS Centering.
2770 *
2771 * This function implements UniPHY calibration Stage 3, as explained in
2772 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2773 */
2774 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2775 const u32 test_bgn)
2776 {
2777 int ret;
2778
2779 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2780
2781 /* Update info for sims. */
2782 reg_file_set_group(rw_group);
2783 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2784 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2785
2786 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2787 if (ret)
2788 set_failing_group_stage(rw_group,
2789 CAL_STAGE_VFIFO_AFTER_WRITES,
2790 CAL_SUBSTAGE_VFIFO_CENTER);
2791 return ret;
2792 }
2793
2794 /**
2795 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2796 *
2797 * Stage 4: Minimize latency.
2798 *
2799 * This function implements UniPHY calibration Stage 4, as explained in
2800 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2801 * Calibrate LFIFO to find smallest read latency.
2802 */
2803 static u32 rw_mgr_mem_calibrate_lfifo(void)
2804 {
2805 int found_one = 0;
2806
2807 debug("%s:%d\n", __func__, __LINE__);
2808
2809 /* Update info for sims. */
2810 reg_file_set_stage(CAL_STAGE_LFIFO);
2811 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2812
2813 /* Load up the patterns used by read calibration for all ranks */
2814 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2815
2816 do {
2817 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2818 debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2819 __func__, __LINE__, gbl->curr_read_lat);
2820
2821 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2822 PASS_ALL_BITS, 1))
2823 break;
2824
2825 found_one = 1;
2826 /*
2827 * Reduce read latency and see if things are
2828 * working correctly.
2829 */
2830 gbl->curr_read_lat--;
2831 } while (gbl->curr_read_lat > 0);
2832
2833 /* Reset the fifos to get pointers to known state. */
2834 writel(0, &phy_mgr_cmd->fifo_reset);
2835
2836 if (found_one) {
2837 /* Add a fudge factor to the read latency that was determined */
2838 gbl->curr_read_lat += 2;
2839 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2840 debug_cond(DLEVEL >= 2,
2841 "%s:%d lfifo: success: using read_lat=%u\n",
2842 __func__, __LINE__, gbl->curr_read_lat);
2843 } else {
2844 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2845 CAL_SUBSTAGE_READ_LATENCY);
2846
2847 debug_cond(DLEVEL >= 2,
2848 "%s:%d lfifo: failed at initial read_lat=%u\n",
2849 __func__, __LINE__, gbl->curr_read_lat);
2850 }
2851
2852 return found_one;
2853 }
2854
2855 /**
2856 * search_window() - Search for the/part of the window with DM/DQS shift
2857 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
2858 * @rank_bgn: Rank number
2859 * @write_group: Write Group
2860 * @bgn_curr: Current window begin
2861 * @end_curr: Current window end
2862 * @bgn_best: Current best window begin
2863 * @end_best: Current best window end
2864 * @win_best: Size of the best window
2865 * @new_dqs: New DQS value (only applicable if search_dm = 0).
2866 *
2867 * Search for the/part of the window with DM/DQS shift.
2868 */
2869 static void search_window(const int search_dm,
2870 const u32 rank_bgn, const u32 write_group,
2871 int *bgn_curr, int *end_curr, int *bgn_best,
2872 int *end_best, int *win_best, int new_dqs)
2873 {
2874 u32 bit_chk;
2875 const int max = iocfg->io_out1_delay_max - new_dqs;
2876 int d, di;
2877
2878 /* Search for the/part of the window with DM/DQS shift. */
2879 for (di = max; di >= 0; di -= DELTA_D) {
2880 if (search_dm) {
2881 d = di;
2882 scc_mgr_apply_group_dm_out1_delay(d);
2883 } else {
2884 /* For DQS, we go from 0...max */
2885 d = max - di;
2886 /*
2887 * Note: This only shifts DQS, so are we limiting
2888 * ourselves to width of DQ unnecessarily.
