]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/e1000.c
Cleanup for GCC-4.x
[people/ms/u-boot.git] / drivers / e1000.c
1 /**************************************************************************
2 Inter Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
15 any later version.
16
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 more details.
21
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
28
29 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45 #include "e1000.h"
46
47 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
48 defined(CONFIG_E1000)
49
50 #define TOUT_LOOP 100000
51
52 #undef virt_to_bus
53 #define virt_to_bus(x) ((unsigned long)x)
54 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
55 #define mdelay(n) udelay((n)*1000)
56
57 #define E1000_DEFAULT_PBA 0x00000030
58
59 /* NIC specific static variables go here */
60
61 static char tx_pool[128 + 16];
62 static char rx_pool[128 + 16];
63 static char packet[2096];
64
65 static struct e1000_tx_desc *tx_base;
66 static struct e1000_rx_desc *rx_base;
67
68 static int tx_tail;
69 static int rx_tail, rx_last;
70
71 static struct pci_device_id supported[] = {
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 };
86
87 /* Function forward declarations */
88 static int e1000_setup_link(struct eth_device *nic);
89 static int e1000_setup_fiber_link(struct eth_device *nic);
90 static int e1000_setup_copper_link(struct eth_device *nic);
91 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
92 static void e1000_config_collision_dist(struct e1000_hw *hw);
93 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
94 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
95 static int e1000_check_for_link(struct eth_device *nic);
96 static int e1000_wait_autoneg(struct e1000_hw *hw);
97 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
98 uint16_t * duplex);
99 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
100 uint16_t * phy_data);
101 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
102 uint16_t phy_data);
103 static void e1000_phy_hw_reset(struct e1000_hw *hw);
104 static int e1000_phy_reset(struct e1000_hw *hw);
105 static int e1000_detect_gig_phy(struct e1000_hw *hw);
106
107 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
108 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
109 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
110 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
111 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
112 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
113 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
114
115 #ifndef CONFIG_AP1000 /* remove for warnings */
116 /******************************************************************************
117 * Raises the EEPROM's clock input.
118 *
119 * hw - Struct containing variables accessed by shared code
120 * eecd - EECD's current value
121 *****************************************************************************/
122 static void
123 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
124 {
125 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
126 * wait 50 microseconds.
127 */
128 *eecd = *eecd | E1000_EECD_SK;
129 E1000_WRITE_REG(hw, EECD, *eecd);
130 E1000_WRITE_FLUSH(hw);
131 udelay(50);
132 }
133
134 /******************************************************************************
135 * Lowers the EEPROM's clock input.
136 *
137 * hw - Struct containing variables accessed by shared code
138 * eecd - EECD's current value
139 *****************************************************************************/
140 static void
141 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
142 {
143 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
144 * wait 50 microseconds.
145 */
146 *eecd = *eecd & ~E1000_EECD_SK;
147 E1000_WRITE_REG(hw, EECD, *eecd);
148 E1000_WRITE_FLUSH(hw);
149 udelay(50);
150 }
151
152 /******************************************************************************
153 * Shift data bits out to the EEPROM.
154 *
155 * hw - Struct containing variables accessed by shared code
156 * data - data to send to the EEPROM
157 * count - number of bits to shift out
158 *****************************************************************************/
159 static void
160 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
161 {
162 uint32_t eecd;
163 uint32_t mask;
164
165 /* We need to shift "count" bits out to the EEPROM. So, value in the
166 * "data" parameter will be shifted out to the EEPROM one bit at a time.
167 * In order to do this, "data" must be broken down into bits.
168 */
169 mask = 0x01 << (count - 1);
170 eecd = E1000_READ_REG(hw, EECD);
171 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
172 do {
173 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
174 * and then raising and then lowering the clock (the SK bit controls
175 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
176 * by setting "DI" to "0" and then raising and then lowering the clock.
177 */
178 eecd &= ~E1000_EECD_DI;
179
180 if (data & mask)
181 eecd |= E1000_EECD_DI;
182
183 E1000_WRITE_REG(hw, EECD, eecd);
184 E1000_WRITE_FLUSH(hw);
185
186 udelay(50);
187
188 e1000_raise_ee_clk(hw, &eecd);
189 e1000_lower_ee_clk(hw, &eecd);
190
191 mask = mask >> 1;
192
193 } while (mask);
194
195 /* We leave the "DI" bit set to "0" when we leave this routine. */
196 eecd &= ~E1000_EECD_DI;
197 E1000_WRITE_REG(hw, EECD, eecd);
198 }
199
200 /******************************************************************************
201 * Shift data bits in from the EEPROM
202 *
203 * hw - Struct containing variables accessed by shared code
204 *****************************************************************************/
205 static uint16_t
206 e1000_shift_in_ee_bits(struct e1000_hw *hw)
207 {
208 uint32_t eecd;
209 uint32_t i;
210 uint16_t data;
211
212 /* In order to read a register from the EEPROM, we need to shift 16 bits
213 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
214 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
215 * bit. During this "shifting in" process the "DI" bit should always be
216 * clear..
217 */
218
219 eecd = E1000_READ_REG(hw, EECD);
220
221 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
222 data = 0;
223
224 for (i = 0; i < 16; i++) {
225 data = data << 1;
226 e1000_raise_ee_clk(hw, &eecd);
227
228 eecd = E1000_READ_REG(hw, EECD);
229
230 eecd &= ~(E1000_EECD_DI);
231 if (eecd & E1000_EECD_DO)
232 data |= 1;
233
234 e1000_lower_ee_clk(hw, &eecd);
235 }
236
237 return data;
238 }
239
240 /******************************************************************************
241 * Prepares EEPROM for access
242 *
243 * hw - Struct containing variables accessed by shared code
244 *
245 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
246 * function should be called before issuing a command to the EEPROM.
