]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/fsl/ddr1_dimm_params.c
Add more SPDX-License-Identifier tags
[people/ms/u-boot.git] / drivers / ddr / fsl / ddr1_dimm_params.c
1 /*
2 * Copyright 2008 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7 #include <common.h>
8 #include <fsl_ddr_sdram.h>
9
10 #include <fsl_ddr.h>
11
12 /*
13 * Calculate the Density of each Physical Rank.
14 * Returned size is in bytes.
15 *
16 * Study these table from Byte 31 of JEDEC SPD Spec.
17 *
18 * DDR I DDR II
19 * Bit Size Size
20 * --- ----- ------
21 * 7 high 512MB 512MB
22 * 6 256MB 256MB
23 * 5 128MB 128MB
24 * 4 64MB 16GB
25 * 3 32MB 8GB
26 * 2 16MB 4GB
27 * 1 2GB 2GB
28 * 0 low 1GB 1GB
29 *
30 * Reorder Table to be linear by stripping the bottom
31 * 2 or 5 bits off and shifting them up to the top.
32 */
33
34 static unsigned long long
35 compute_ranksize(unsigned int mem_type, unsigned char row_dens)
36 {
37 unsigned long long bsize;
38
39 /* Bottom 2 bits up to the top. */
40 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
41 bsize <<= 24ULL;
42 debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
43
44 return bsize;
45 }
46
47 /*
48 * Convert a two-nibble BCD value into a cycle time.
49 * While the spec calls for nano-seconds, picos are returned.
50 *
51 * This implements the tables for bytes 9, 23 and 25 for both
52 * DDR I and II. No allowance for distinguishing the invalid
53 * fields absent for DDR I yet present in DDR II is made.
54 * (That is, cycle times of .25, .33, .66 and .75 ns are
55 * allowed for both DDR II and I.)
56 */
57 static unsigned int
58 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
59 {
60 /* Table look up the lower nibble, allow DDR I & II. */
61 unsigned int tenths_ps[16] = {
62 0,
63 100,
64 200,
65 300,
66 400,
67 500,
68 600,
69 700,
70 800,
71 900,
72 250, /* This and the next 3 entries valid ... */
73 330, /* ... only for tCK calculations. */
74 660,
75 750,
76 0, /* undefined */
77 0 /* undefined */
78 };
79
80 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
81 unsigned int tenth_ns = spd_val & 0x0F;
82 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
83
84 return ps;
85 }
86
87 static unsigned int
88 convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
89 {
90 unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
91 unsigned int hundredth_ns = spd_val & 0x0F;
92 unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
93
94 return ps;
95 }
96
97 static unsigned int byte40_table_ps[8] = {
98 0,
99 250,
100 330,
101 500,
102 660,
103 750,
104 0, /* supposed to be RFC, but not sure what that means */
105 0 /* Undefined */
106 };
107
108 static unsigned int
109 compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
110 {
111 unsigned int trfc_ps;
112
113 trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
114 + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
115
116 return trfc_ps;
117 }
118
119 static unsigned int
120 compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
121 {
122 unsigned int trc_ps;
123
124 trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
125
126 return trc_ps;
127 }
128
129 /*
130 * tCKmax from DDR I SPD Byte 43
131 *
132 * Bits 7:2 == whole ns
133 * Bits 1:0 == quarter ns
134 * 00 == 0.00 ns
135 * 01 == 0.25 ns
136 * 10 == 0.50 ns
137 * 11 == 0.75 ns
138 *
139 * Returns picoseconds.
140 */
141 static unsigned int
142 compute_tckmax_from_spd_ps(unsigned int byte43)
143 {
144 return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
145 }
146
147 /*
148 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
149 * Table from SPD Spec, Byte 12, converted to picoseconds and
150 * filled in with "default" normal values.
151 */
152 static unsigned int
153 determine_refresh_rate_ps(const unsigned int spd_refresh)
154 {
155 unsigned int refresh_time_ps[8] = {
156 15625000, /* 0 Normal 1.00x */
157 3900000, /* 1 Reduced .25x */
158 7800000, /* 2 Extended .50x */
159 31300000, /* 3 Extended 2.00x */
160 62500000, /* 4 Extended 4.00x */
161 125000000, /* 5 Extended 8.00x */
162 15625000, /* 6 Normal 1.00x filler */
163 15625000, /* 7 Normal 1.00x filler */
164 };
165
166 return refresh_time_ps[spd_refresh & 0x7];
167 }
168
169 /*
170 * The purpose of this function is to compute a suitable
171 * CAS latency given the DRAM clock period. The SPD only
172 * defines at most 3 CAS latencies. Typically the slower in
173 * frequency the DIMM runs at, the shorter its CAS latency can be.
174 * If the DIMM is operating at a sufficiently low frequency,
175 * it may be able to run at a CAS latency shorter than the
176 * shortest SPD-defined CAS latency.
177 *
178 * If a CAS latency is not found, 0 is returned.
179 *
180 * Do this by finding in the standard speed bin table the longest
181 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
182 *
183 * An assumption made is that the SDRAM device allows the
184 * CL to be programmed for a value that is lower than those
185 * advertised by the SPD. This is not always the case,
186 * as those modes not defined in the SPD are optional.