2889 */
2890 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2891 d + new_dqs);
2892 }
2893
2894 writel(0, &sdr_scc_mgr->update);
2895
2896 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2897 PASS_ALL_BITS, &bit_chk,
2898 0)) {
2899 /* Set current end of the window. */
2900 *end_curr = search_dm ? -d : d;
2901
2902 /*
2903 * If a starting edge of our window has not been seen
2904 * this is our current start of the DM window.
2905 */
2906 if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2907 *bgn_curr = search_dm ? -d : d;
2908
2909 /*
2910 * If current window is bigger than best seen.
2911 * Set best seen to be current window.
2912 */
2913 if ((*end_curr - *bgn_curr + 1) > *win_best) {
2914 *win_best = *end_curr - *bgn_curr + 1;
2915 *bgn_best = *bgn_curr;
2916 *end_best = *end_curr;
2917 }
2918 } else {
2919 /* We just saw a failing test. Reset temp edge. */
2920 *bgn_curr = iocfg->io_out1_delay_max + 1;
2921 *end_curr = iocfg->io_out1_delay_max + 1;
2922
2923 /* Early exit is only applicable to DQS. */
2924 if (search_dm)
2925 continue;
2926
2927 /*
2928 * Early exit optimization: if the remaining delay
2929 * chain space is less than already seen largest
2930 * window we can exit.
2931 */
2932 if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2933 break;
2934 }
2935 }
2936 }
2937
2938 /*
2939 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2940 * @rank_bgn: Rank number
2941 * @write_group: Write group
2942 * @test_bgn: Rank at which the test begins
2943 *
2944 * Center all windows. Do per-bit-deskew to possibly increase size of
2945 * certain windows.
2946 */
2947 static int
2948 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2949 const u32 test_bgn)
2950 {
2951 int i;
2952 u32 sticky_bit_chk;
2953 u32 min_index;
2954 int left_edge[rwcfg->mem_dq_per_write_dqs];
2955 int right_edge[rwcfg->mem_dq_per_write_dqs];
2956 int mid;
2957 int mid_min, orig_mid_min;
2958 int new_dqs, start_dqs;
2959 int dq_margin, dqs_margin, dm_margin;
2960 int bgn_curr = iocfg->io_out1_delay_max + 1;
2961 int end_curr = iocfg->io_out1_delay_max + 1;
2962 int bgn_best = iocfg->io_out1_delay_max + 1;
2963 int end_best = iocfg->io_out1_delay_max + 1;
2964 int win_best = 0;
2965
2966 int ret;
2967
2968 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2969
2970 dm_margin = 0;
2971
2972 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2973 SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2974 (rwcfg->mem_dq_per_write_dqs << 2));
2975
2976 /* Per-bit deskew. */
2977
2978 /*
2979 * Set the left and right edge of each bit to an illegal value.
2980 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2981 */
2982 sticky_bit_chk = 0;
2983 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2984 left_edge[i] = iocfg->io_out1_delay_max + 1;
2985 right_edge[i] = iocfg->io_out1_delay_max + 1;
2986 }
2987
2988 /* Search for the left edge of the window for each bit. */
2989 search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2990 &sticky_bit_chk,
2991 left_edge, right_edge, 0);
2992
2993 /* Search for the right edge of the window for each bit. */
2994 ret = search_right_edge(1, rank_bgn, write_group, 0,
2995 start_dqs, 0,
2996 &sticky_bit_chk,
2997 left_edge, right_edge, 0);
2998 if (ret) {
2999 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3000 CAL_SUBSTAGE_WRITES_CENTER);
3001 return -EINVAL;
3002 }
3003
3004 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3005
3006 /* Determine the amount we can change DQS (which is -mid_min). */
3007 orig_mid_min = mid_min;
3008 new_dqs = start_dqs;
3009 mid_min = 0;
3010 debug_cond(DLEVEL >= 1,
3011 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3012 __func__, __LINE__, start_dqs, new_dqs, mid_min);
3013
3014 /* Add delay to bring centre of all DQ windows to the same "level". */
3015 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3016 min_index, 0, &dq_margin, &dqs_margin);
3017
3018 /* Move DQS */
3019 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3020 writel(0, &sdr_scc_mgr->update);
3021
3022 /* Centre DM */
3023 debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3024
3025 /*
3026 * Set the left and right edge of each bit to an illegal value.