247 *****************************************************************************/
248 static void
249 e1000_setup_eeprom(struct e1000_hw *hw)
250 {
251 uint32_t eecd;
252
253 eecd = E1000_READ_REG(hw, EECD);
254
255 /* Clear SK and DI */
256 eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
257 E1000_WRITE_REG(hw, EECD, eecd);
258
259 /* Set CS */
260 eecd |= E1000_EECD_CS;
261 E1000_WRITE_REG(hw, EECD, eecd);
262 }
263
264 /******************************************************************************
265 * Returns EEPROM to a "standby" state
266 *
267 * hw - Struct containing variables accessed by shared code
268 *****************************************************************************/
269 static void
270 e1000_standby_eeprom(struct e1000_hw *hw)
271 {
272 uint32_t eecd;
273
274 eecd = E1000_READ_REG(hw, EECD);
275
276 /* Deselct EEPROM */
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 E1000_WRITE_REG(hw, EECD, eecd);
279 E1000_WRITE_FLUSH(hw);
280 udelay(50);
281
282 /* Clock high */
283 eecd |= E1000_EECD_SK;
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 udelay(50);
287
288 /* Select EEPROM */
289 eecd |= E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(50);
293
294 /* Clock low */
295 eecd &= ~E1000_EECD_SK;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
298 udelay(50);
299 }
300
301 /******************************************************************************
302 * Reads a 16 bit word from the EEPROM.
303 *
304 * hw - Struct containing variables accessed by shared code
305 * offset - offset of word in the EEPROM to read
306 * data - word read from the EEPROM
307 *****************************************************************************/
308 static int
309 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
310 {
311 uint32_t eecd;
312 uint32_t i = 0;
313 int large_eeprom = FALSE;
314
315 /* Request EEPROM Access */
316 if (hw->mac_type > e1000_82544) {
317 eecd = E1000_READ_REG(hw, EECD);
318 if (eecd & E1000_EECD_SIZE)
319 large_eeprom = TRUE;
320 eecd |= E1000_EECD_REQ;
321 E1000_WRITE_REG(hw, EECD, eecd);
322 eecd = E1000_READ_REG(hw, EECD);
323 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
324 i++;
325 udelay(10);
326 eecd = E1000_READ_REG(hw, EECD);
327 }
328 if (!(eecd & E1000_EECD_GNT)) {
329 eecd &= ~E1000_EECD_REQ;
330 E1000_WRITE_REG(hw, EECD, eecd);
331 DEBUGOUT("Could not acquire EEPROM grant\n");
332 return -E1000_ERR_EEPROM;
333 }
334 }
335
336 /* Prepare the EEPROM for reading */
337 e1000_setup_eeprom(hw);
338
339 /* Send the READ command (opcode + addr) */
340 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
341 e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
342
343 /* Read the data */
344 *data = e1000_shift_in_ee_bits(hw);
345
346 /* End this read operation */
347 e1000_standby_eeprom(hw);
348
349 /* Stop requesting EEPROM access */
350 if (hw->mac_type > e1000_82544) {
351 eecd = E1000_READ_REG(hw, EECD);
352 eecd &= ~E1000_EECD_REQ;
353 E1000_WRITE_REG(hw, EECD, eecd);
354 }
355
356 return 0;
357 }
358
359 #if 0
360 static void
361 e1000_eeprom_cleanup(struct e1000_hw *hw)
362 {
363 uint32_t eecd;
364
365 eecd = E1000_READ_REG(hw, EECD);
366 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
367 E1000_WRITE_REG(hw, EECD, eecd);
368 e1000_raise_ee_clk(hw, &eecd);
369 e1000_lower_ee_clk(hw, &eecd);
370 }
371
372 static uint16_t
373 e1000_wait_eeprom_done(struct e1000_hw *hw)
374 {
375 uint32_t eecd;
376 uint32_t i;
377
378 e1000_standby_eeprom(hw);
379 for (i = 0; i < 200; i++) {
380 eecd = E1000_READ_REG(hw, EECD);
381 if (eecd & E1000_EECD_DO)
382 return (TRUE);
383 udelay(5);
384 }
385 return (FALSE);
386 }
387
388 static int
389 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
390 {
391 uint32_t eecd;
392 int large_eeprom = FALSE;
393 int i = 0;
394
395 /* Request EEPROM Access */
396 if (hw->mac_type > e1000_82544) {
397 eecd = E1000_READ_REG(hw, EECD);
398 if (eecd & E1000_EECD_SIZE)
399 large_eeprom = TRUE;
400 eecd |= E1000_EECD_REQ;
401 E1000_WRITE_REG(hw, EECD, eecd);
402 eecd = E1000_READ_REG(hw, EECD);
403 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
404 i++;
405 udelay(5);
406 eecd = E1000_READ_REG(hw, EECD);
407 }
408 if (!(eecd & E1000_EECD_GNT)) {
409 eecd &= ~E1000_EECD_REQ;
410 E1000_WRITE_REG(hw, EECD, eecd);
411 DEBUGOUT("Could not acquire EEPROM grant\n");
412 return FALSE;
413 }
414 }
415 e1000_setup_eeprom(hw);
416 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
417 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
418 e1000_standby_eeprom(hw);
419 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
420 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
421 e1000_shift_out_ee_bits(hw, Data, 16);
422 if (!e1000_wait_eeprom_done(hw)) {
423 return FALSE;
424 }
425 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
426 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
427 e1000_eeprom_cleanup(hw);
428
429 /* Stop requesting EEPROM access */
430 if (hw->mac_type > e1000_82544) {
431 eecd = E1000_READ_REG(hw, EECD);
432 eecd &= ~E1000_EECD_REQ;
433 E1000_WRITE_REG(hw, EECD, eecd);
434 }
435 i = 0;
436 eecd = E1000_READ_REG(hw, EECD);
437 while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
438 i++;
439 udelay(10);
440 eecd = E1000_READ_REG(hw, EECD);
441 }
442 if ((eecd & E1000_EECD_GNT)) {
443 DEBUGOUT("Could not release EEPROM grant\n");
444 }
445 return TRUE;
446 }
447 #endif
448
449 /******************************************************************************
450 * Verifies that the EEPROM has a valid checksum
451 *
452 * hw - Struct containing variables accessed by shared code
453 *
454 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
455 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
456 * valid.