187 *
188 * CAS latency de-rating based upon values JEDEC Standard No. 79-E
189 * Table 11.
190 *
191 * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
192 */
193 /* CL2.0 CL2.5 CL3.0 */
194 unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
195
196 unsigned int
197 compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
198 {
199 const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
200 unsigned int lowest_tCKmin_found = 0;
201 unsigned int lowest_tCKmin_CL = 0;
202 unsigned int i;
203
204 debug("mclk_ps = %u\n", mclk_ps);
205
206 for (i = 0; i < num_speed_bins; i++) {
207 unsigned int x = ddr1_speed_bins[i];
208 debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
209 i, x, lowest_tCKmin_found);
210 if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
211 lowest_tCKmin_found = x;
212 lowest_tCKmin_CL = i + 1;
213 }
214 }
215
216 debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
217
218 return lowest_tCKmin_CL;
219 }
220
221 /*
222 * ddr_compute_dimm_parameters for DDR1 SPD
223 *
224 * Compute DIMM parameters based upon the SPD information in spd.
225 * Writes the results to the dimm_params_t structure pointed by pdimm.
226 *
227 * FIXME: use #define for the retvals
228 */
229 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
230 const ddr1_spd_eeprom_t *spd,
231 dimm_params_t *pdimm,
232 unsigned int dimm_number)
233 {
234 unsigned int retval;
235
236 if (spd->mem_type) {
237 if (spd->mem_type != SPD_MEMTYPE_DDR) {
238 printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
239 return 1;
240 }
241 } else {
242 memset(pdimm, 0, sizeof(dimm_params_t));
243 return 1;
244 }
245
246 retval = ddr1_spd_check(spd);
247 if (retval) {
248 printf("DIMM %u: failed checksum\n", dimm_number);
249 return 2;
250 }
251
252 /*
253 * The part name in ASCII in the SPD EEPROM is not null terminated.
254 * Guarantee null termination here by presetting all bytes to 0
255 * and copying the part name in ASCII from the SPD onto it
256 */
257 memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
258 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
259
260 /* DIMM organization parameters */
261 pdimm->n_ranks = spd->nrows;
262 pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
263 pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
264 pdimm->data_width = spd->dataw_lsb;
265 pdimm->primary_sdram_width = spd->primw;
266 pdimm->ec_sdram_width = spd->ecw;
267
268 /*
269 * FIXME: Need to determine registered_dimm status.
270 * 1 == register buffered
271 * 0 == unbuffered
272 */
273 pdimm->registered_dimm = 0; /* unbuffered */
274
275 /* SDRAM device parameters */
276 pdimm->n_row_addr = spd->nrow_addr;
277 pdimm->n_col_addr = spd->ncol_addr;
278 pdimm->n_banks_per_sdram_device = spd->nbanks;
279 pdimm->edc_config = spd->config;
280 pdimm->burst_lengths_bitmask = spd->burstl;
281 pdimm->row_density = spd->bank_dens;
282
283 /*
284 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
285 * The SPD clk_cycle field (tCKmin) is measured in tenths of
286 * nanoseconds and represented as BCD.
287 */
288 pdimm->tckmin_x_ps
289 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
290 pdimm->tckmin_x_minus_1_ps
291 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
292 pdimm->tckmin_x_minus_2_ps
293 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
294
295 pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
296
297 /*
298 * Compute CAS latencies defined by SPD
299 * The SPD caslat_x should have at least 1 and at most 3 bits set.
300 *
301 * If cas_lat after masking is 0, the __ilog2 function returns
302 * 255 into the variable. This behavior is abused once.
303 */
304 pdimm->caslat_x = __ilog2(spd->cas_lat);
305 pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
306 & ~(1 << pdimm->caslat_x));
307 pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
308 & ~(1 << pdimm->caslat_x)
309 & ~(1 << pdimm->caslat_x_minus_1));
310
311 /* Compute CAS latencies below that defined by SPD */
312 pdimm->caslat_lowest_derated = compute_derated_DDR1_CAS_latency(
313 get_memory_clk_period_ps(ctrl_num));
314
315 /* Compute timing parameters */
316 pdimm->trcd_ps = spd->trcd * 250;
317 pdimm->trp_ps = spd->trp * 250;
318 pdimm->tras_ps = spd->tras * 1000;
319
320 pdimm->twr_ps = mclk_to_picos(ctrl_num, 3);
321 pdimm->twtr_ps = mclk_to_picos(ctrl_num, 1);
322 pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
323
324 pdimm->trrd_ps = spd->trrd * 250;
325 pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
326
327 pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
328
329 pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
330 pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
331 pdimm->tds_ps
332 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
333 pdimm->tdh_ps
334 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
335
336 pdimm->trtp_ps = mclk_to_picos(ctrl_num, 2); /* By the book. */
337 pdimm->tdqsq_max_ps = spd->tdqsq * 10;
338 pdimm->tqhs_ps = spd->tqhs * 10;
339
340 return 0;
341 }