3027 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3028 */
3029 left_edge[0] = iocfg->io_out1_delay_max + 1;
3030 right_edge[0] = iocfg->io_out1_delay_max + 1;
3031
3032 /* Search for the/part of the window with DM shift. */
3033 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3034 &bgn_best, &end_best, &win_best, 0);
3035
3036 /* Reset DM delay chains to 0. */
3037 scc_mgr_apply_group_dm_out1_delay(0);
3038
3039 /*
3040 * Check to see if the current window nudges up aganist 0 delay.
3041 * If so we need to continue the search by shifting DQS otherwise DQS
3042 * search begins as a new search.
3043 */
3044 if (end_curr != 0) {
3045 bgn_curr = iocfg->io_out1_delay_max + 1;
3046 end_curr = iocfg->io_out1_delay_max + 1;
3047 }
3048
3049 /* Search for the/part of the window with DQS shifts. */
3050 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3051 &bgn_best, &end_best, &win_best, new_dqs);
3052
3053 /* Assign left and right edge for cal and reporting. */
3054 left_edge[0] = -1 * bgn_best;
3055 right_edge[0] = end_best;
3056
3057 debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3058 __func__, __LINE__, left_edge[0], right_edge[0]);
3059
3060 /* Move DQS (back to orig). */
3061 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3062
3063 /* Move DM */
3064
3065 /* Find middle of window for the DM bit. */
3066 mid = (left_edge[0] - right_edge[0]) / 2;
3067
3068 /* Only move right, since we are not moving DQS/DQ. */
3069 if (mid < 0)
3070 mid = 0;
3071
3072 /* dm_marign should fail if we never find a window. */
3073 if (win_best == 0)
3074 dm_margin = -1;
3075 else
3076 dm_margin = left_edge[0] - mid;
3077
3078 scc_mgr_apply_group_dm_out1_delay(mid);
3079 writel(0, &sdr_scc_mgr->update);
3080
3081 debug_cond(DLEVEL >= 2,
3082 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3083 __func__, __LINE__, left_edge[0], right_edge[0],
3084 mid, dm_margin);
3085 /* Export values. */
3086 gbl->fom_out += dq_margin + dqs_margin;
3087
3088 debug_cond(DLEVEL >= 2,
3089 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3090 __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3091
3092 /*
3093 * Do not remove this line as it makes sure all of our
3094 * decisions have been applied.
3095 */
3096 writel(0, &sdr_scc_mgr->update);
3097
3098 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3099 return -EINVAL;
3100
3101 return 0;
3102 }
3103
3104 /**
3105 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3106 * @rank_bgn: Rank number
3107 * @group: Read/Write Group
3108 * @test_bgn: Rank at which the test begins
3109 *
3110 * Stage 2: Write Calibration Part One.
3111 *
3112 * This function implements UniPHY calibration Stage 2, as explained in
3113 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3114 */
3115 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3116 const u32 test_bgn)
3117 {
3118 int ret;
3119
3120 /* Update info for sims */
3121 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3122
3123 reg_file_set_group(group);
3124 reg_file_set_stage(CAL_STAGE_WRITES);
3125 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3126
3127 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3128 if (ret)
3129 set_failing_group_stage(group, CAL_STAGE_WRITES,
3130 CAL_SUBSTAGE_WRITES_CENTER);
3131
3132 return ret;
3133 }
3134
3135 /**
3136 * mem_precharge_and_activate() - Precharge all banks and activate
3137 *
3138 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3139 */
3140 static void mem_precharge_and_activate(void)
3141 {
3142 int r;
3143
3144 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3145 /* Set rank. */
3146 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3147
3148 /* Precharge all banks. */
3149 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151
3152 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3153 writel(rwcfg->activate_0_and_1_wait1,
3154 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3155
3156 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3157 writel(rwcfg->activate_0_and_1_wait2,
3158 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3159
3160 /* Activate rows. */
3161 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3162 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3163 }
3164 }
3165
3166 /**
3167 * mem_init_latency() - Configure memory RLAT and WLAT settings
3168 *
3169 * Configure memory RLAT and WLAT parameters.