457 *****************************************************************************/
458 static int
459 e1000_validate_eeprom_checksum(struct eth_device *nic)
460 {
461 struct e1000_hw *hw = nic->priv;
462 uint16_t checksum = 0;
463 uint16_t i, eeprom_data;
464
465 DEBUGFUNC();
466
467 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
468 if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
469 DEBUGOUT("EEPROM Read Error\n");
470 return -E1000_ERR_EEPROM;
471 }
472 checksum += eeprom_data;
473 }
474
475 if (checksum == (uint16_t) EEPROM_SUM) {
476 return 0;
477 } else {
478 DEBUGOUT("EEPROM Checksum Invalid\n");
479 return -E1000_ERR_EEPROM;
480 }
481 }
482 #endif /* #ifndef CONFIG_AP1000 */
483
484 /******************************************************************************
485 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
486 * second function of dual function devices
487 *
488 * nic - Struct containing variables accessed by shared code
489 *****************************************************************************/
490 static int
491 e1000_read_mac_addr(struct eth_device *nic)
492 {
493 #ifndef CONFIG_AP1000
494 struct e1000_hw *hw = nic->priv;
495 uint16_t offset;
496 uint16_t eeprom_data;
497 int i;
498
499 DEBUGFUNC();
500
501 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
502 offset = i >> 1;
503 if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
504 DEBUGOUT("EEPROM Read Error\n");
505 return -E1000_ERR_EEPROM;
506 }
507 nic->enetaddr[i] = eeprom_data & 0xff;
508 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
509 }
510 if ((hw->mac_type == e1000_82546) &&
511 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
512 /* Invert the last bit if this is the second device */
513 nic->enetaddr[5] += 1;
514 }
515 #else
516 /*
517 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
518 * environment variables. Currently this does not support the addition
519 * of a PMC e1000 card, which is certainly a possibility, so this should
520 * be updated to properly use the env variable only for the onboard e1000
521 */
522
523 int ii;
524 char *s, *e;
525
526 DEBUGFUNC();
527
528 s = getenv ("ethaddr");
529 if (s == NULL){
530 return -E1000_ERR_EEPROM;
531 }
532 else{
533 for(ii = 0; ii < 6; ii++) {
534 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
535 if (s){
536 s = (*e) ? e + 1 : e;
537 }
538 }
539 }
540 #endif
541 return 0;
542 }
543
544 /******************************************************************************
545 * Initializes receive address filters.
546 *
547 * hw - Struct containing variables accessed by shared code
548 *
549 * Places the MAC address in receive address register 0 and clears the rest
550 * of the receive addresss registers. Clears the multicast table. Assumes
551 * the receiver is in reset when the routine is called.
552 *****************************************************************************/
553 static void
554 e1000_init_rx_addrs(struct eth_device *nic)
555 {
556 struct e1000_hw *hw = nic->priv;
557 uint32_t i;
558 uint32_t addr_low;
559 uint32_t addr_high;
560
561 DEBUGFUNC();
562
563 /* Setup the receive address. */
564 DEBUGOUT("Programming MAC Address into RAR[0]\n");
565 addr_low = (nic->enetaddr[0] |
566 (nic->enetaddr[1] << 8) |
567 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
568
569 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
570
571 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
572 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
573
574 /* Zero out the other 15 receive addresses. */
575 DEBUGOUT("Clearing RAR[1-15]\n");
576 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
577 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
578 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
579 }
580 }
581
582 /******************************************************************************
583 * Clears the VLAN filer table
584 *
585 * hw - Struct containing variables accessed by shared code
586 *****************************************************************************/
587 static void
588 e1000_clear_vfta(struct e1000_hw *hw)
589 {
590 uint32_t offset;
591
592 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
593 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
594 }
595
596 /******************************************************************************
597 * Set the mac type member in the hw struct.
598 *
599 * hw - Struct containing variables accessed by shared code
600 *****************************************************************************/
601 static int
602 e1000_set_mac_type(struct e1000_hw *hw)
603 {
604 DEBUGFUNC();
605
606 switch (hw->device_id) {
607 case E1000_DEV_ID_82542:
608 switch (hw->revision_id) {
609 case E1000_82542_2_0_REV_ID:
610 hw->mac_type = e1000_82542_rev2_0;
611 break;
612 case E1000_82542_2_1_REV_ID:
613 hw->mac_type = e1000_82542_rev2_1;
614 break;
615 default:
616 /* Invalid 82542 revision ID */
617 return -E1000_ERR_MAC_TYPE;
618 }
619 break;
620 case E1000_DEV_ID_82543GC_FIBER:
621 case E1000_DEV_ID_82543GC_COPPER:
622 hw->mac_type = e1000_82543;
623 break;
624 case E1000_DEV_ID_82544EI_COPPER:
625 case E1000_DEV_ID_82544EI_FIBER:
626 case E1000_DEV_ID_82544GC_COPPER:
627 case E1000_DEV_ID_82544GC_LOM:
628 hw->mac_type = e1000_82544;
629 break;
630 case E1000_DEV_ID_82540EM:
631 case E1000_DEV_ID_82540EM_LOM:
632 hw->mac_type = e1000_82540;
633 break;
634 case E1000_DEV_ID_82545EM_COPPER:
635 case E1000_DEV_ID_82545EM_FIBER:
636 hw->mac_type = e1000_82545;
637 break;
638 case E1000_DEV_ID_82546EB_COPPER:
639 case E1000_DEV_ID_82546EB_FIBER:
640 hw->mac_type = e1000_82546;
641 break;
642 default:
643 /* Should never have loaded on this device */
644 return -E1000_ERR_MAC_TYPE;
645 }
646 return E1000_SUCCESS;
647 }
648
649 /******************************************************************************
650 * Reset the transmit and receive units; mask and clear all interrupts.
651 *
652 * hw - Struct containing variables accessed by shared code
653 *****************************************************************************/
654 void
655 e1000_reset_hw(struct e1000_hw *hw)
656 {
657 uint32_t ctrl;
658 uint32_t ctrl_ext;
659 uint32_t icr;
660 uint32_t manc;
661
662 DEBUGFUNC();
663
664 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
665 if (hw->mac_type == e1000_82542_rev2_0) {
666 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
667 pci_write_config_word(hw->pdev, PCI_COMMAND,
668 hw->
669 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
670 }
671
672 /* Clear interrupt mask to stop board from generating interrupts */
673 DEBUGOUT("Masking off all interrupts\n");
674 E1000_WRITE_REG(hw, IMC, 0xffffffff);
675
676 /* Disable the Transmit and Receive units. Then delay to allow
677 * any pending transactions to complete before we hit the MAC with
678 * the global reset.