3170 */
3171 static void mem_init_latency(void)
3172 {
3173 /*
3174 * For AV/CV, LFIFO is hardened and always runs at full rate
3175 * so max latency in AFI clocks, used here, is correspondingly
3176 * smaller.
3177 */
3178 const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3179 u32 rlat, wlat;
3180
3181 debug("%s:%d\n", __func__, __LINE__);
3182
3183 /*
3184 * Read in write latency.
3185 * WL for Hard PHY does not include additive latency.
3186 */
3187 wlat = readl(&data_mgr->t_wl_add);
3188 wlat += readl(&data_mgr->mem_t_add);
3189
3190 gbl->rw_wl_nop_cycles = wlat - 1;
3191
3192 /* Read in readl latency. */
3193 rlat = readl(&data_mgr->t_rl_add);
3194
3195 /* Set a pretty high read latency initially. */
3196 gbl->curr_read_lat = rlat + 16;
3197 if (gbl->curr_read_lat > max_latency)
3198 gbl->curr_read_lat = max_latency;
3199
3200 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3201
3202 /* Advertise write latency. */
3203 writel(wlat, &phy_mgr_cfg->afi_wlat);
3204 }
3205
3206 /**
3207 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3208 *
3209 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3210 */
3211 static void mem_skip_calibrate(void)
3212 {
3213 u32 vfifo_offset;
3214 u32 i, j, r;
3215
3216 debug("%s:%d\n", __func__, __LINE__);
3217 /* Need to update every shadow register set used by the interface */
3218 for (r = 0; r < rwcfg->mem_number_of_ranks;
3219 r += NUM_RANKS_PER_SHADOW_REG) {
3220 /*
3221 * Set output phase alignment settings appropriate for
3222 * skip calibration.
3223 */
3224 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3225 scc_mgr_set_dqs_en_phase(i, 0);
3226 if (iocfg->dll_chain_length == 6)
3227 scc_mgr_set_dqdqs_output_phase(i, 6);
3228 else
3229 scc_mgr_set_dqdqs_output_phase(i, 7);
3230 /*
3231 * Case:33398
3232 *
3233 * Write data arrives to the I/O two cycles before write
3234 * latency is reached (720 deg).
3235 * -> due to bit-slip in a/c bus
3236 * -> to allow board skew where dqs is longer than ck
3237 * -> how often can this happen!?
3238 * -> can claim back some ptaps for high freq
3239 * support if we can relax this, but i digress...
3240 *
3241 * The write_clk leads mem_ck by 90 deg
3242 * The minimum ptap of the OPA is 180 deg
3243 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3244 * The write_clk is always delayed by 2 ptaps
3245 *
3246 * Hence, to make DQS aligned to CK, we need to delay
3247 * DQS by:
3248 * (720 - 90 - 180 - 2) *
3249 * (360 / iocfg->dll_chain_length)
3250 *
3251 * Dividing the above by (360 / iocfg->dll_chain_length)
3252 * gives us the number of ptaps, which simplies to:
3253 *
3254 * (1.25 * iocfg->dll_chain_length - 2)
3255 */
3256 scc_mgr_set_dqdqs_output_phase(i,
3257 ((125 * iocfg->dll_chain_length) / 100) - 2);
3258 }
3259 writel(0xff, &sdr_scc_mgr->dqs_ena);
3260 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3261
3262 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3263 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3264 SCC_MGR_GROUP_COUNTER_OFFSET);
3265 }
3266 writel(0xff, &sdr_scc_mgr->dq_ena);
3267 writel(0xff, &sdr_scc_mgr->dm_ena);
3268 writel(0, &sdr_scc_mgr->update);
3269 }
3270
3271 /* Compensate for simulation model behaviour */
3272 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3273 scc_mgr_set_dqs_bus_in_delay(i, 10);
3274 scc_mgr_load_dqs(i);
3275 }
3276 writel(0, &sdr_scc_mgr->update);
3277
3278 /*
3279 * ArriaV has hard FIFOs that can only be initialized by incrementing
3280 * in sequencer.
3281 */
3282 vfifo_offset = misccfg->calib_vfifo_offset;
3283 for (j = 0; j < vfifo_offset; j++)
3284 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3285 writel(0, &phy_mgr_cmd->fifo_reset);
3286
3287 /*
3288 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3289 * setting from generation-time constant.
3290 */
3291 gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3292 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3293 }
3294
3295 /**
3296 * mem_calibrate() - Memory calibration entry point.
3297 *
3298 * Perform memory calibration.
3299 */
3300 static u32 mem_calibrate(void)
3301 {
3302 u32 i;
3303 u32 rank_bgn, sr;
3304 u32 write_group, write_test_bgn;
3305 u32 read_group, read_test_bgn;
3306 u32 run_groups, current_run;
3307 u32 failing_groups = 0;
3308 u32 group_failed = 0;
3309
3310 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3311 rwcfg->mem_if_write_dqs_width;
3312
3313 debug("%s:%d\n", __func__, __LINE__);
3314
3315 /* Initialize the data settings */
3316 gbl->error_substage = CAL_SUBSTAGE_NIL;
3317 gbl->error_stage = CAL_STAGE_NIL;
3318 gbl->error_group = 0xff;
3319 gbl->fom_in = 0;
3320 gbl->fom_out = 0;
3321
3322 /* Initialize WLAT and RLAT. */
3323 mem_init_latency();
3324
3325 /* Initialize bit slips. */
3326 mem_precharge_and_activate();
3327
3328 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3329 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3330 SCC_MGR_GROUP_COUNTER_OFFSET);
3331 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3332 if (i == 0)
3333 scc_mgr_set_hhp_extras();
3334
3335 scc_set_bypass_mode(i);
3336 }
3337
3338 /* Calibration is skipped. */
3339 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3340 /*
3341 * Set VFIFO and LFIFO to instant-on settings in skip
3342 * calibration mode.
3343 */
3344 mem_skip_calibrate();
3345
3346 /*
3347 * Do not remove this line as it makes sure all of our
3348 * decisions have been applied.
3349 */
3350 writel(0, &sdr_scc_mgr->update);
3351 return 1;
3352 }
3353
3354 /* Calibration is not skipped. */
3355 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3356 /*
3357 * Zero all delay chain/phase settings for all
3358 * groups and all shadow register sets.