679 */
680 E1000_WRITE_REG(hw, RCTL, 0);
681 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
682 E1000_WRITE_FLUSH(hw);
683
684 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
685 hw->tbi_compatibility_on = FALSE;
686
687 /* Delay to allow any outstanding PCI transactions to complete before
688 * resetting the device
689 */
690 mdelay(10);
691
692 /* Issue a global reset to the MAC. This will reset the chip's
693 * transmit, receive, DMA, and link units. It will not effect
694 * the current PCI configuration. The global reset bit is self-
695 * clearing, and should clear within a microsecond.
696 */
697 DEBUGOUT("Issuing a global reset to MAC\n");
698 ctrl = E1000_READ_REG(hw, CTRL);
699
700 #if 0
701 if (hw->mac_type > e1000_82543)
702 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
703 else
704 #endif
705 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
706
707 /* Force a reload from the EEPROM if necessary */
708 if (hw->mac_type < e1000_82540) {
709 /* Wait for reset to complete */
710 udelay(10);
711 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
712 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
713 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
714 E1000_WRITE_FLUSH(hw);
715 /* Wait for EEPROM reload */
716 mdelay(2);
717 } else {
718 /* Wait for EEPROM reload (it happens automatically) */
719 mdelay(4);
720 /* Dissable HW ARPs on ASF enabled adapters */
721 manc = E1000_READ_REG(hw, MANC);
722 manc &= ~(E1000_MANC_ARP_EN);
723 E1000_WRITE_REG(hw, MANC, manc);
724 }
725
726 /* Clear interrupt mask to stop board from generating interrupts */
727 DEBUGOUT("Masking off all interrupts\n");
728 E1000_WRITE_REG(hw, IMC, 0xffffffff);
729
730 /* Clear any pending interrupt events. */
731 icr = E1000_READ_REG(hw, ICR);
732
733 /* If MWI was previously enabled, reenable it. */
734 if (hw->mac_type == e1000_82542_rev2_0) {
735 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
736 }
737 }
738
739 /******************************************************************************
740 * Performs basic configuration of the adapter.
741 *
742 * hw - Struct containing variables accessed by shared code
743 *
744 * Assumes that the controller has previously been reset and is in a
745 * post-reset uninitialized state. Initializes the receive address registers,
746 * multicast table, and VLAN filter table. Calls routines to setup link
747 * configuration and flow control settings. Clears all on-chip counters. Leaves
748 * the transmit and receive units disabled and uninitialized.
749 *****************************************************************************/
750 static int
751 e1000_init_hw(struct eth_device *nic)
752 {
753 struct e1000_hw *hw = nic->priv;
754 uint32_t ctrl, status;
755 uint32_t i;
756 int32_t ret_val;
757 uint16_t pcix_cmd_word;
758 uint16_t pcix_stat_hi_word;
759 uint16_t cmd_mmrbc;
760 uint16_t stat_mmrbc;
761 e1000_bus_type bus_type = e1000_bus_type_unknown;
762
763 DEBUGFUNC();
764 #if 0
765 /* Initialize Identification LED */
766 ret_val = e1000_id_led_init(hw);
767 if (ret_val < 0) {
768 DEBUGOUT("Error Initializing Identification LED\n");
769 return ret_val;
770 }
771 #endif
772 /* Set the Media Type and exit with error if it is not valid. */
773 if (hw->mac_type != e1000_82543) {
774 /* tbi_compatibility is only valid on 82543 */
775 hw->tbi_compatibility_en = FALSE;
776 }
777
778 if (hw->mac_type >= e1000_82543) {
779 status = E1000_READ_REG(hw, STATUS);
780 if (status & E1000_STATUS_TBIMODE) {
781 hw->media_type = e1000_media_type_fiber;
782 /* tbi_compatibility not valid on fiber */
783 hw->tbi_compatibility_en = FALSE;
784 } else {
785 hw->media_type = e1000_media_type_copper;
786 }
787 } else {
788 /* This is an 82542 (fiber only) */
789 hw->media_type = e1000_media_type_fiber;
790 }
791
792 /* Disabling VLAN filtering. */
793 DEBUGOUT("Initializing the IEEE VLAN\n");
794 E1000_WRITE_REG(hw, VET, 0);
795
796 e1000_clear_vfta(hw);
797
798 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
799 if (hw->mac_type == e1000_82542_rev2_0) {
800 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
801 pci_write_config_word(hw->pdev, PCI_COMMAND,
802 hw->
803 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
804 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
805 E1000_WRITE_FLUSH(hw);
806 mdelay(5);
807 }
808
809 /* Setup the receive address. This involves initializing all of the Receive
810 * Address Registers (RARs 0 - 15).
811 */
812 e1000_init_rx_addrs(nic);
813
814 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
815 if (hw->mac_type == e1000_82542_rev2_0) {
816 E1000_WRITE_REG(hw, RCTL, 0);
817 E1000_WRITE_FLUSH(hw);
818 mdelay(1);
819 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
820 }
821
822 /* Zero out the Multicast HASH table */
823 DEBUGOUT("Zeroing the MTA\n");
824 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
825 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
826
827 #if 0
828 /* Set the PCI priority bit correctly in the CTRL register. This
829 * determines if the adapter gives priority to receives, or if it
830 * gives equal priority to transmits and receives.
831 */
832 if (hw->dma_fairness) {
833 ctrl = E1000_READ_REG(hw, CTRL);
834 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
835 }
836 #endif
837 if (hw->mac_type >= e1000_82543) {
838 status = E1000_READ_REG(hw, STATUS);
839 bus_type = (status & E1000_STATUS_PCIX_MODE) ?
840 e1000_bus_type_pcix : e1000_bus_type_pci;
841 }
842 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
843 if (bus_type == e1000_bus_type_pcix) {
844 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
845 &pcix_cmd_word);
846 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
847 &pcix_stat_hi_word);
848 cmd_mmrbc =
849 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
850 PCIX_COMMAND_MMRBC_SHIFT;
851 stat_mmrbc =
852 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
853 PCIX_STATUS_HI_MMRBC_SHIFT;
854 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
855 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
856 if (cmd_mmrbc > stat_mmrbc) {
857 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
858 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
859 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
860 pcix_cmd_word);
861 }
862 }
863
864 /* Call a subroutine to configure the link and setup flow control. */
865 ret_val = e1000_setup_link(nic);
866
867 /* Set the transmit descriptor write-back policy */
868 if (hw->mac_type > e1000_82544) {
869 ctrl = E1000_READ_REG(hw, TXDCTL);
870 ctrl =
871 (ctrl & ~E1000_TXDCTL_WTHRESH) |
872 E1000_TXDCTL_FULL_TX_DESC_WB;
873 E1000_WRITE_REG(hw, TXDCTL, ctrl);
874 }
875 #if 0
876 /* Clear all of the statistics registers (clear on read). It is
877 * important that we do this after we have tried to establish link
878 * because the symbol error count will increment wildly if there
879 * is no link.
880 */
881 e1000_clear_hw_cntrs(hw);
882 #endif
883
884 return ret_val;
885 }
886
887 /******************************************************************************
888 * Configures flow control and link settings.
889 *
890 * hw - Struct containing variables accessed by shared code
891 *
892 * Determines which flow control settings to use. Calls the apropriate media-
893 * specific link configuration function. Configures the flow control settings.
894 * Assuming the adapter has a valid link partner, a valid link should be
895 * established. Assumes the hardware has previously been reset and the
896 * transmitter and receiver are not enabled.
897 *****************************************************************************/
898 static int
899 e1000_setup_link(struct eth_device *nic)
900 {
901 struct e1000_hw *hw = nic->priv;
902 uint32_t ctrl_ext;
903 int32_t ret_val;
904 uint16_t eeprom_data;
905
906 DEBUGFUNC();
907
908 #ifndef CONFIG_AP1000
909 /* Read and store word 0x0F of the EEPROM. This word contains bits
910 * that determine the hardware's default PAUSE (flow control) mode,
911 * a bit that determines whether the HW defaults to enabling or
912 * disabling auto-negotiation, and the direction of the
913 * SW defined pins. If there is no SW over-ride of the flow
914 * control setting, then the variable hw->fc will
915 * be initialized based on a value in the EEPROM.
916 */
917 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
918 DEBUGOUT("EEPROM Read Error\n");
919 return -E1000_ERR_EEPROM;
920 }
921 #else
922 /* we have to hardcode the proper value for our hardware. */
923 /* this value is for the 82540EM pci card used for prototyping, and it works. */
924 eeprom_data = 0xb220;
925 #endif
926
927 if (hw->fc == e1000_fc_default) {
928 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
929 hw->fc = e1000_fc_none;
930 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
931 EEPROM_WORD0F_ASM_DIR)
932 hw->fc = e1000_fc_tx_pause;
933 else
934 hw->fc = e1000_fc_full;
935 }
936
937 /* We want to save off the original Flow Control configuration just
938 * in case we get disconnected and then reconnected into a different
939 * hub or switch with different Flow Control capabilities.
940 */
941 if (hw->mac_type == e1000_82542_rev2_0)
942 hw->fc &= (~e1000_fc_tx_pause);
943
944 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
945 hw->fc &= (~e1000_fc_rx_pause);
946
947 hw->original_fc = hw->fc;
948
949 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
950
951 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
952 * polarity value for the SW controlled pins, and setup the
953 * Extended Device Control reg with that info.
954 * This is needed because one of the SW controlled pins is used for
955 * signal detection. So this should be done before e1000_setup_pcs_link()
956 * or e1000_phy_setup() is called.
957 */
958 if (hw->mac_type == e1000_82543) {
959 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
960 SWDPIO__EXT_SHIFT);
961 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
962 }
963
964 /* Call the necessary subroutine to configure the link. */
965 ret_val = (hw->media_type == e1000_media_type_fiber) ?
966 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
967 if (ret_val < 0) {
968 return ret_val;
969 }
970
971 /* Initialize the flow control address, type, and PAUSE timer
972 * registers to their default values. This is done even if flow
973 * control is disabled, because it does not hurt anything to
974 * initialize these registers.
975 */
976 DEBUGOUT
977 ("Initializing the Flow Control address, type and timer regs\n");
978
979 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
980 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
981 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
982 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
983
984 /* Set the flow control receive threshold registers. Normally,
985 * these registers will be set to a default threshold that may be
986 * adjusted later by the driver's runtime code. However, if the
987 * ability to transmit pause frames in not enabled, then these
988 * registers will be set to 0.
989 */
990 if (!(hw->fc & e1000_fc_tx_pause)) {
991 E1000_WRITE_REG(hw, FCRTL, 0);
992 E1000_WRITE_REG(hw, FCRTH, 0);
993 } else {
994 /* We need to set up the Receive Threshold high and low water marks
995 * as well as (optionally) enabling the transmission of XON frames.
996 */
997 if (hw->fc_send_xon) {
998 E1000_WRITE_REG(hw, FCRTL,
999 (hw->fc_low_water | E1000_FCRTL_XONE));
1000 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1001 } else {
1002 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1003 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1004 }
1005 }
1006 return ret_val;
1007 }
1008
1009 /******************************************************************************
1010 * Sets up link for a fiber based adapter
1011 *
1012 * hw - Struct containing variables accessed by shared code
1013 *
1014 * Manipulates Physical Coding Sublayer functions in order to configure
1015 * link. Assumes the hardware has been previously reset and the transmitter
1016 * and receiver are not enabled.