3359 */
3360 scc_mgr_zero_all();
3361
3362 run_groups = ~0;
3363
3364 for (write_group = 0, write_test_bgn = 0; write_group
3365 < rwcfg->mem_if_write_dqs_width; write_group++,
3366 write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3367 /* Initialize the group failure */
3368 group_failed = 0;
3369
3370 current_run = run_groups & ((1 <<
3371 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3372 run_groups = run_groups >>
3373 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3374
3375 if (current_run == 0)
3376 continue;
3377
3378 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3379 SCC_MGR_GROUP_COUNTER_OFFSET);
3380 scc_mgr_zero_group(write_group, 0);
3381
3382 for (read_group = write_group * rwdqs_ratio,
3383 read_test_bgn = 0;
3384 read_group < (write_group + 1) * rwdqs_ratio;
3385 read_group++,
3386 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3387 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3388 continue;
3389
3390 /* Calibrate the VFIFO */
3391 if (rw_mgr_mem_calibrate_vfifo(read_group,
3392 read_test_bgn))
3393 continue;
3394
3395 if (!(gbl->phy_debug_mode_flags &
3396 PHY_DEBUG_SWEEP_ALL_GROUPS))
3397 return 0;
3398
3399 /* The group failed, we're done. */
3400 goto grp_failed;
3401 }
3402
3403 /* Calibrate the output side */
3404 for (rank_bgn = 0, sr = 0;
3405 rank_bgn < rwcfg->mem_number_of_ranks;
3406 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3407 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3408 continue;
3409
3410 /* Not needed in quick mode! */
3411 if (STATIC_CALIB_STEPS &
3412 CALIB_SKIP_DELAY_SWEEPS)
3413 continue;
3414
3415 /* Calibrate WRITEs */
3416 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3417 write_group,
3418 write_test_bgn))
3419 continue;
3420
3421 group_failed = 1;
3422 if (!(gbl->phy_debug_mode_flags &
3423 PHY_DEBUG_SWEEP_ALL_GROUPS))
3424 return 0;
3425 }
3426
3427 /* Some group failed, we're done. */
3428 if (group_failed)
3429 goto grp_failed;
3430
3431 for (read_group = write_group * rwdqs_ratio,
3432 read_test_bgn = 0;
3433 read_group < (write_group + 1) * rwdqs_ratio;
3434 read_group++,
3435 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3436 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3437 continue;
3438
3439 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3440 read_test_bgn))
3441 continue;
3442
3443 if (!(gbl->phy_debug_mode_flags &
3444 PHY_DEBUG_SWEEP_ALL_GROUPS))
3445 return 0;
3446
3447 /* The group failed, we're done. */
3448 goto grp_failed;
3449 }
3450
3451 /* No group failed, continue as usual. */
3452 continue;
3453
3454 grp_failed: /* A group failed, increment the counter. */
3455 failing_groups++;
3456 }
3457
3458 /*
3459 * USER If there are any failing groups then report
3460 * the failure.
3461 */
3462 if (failing_groups != 0)
3463 return 0;
3464
3465 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3466 continue;
3467
3468 /* Calibrate the LFIFO */
3469 if (!rw_mgr_mem_calibrate_lfifo())
3470 return 0;
3471 }
3472
3473 /*
3474 * Do not remove this line as it makes sure all of our decisions
3475 * have been applied.
3476 */
3477 writel(0, &sdr_scc_mgr->update);
3478 return 1;
3479 }
3480
3481 /**
3482 * run_mem_calibrate() - Perform memory calibration
3483 *
3484 * This function triggers the entire memory calibration procedure.
3485 */
3486 static int run_mem_calibrate(void)
3487 {
3488 int pass;
3489 u32 ctrl_cfg;
3490
3491 debug("%s:%d\n", __func__, __LINE__);
3492
3493 /* Reset pass/fail status shown on afi_cal_success/fail */
3494 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3495
3496 /* Stop tracking manager. */
3497 ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3498 writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3499 &sdr_ctrl->ctrl_cfg);
3500
3501 phy_mgr_initialize();
3502 rw_mgr_mem_initialize();
3503
3504 /* Perform the actual memory calibration. */
3505 pass = mem_calibrate();
3506
3507 mem_precharge_and_activate();
3508 writel(0, &phy_mgr_cmd->fifo_reset);
3509
3510 /* Handoff. */
3511 rw_mgr_mem_handoff();
3512 /*
3513 * In Hard PHY this is a 2-bit control:
3514 * 0: AFI Mux Select
3515 * 1: DDIO Mux Select
3516 */
3517 writel(0x2, &phy_mgr_cfg->mux_sel);
3518
3519 /* Start tracking manager. */
3520 writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3521
3522 return pass;
3523 }
3524
3525 /**
3526 * debug_mem_calibrate() - Report result of memory calibration
3527 * @pass: Value indicating whether calibration passed or failed
3528 *
3529 * This function reports the results of the memory calibration
3530 * and writes debug information into the register file.
3531 */
3532 static void debug_mem_calibrate(int pass)
3533 {
3534 u32 debug_info;
3535
3536 if (pass) {
3537 printf("%s: CALIBRATION PASSED\n", __FILE__);
3538
3539 gbl->fom_in /= 2;
3540 gbl->fom_out /= 2;
3541
3542 if (gbl->fom_in > 0xff)
3543 gbl->fom_in = 0xff;
3544
3545 if (gbl->fom_out > 0xff)
3546 gbl->fom_out = 0xff;
3547
3548 /* Update the FOM in the register file */
3549 debug_info = gbl->fom_in;
3550 debug_info |= gbl->fom_out << 8;
3551 writel(debug_info, &sdr_reg_file->fom);
3552
3553 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3554 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3555 } else {
3556 printf("%s: CALIBRATION FAILED\n", __FILE__);
3557
3558 debug_info = gbl->error_stage;
3559 debug_info |= gbl->error_substage << 8;
3560 debug_info |= gbl->error_group << 16;
3561
3562 writel(debug_info, &sdr_reg_file->failing_stage);
3563 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3564 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3565
3566 /* Update the failing group/stage in the register file */
3567 debug_info = gbl->error_stage;
3568 debug_info |= gbl->error_substage << 8;
3569 debug_info |= gbl->error_group << 16;
3570 writel(debug_info, &sdr_reg_file->failing_stage);
3571 }
3572
3573 printf("%s: Calibration complete\n", __FILE__);
3574 }
3575
3576 /**
3577 * hc_initialize_rom_data() - Initialize ROM data
3578 *
3579 * Initialize ROM data.
3580 */
3581 static void hc_initialize_rom_data(void)
3582 {
3583 unsigned int nelem = 0;
3584 const u32 *rom_init;
3585 u32 i, addr;
3586
3587 socfpga_get_seq_inst_init(&rom_init, &nelem);
3588 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3589 for (i = 0; i < nelem; i++)
3590 writel(rom_init[i], addr + (i << 2));
3591
3592 socfpga_get_seq_ac_init(&rom_init, &nelem);
3593 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3594 for (i = 0; i < nelem; i++)
3595 writel(rom_init[i], addr + (i << 2));
3596 }
3597
3598 /**
3599 * initialize_reg_file() - Initialize SDR register file
3600 *
3601 * Initialize SDR register file.
3602 */
3603 static void initialize_reg_file(void)
3604 {
3605 /* Initialize the register file with the correct data */
3606 writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3607 writel(0, &sdr_reg_file->debug_data_addr);
3608 writel(0, &sdr_reg_file->cur_stage);
3609 writel(0, &sdr_reg_file->fom);
3610 writel(0, &sdr_reg_file->failing_stage);
3611 writel(0, &sdr_reg_file->debug1);
3612 writel(0, &sdr_reg_file->debug2);
3613 }
3614
3615 /**
3616 * initialize_hps_phy() - Initialize HPS PHY
3617 *
3618 * Initialize HPS PHY.
3619 */
3620 static void initialize_hps_phy(void)
3621 {
3622 u32 reg;
3623 /*
3624 * Tracking also gets configured here because it's in the
3625 * same register.
3626 */
3627 u32 trk_sample_count = 7500;
3628 u32 trk_long_idle_sample_count = (10 << 16) | 100;
3629 /*
3630 * Format is number of outer loops in the 16 MSB, sample
3631 * count in 16 LSB.
3632 */
3633
3634 reg = 0;
3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3637 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3638 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3639 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3641 /*
3642 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3643 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3644 */
3645 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3646 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3647 trk_sample_count);
3648 writel(reg, &sdr_ctrl->phy_ctrl0);
3649
3650 reg = 0;
3651 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3652 trk_sample_count >>
3653 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3654 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3655 trk_long_idle_sample_count);
3656 writel(reg, &sdr_ctrl->phy_ctrl1);
3657
3658 reg = 0;
3659 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3660 trk_long_idle_sample_count >>
3661 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3662 writel(reg, &sdr_ctrl->phy_ctrl2);
3663 }
3664
3665 /**
3666 * initialize_tracking() - Initialize tracking
3667 *
3668 * Initialize the register file with usable initial data.