1017 *****************************************************************************/
1018 static int
1019 e1000_setup_fiber_link(struct eth_device *nic)
1020 {
1021 struct e1000_hw *hw = nic->priv;
1022 uint32_t ctrl;
1023 uint32_t status;
1024 uint32_t txcw = 0;
1025 uint32_t i;
1026 uint32_t signal;
1027 int32_t ret_val;
1028
1029 DEBUGFUNC();
1030 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1031 * set when the optics detect a signal. On older adapters, it will be
1032 * cleared when there is a signal
1033 */
1034 ctrl = E1000_READ_REG(hw, CTRL);
1035 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1036 signal = E1000_CTRL_SWDPIN1;
1037 else
1038 signal = 0;
1039
1040 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1041 ctrl);
1042 /* Take the link out of reset */
1043 ctrl &= ~(E1000_CTRL_LRST);
1044
1045 e1000_config_collision_dist(hw);
1046
1047 /* Check for a software override of the flow control settings, and setup
1048 * the device accordingly. If auto-negotiation is enabled, then software
1049 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1050 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1051 * auto-negotiation is disabled, then software will have to manually
1052 * configure the two flow control enable bits in the CTRL register.
1053 *
1054 * The possible values of the "fc" parameter are:
1055 * 0: Flow control is completely disabled
1056 * 1: Rx flow control is enabled (we can receive pause frames, but
1057 * not send pause frames).
1058 * 2: Tx flow control is enabled (we can send pause frames but we do
1059 * not support receiving pause frames).
1060 * 3: Both Rx and TX flow control (symmetric) are enabled.
1061 */
1062 switch (hw->fc) {
1063 case e1000_fc_none:
1064 /* Flow control is completely disabled by a software over-ride. */
1065 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1066 break;
1067 case e1000_fc_rx_pause:
1068 /* RX Flow control is enabled and TX Flow control is disabled by a
1069 * software over-ride. Since there really isn't a way to advertise
1070 * that we are capable of RX Pause ONLY, we will advertise that we
1071 * support both symmetric and asymmetric RX PAUSE. Later, we will
1072 * disable the adapter's ability to send PAUSE frames.
1073 */
1074 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1075 break;
1076 case e1000_fc_tx_pause:
1077 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1078 * software over-ride.
1079 */
1080 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1081 break;
1082 case e1000_fc_full:
1083 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1084 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1085 break;
1086 default:
1087 DEBUGOUT("Flow control param set incorrectly\n");
1088 return -E1000_ERR_CONFIG;
1089 break;
1090 }
1091
1092 /* Since auto-negotiation is enabled, take the link out of reset (the link
1093 * will be in reset, because we previously reset the chip). This will
1094 * restart auto-negotiation. If auto-neogtiation is successful then the
1095 * link-up status bit will be set and the flow control enable bits (RFCE
1096 * and TFCE) will be set according to their negotiated value.
1097 */
1098 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1099
1100 E1000_WRITE_REG(hw, TXCW, txcw);
1101 E1000_WRITE_REG(hw, CTRL, ctrl);
1102 E1000_WRITE_FLUSH(hw);
1103
1104 hw->txcw = txcw;
1105 mdelay(1);
1106
1107 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1108 * indication in the Device Status Register. Time-out if a link isn't
1109 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1110 * less than 500 milliseconds even if the other end is doing it in SW).
1111 */
1112 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1113 DEBUGOUT("Looking for Link\n");
1114 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1115 mdelay(10);
1116 status = E1000_READ_REG(hw, STATUS);
1117 if (status & E1000_STATUS_LU)
1118 break;
1119 }
1120 if (i == (LINK_UP_TIMEOUT / 10)) {
1121 /* AutoNeg failed to achieve a link, so we'll call
1122 * e1000_check_for_link. This routine will force the link up if we
1123 * detect a signal. This will allow us to communicate with
1124 * non-autonegotiating link partners.
1125 */
1126 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1127 hw->autoneg_failed = 1;
1128 ret_val = e1000_check_for_link(nic);
1129 if (ret_val < 0) {
1130 DEBUGOUT("Error while checking for link\n");
1131 return ret_val;
1132 }
1133 hw->autoneg_failed = 0;
1134 } else {
1135 hw->autoneg_failed = 0;
1136 DEBUGOUT("Valid Link Found\n");
1137 }
1138 } else {
1139 DEBUGOUT("No Signal Detected\n");
1140 return -E1000_ERR_NOLINK;
1141 }
1142 return 0;
1143 }
1144
1145 /******************************************************************************
1146 * Detects which PHY is present and the speed and duplex
1147 *
1148 * hw - Struct containing variables accessed by shared code
1149 ******************************************************************************/
1150 static int
1151 e1000_setup_copper_link(struct eth_device *nic)
1152 {
1153 struct e1000_hw *hw = nic->priv;
1154 uint32_t ctrl;
1155 int32_t ret_val;
1156 uint16_t i;
1157 uint16_t phy_data;
1158
1159 DEBUGFUNC();
1160
1161 ctrl = E1000_READ_REG(hw, CTRL);
1162 /* With 82543, we need to force speed and duplex on the MAC equal to what
1163 * the PHY speed and duplex configuration is. In addition, we need to
1164 * perform a hardware reset on the PHY to take it out of reset.
1165 */
1166 if (hw->mac_type > e1000_82543) {
1167 ctrl |= E1000_CTRL_SLU;
1168 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1169 E1000_WRITE_REG(hw, CTRL, ctrl);
1170 } else {
1171 ctrl |=
1172 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1173 E1000_WRITE_REG(hw, CTRL, ctrl);
1174 e1000_phy_hw_reset(hw);
1175 }
1176
1177 /* Make sure we have a valid PHY */
1178 ret_val = e1000_detect_gig_phy(hw);
1179 if (ret_val < 0) {
1180 DEBUGOUT("Error, did not detect valid phy.\n");
1181 return ret_val;
1182 }
1183 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1184
1185 /* Enable CRS on TX. This must be set for half-duplex operation. */
1186 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1187 DEBUGOUT("PHY Read Error\n");
1188 return -E1000_ERR_PHY;
1189 }
1190 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1191
1192 #if 0
1193 /* Options:
1194 * MDI/MDI-X = 0 (default)
1195 * 0 - Auto for all speeds
1196 * 1 - MDI mode
1197 * 2 - MDI-X mode
1198 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1199 */
1200 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1201 switch (hw->mdix) {
1202 case 1:
1203 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1204 break;
1205 case 2:
1206 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1207 break;
1208 case 3:
1209 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1210 break;
1211 case 0:
1212 default:
1213 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1214 break;
1215 }
1216 #else
1217 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1218 #endif
1219
1220 #if 0
1221 /* Options:
1222 * disable_polarity_correction = 0 (default)
1223 * Automatic Correction for Reversed Cable Polarity
1224 * 0 - Disabled
1225 * 1 - Enabled
1226 */
1227 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1228 if (hw->disable_polarity_correction == 1)
1229 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1230 #else
1231 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1232 #endif
1233 if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1234 DEBUGOUT("PHY Write Error\n");
1235 return -E1000_ERR_PHY;
1236 }
1237
1238 /* Force TX_CLK in the Extended PHY Specific Control Register
1239 * to 25MHz clock.
1240 */
1241 if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1242 DEBUGOUT("PHY Read Error\n");
1243 return -E1000_ERR_PHY;
1244 }
1245 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1246 /* Configure Master and Slave downshift values */
1247 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1248 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1249 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1250 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1251 if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1252 DEBUGOUT("PHY Write Error\n");
1253 return -E1000_ERR_PHY;
1254 }
1255
1256 /* SW Reset the PHY so all changes take effect */
1257 ret_val = e1000_phy_reset(hw);
1258 if (ret_val < 0) {
1259 DEBUGOUT("Error Resetting the PHY\n");
1260 return ret_val;
1261 }
1262
1263 /* Options:
1264 * autoneg = 1 (default)
1265 * PHY will advertise value(s) parsed from
1266 * autoneg_advertised and fc
1267 * autoneg = 0
1268 * PHY will be set to 10H, 10F, 100H, or 100F
1269 * depending on value parsed from forced_speed_duplex.
1270 */
1271
1272 /* Is autoneg enabled? This is enabled by default or by software override.
1273 * If so, call e1000_phy_setup_autoneg routine to parse the
1274 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1275 * user should have provided a speed/duplex override. If so, then call
1276 * e1000_phy_force_speed_duplex to parse and set this up.
1277 */
1278 /* Perform some bounds checking on the hw->autoneg_advertised
1279 * parameter. If this variable is zero, then set it to the default.
1280 */
1281 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1282
1283 /* If autoneg_advertised is zero, we assume it was not defaulted
1284 * by the calling code so we set to advertise full capability.
1285 */
1286 if (hw->autoneg_advertised == 0)
1287 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1288
1289 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1290 ret_val = e1000_phy_setup_autoneg(hw);
1291 if (ret_val < 0) {
1292 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1293 return ret_val;
1294 }
1295 DEBUGOUT("Restarting Auto-Neg\n");
1296
1297 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1298 * the Auto Neg Restart bit in the PHY control register.
1299 */
1300 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1301 DEBUGOUT("PHY Read Error\n");
1302 return -E1000_ERR_PHY;
1303 }
1304 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1305 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1306 DEBUGOUT("PHY Write Error\n");
1307 return -E1000_ERR_PHY;
1308 }
1309 #if 0
1310 /* Does the user want to wait for Auto-Neg to complete here, or
1311 * check at a later time (for example, callback routine).
1312 */
1313 if (hw->wait_autoneg_complete) {
1314 ret_val = e1000_wait_autoneg(hw);
1315 if (ret_val < 0) {
1316 DEBUGOUT
1317 ("Error while waiting for autoneg to complete\n");
1318 return ret_val;
1319 }
1320 }
1321 #else
1322 /* If we do not wait for autonegtation to complete I
1323 * do not see a valid link status.
1324 */
1325 ret_val = e1000_wait_autoneg(hw);
1326 if (ret_val < 0) {
1327 DEBUGOUT("Error while waiting for autoneg to complete\n");
1328 return ret_val;
1329 }
1330 #endif
1331
1332 /* Check link status. Wait up to 100 microseconds for link to become
1333 * valid.
1334 */
1335 for (i = 0; i < 10; i++) {
1336 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1337 DEBUGOUT("PHY Read Error\n");
1338 return -E1000_ERR_PHY;
1339 }
1340 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1341 DEBUGOUT("PHY Read Error\n");
1342 return -E1000_ERR_PHY;
1343 }
1344 if (phy_data & MII_SR_LINK_STATUS) {
1345 /* We have link, so we need to finish the config process:
1346 * 1) Set up the MAC to the current PHY speed/duplex
1347 * if we are on 82543. If we
1348 * are on newer silicon, we only need to configure
1349 * collision distance in the Transmit Control Register.
1350 * 2) Set up flow control on the MAC to that established with
1351 * the link partner.
1352 */
1353 if (hw->mac_type >= e1000_82544) {
1354 e1000_config_collision_dist(hw);
1355 } else {
1356 ret_val = e1000_config_mac_to_phy(hw);
1357 if (ret_val < 0) {
1358 DEBUGOUT
1359 ("Error configuring MAC to PHY settings\n");
1360 return ret_val;
1361 }
1362 }
1363 ret_val = e1000_config_fc_after_link_up(hw);
1364 if (ret_val < 0) {
1365 DEBUGOUT("Error Configuring Flow Control\n");
1366 return ret_val;
1367 }
1368 DEBUGOUT("Valid link established!!!\n");
1369 return 0;
1370 }
1371 udelay(10);
1372 }
1373
1374 DEBUGOUT("Unable to establish link!!!\n");
1375 return -E1000_ERR_NOLINK;
1376 }
1377
1378 /******************************************************************************
1379 * Configures PHY autoneg and flow control advertisement settings
1380 *
1381 * hw - Struct containing variables accessed by shared code
1382 ******************************************************************************/
1383 static int
1384 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1385 {
1386 uint16_t mii_autoneg_adv_reg;
1387 uint16_t mii_1000t_ctrl_reg;
1388
1389 DEBUGFUNC();
1390
1391 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1392 if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1393 DEBUGOUT("PHY Read Error\n");
1394 return -E1000_ERR_PHY;
1395 }
1396
1397 /* Read the MII 1000Base-T Control Register (Address 9). */
1398 if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1399 DEBUGOUT("PHY Read Error\n");
1400 return -E1000_ERR_PHY;
1401 }
1402
1403 /* Need to parse both autoneg_advertised and fc and set up
1404 * the appropriate PHY registers. First we will parse for
1405 * autoneg_advertised software override. Since we can advertise
1406 * a plethora of combinations, we need to check each bit
1407 * individually.