3669 */
3670 static void initialize_tracking(void)
3671 {
3672 /*
3673 * Initialize the register file with the correct data.
3674 * Compute usable version of value in case we skip full
3675 * computation later.
3676 */
3677 writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3678 iocfg->delay_per_dchain_tap) - 1,
3679 &sdr_reg_file->dtaps_per_ptap);
3680
3681 /* trk_sample_count */
3682 writel(7500, &sdr_reg_file->trk_sample_count);
3683
3684 /* longidle outer loop [15:0] */
3685 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3686
3687 /*
3688 * longidle sample count [31:24]
3689 * trfc, worst case of 933Mhz 4Gb [23:16]
3690 * trcd, worst case [15:8]
3691 * vfifo wait [7:0]
3692 */
3693 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3694 &sdr_reg_file->delays);
3695
3696 /* mux delay */
3697 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3698 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3699 &sdr_reg_file->trk_rw_mgr_addr);
3700
3701 writel(rwcfg->mem_if_read_dqs_width,
3702 &sdr_reg_file->trk_read_dqs_width);
3703
3704 /* trefi [7:0] */
3705 writel((rwcfg->refresh_all << 24) | (1000 << 0),
3706 &sdr_reg_file->trk_rfsh);
3707 }
3708
3709 int sdram_calibration_full(void)
3710 {
3711 struct param_type my_param;
3712 struct gbl_type my_gbl;
3713 u32 pass;
3714
3715 memset(&my_param, 0, sizeof(my_param));
3716 memset(&my_gbl, 0, sizeof(my_gbl));
3717
3718 param = &my_param;
3719 gbl = &my_gbl;
3720
3721 rwcfg = socfpga_get_sdram_rwmgr_config();
3722 iocfg = socfpga_get_sdram_io_config();
3723 misccfg = socfpga_get_sdram_misc_config();
3724
3725 /* Set the calibration enabled by default */
3726 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3727 /*
3728 * Only sweep all groups (regardless of fail state) by default
3729 * Set enabled read test by default.
3730 */
3731 #if DISABLE_GUARANTEED_READ
3732 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3733 #endif
3734 /* Initialize the register file */
3735 initialize_reg_file();
3736
3737 /* Initialize any PHY CSR */
3738 initialize_hps_phy();
3739
3740 scc_mgr_initialize();
3741
3742 initialize_tracking();
3743
3744 printf("%s: Preparing to start memory calibration\n", __FILE__);
3745
3746 debug("%s:%d\n", __func__, __LINE__);
3747 debug_cond(DLEVEL >= 1,
3748 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3749 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3750 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3751 rwcfg->mem_virtual_groups_per_read_dqs,
3752 rwcfg->mem_virtual_groups_per_write_dqs);
3753 debug_cond(DLEVEL >= 1,
3754 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3755 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3756 rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3757 iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3758 debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3759 iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3760 debug_cond(DLEVEL >= 1,
3761 "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3762 iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3763 iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3764 debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3765 iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3766 iocfg->io_out2_delay_max);
3767 debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3768 iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3769
3770 hc_initialize_rom_data();
3771
3772 /* update info for sims */
3773 reg_file_set_stage(CAL_STAGE_NIL);
3774 reg_file_set_group(0);
3775
3776 /*
3777 * Load global needed for those actions that require
3778 * some dynamic calibration support.
3779 */
3780 dyn_calib_steps = STATIC_CALIB_STEPS;
3781 /*
3782 * Load global to allow dynamic selection of delay loop settings
3783 * based on calibration mode.
3784 */
3785 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3786 skip_delay_mask = 0xff;
3787 else
3788 skip_delay_mask = 0x0;
3789
3790 pass = run_mem_calibrate();
3791 debug_mem_calibrate(pass);
3792 return pass;
3793 }