1408 */
1409
1410 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1411 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1412 * the 1000Base-T Control Register (Address 9).
1413 */
1414 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1415 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1416
1417 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1418
1419 /* Do we want to advertise 10 Mb Half Duplex? */
1420 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1421 DEBUGOUT("Advertise 10mb Half duplex\n");
1422 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1423 }
1424
1425 /* Do we want to advertise 10 Mb Full Duplex? */
1426 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1427 DEBUGOUT("Advertise 10mb Full duplex\n");
1428 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1429 }
1430
1431 /* Do we want to advertise 100 Mb Half Duplex? */
1432 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1433 DEBUGOUT("Advertise 100mb Half duplex\n");
1434 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1435 }
1436
1437 /* Do we want to advertise 100 Mb Full Duplex? */
1438 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1439 DEBUGOUT("Advertise 100mb Full duplex\n");
1440 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1441 }
1442
1443 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1444 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1445 DEBUGOUT
1446 ("Advertise 1000mb Half duplex requested, request denied!\n");
1447 }
1448
1449 /* Do we want to advertise 1000 Mb Full Duplex? */
1450 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1451 DEBUGOUT("Advertise 1000mb Full duplex\n");
1452 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1453 }
1454
1455 /* Check for a software override of the flow control settings, and
1456 * setup the PHY advertisement registers accordingly. If
1457 * auto-negotiation is enabled, then software will have to set the
1458 * "PAUSE" bits to the correct value in the Auto-Negotiation
1459 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1460 *
1461 * The possible values of the "fc" parameter are:
1462 * 0: Flow control is completely disabled
1463 * 1: Rx flow control is enabled (we can receive pause frames
1464 * but not send pause frames).
1465 * 2: Tx flow control is enabled (we can send pause frames
1466 * but we do not support receiving pause frames).
1467 * 3: Both Rx and TX flow control (symmetric) are enabled.
1468 * other: No software override. The flow control configuration
1469 * in the EEPROM is used.
1470 */
1471 switch (hw->fc) {
1472 case e1000_fc_none: /* 0 */
1473 /* Flow control (RX & TX) is completely disabled by a
1474 * software over-ride.
1475 */
1476 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1477 break;
1478 case e1000_fc_rx_pause: /* 1 */
1479 /* RX Flow control is enabled, and TX Flow control is
1480 * disabled, by a software over-ride.
1481 */
1482 /* Since there really isn't a way to advertise that we are
1483 * capable of RX Pause ONLY, we will advertise that we
1484 * support both symmetric and asymmetric RX PAUSE. Later
1485 * (in e1000_config_fc_after_link_up) we will disable the
1486 *hw's ability to send PAUSE frames.
1487 */
1488 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1489 break;
1490 case e1000_fc_tx_pause: /* 2 */
1491 /* TX Flow control is enabled, and RX Flow control is
1492 * disabled, by a software over-ride.
1493 */
1494 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1495 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1496 break;
1497 case e1000_fc_full: /* 3 */
1498 /* Flow control (both RX and TX) is enabled by a software
1499 * over-ride.
1500 */
1501 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1502 break;
1503 default:
1504 DEBUGOUT("Flow control param set incorrectly\n");
1505 return -E1000_ERR_CONFIG;
1506 }
1507
1508 if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1509 DEBUGOUT("PHY Write Error\n");
1510 return -E1000_ERR_PHY;
1511 }
1512
1513 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1514
1515 if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1516 DEBUGOUT("PHY Write Error\n");
1517 return -E1000_ERR_PHY;
1518 }
1519 return 0;
1520 }
1521
1522 /******************************************************************************
1523 * Sets the collision distance in the Transmit Control register
1524 *
1525 * hw - Struct containing variables accessed by shared code
1526 *
1527 * Link should have been established previously. Reads the speed and duplex
1528 * information from the Device Status register.
1529 ******************************************************************************/
1530 static void
1531 e1000_config_collision_dist(struct e1000_hw *hw)
1532 {
1533 uint32_t tctl;
1534
1535 tctl = E1000_READ_REG(hw, TCTL);
1536
1537 tctl &= ~E1000_TCTL_COLD;
1538 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1539
1540 E1000_WRITE_REG(hw, TCTL, tctl);
1541 E1000_WRITE_FLUSH(hw);
1542 }
1543
1544 /******************************************************************************
1545 * Sets MAC speed and duplex settings to reflect the those in the PHY
1546 *
1547 * hw - Struct containing variables accessed by shared code
1548 * mii_reg - data to write to the MII control register
1549 *
1550 * The contents of the PHY register containing the needed information need to
1551 * be passed in.
1552 ******************************************************************************/
1553 static int
1554 e1000_config_mac_to_phy(struct e1000_hw *hw)
1555 {
1556 uint32_t ctrl;
1557 uint16_t phy_data;
1558
1559 DEBUGFUNC();
1560
1561 /* Read the Device Control Register and set the bits to Force Speed
1562 * and Duplex.
1563 */
1564 ctrl = E1000_READ_REG(hw, CTRL);
1565 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1566 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1567
1568 /* Set up duplex in the Device Control and Transmit Control
1569 * registers depending on negotiated values.
1570 */
1571 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1572 DEBUGOUT("PHY Read Error\n");
1573 return -E1000_ERR_PHY;
1574 }
1575 if (phy_data & M88E1000_PSSR_DPLX)
1576 ctrl |= E1000_CTRL_FD;
1577 else
1578 ctrl &= ~E1000_CTRL_FD;
1579
1580 e1000_config_collision_dist(hw);
1581
1582 /* Set up speed in the Device Control register depending on
1583 * negotiated values.
1584 */
1585 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1586 ctrl |= E1000_CTRL_SPD_1000;
1587 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1588 ctrl |= E1000_CTRL_SPD_100;
1589 /* Write the configured values back to the Device Control Reg. */
1590 E1000_WRITE_REG(hw, CTRL, ctrl);
1591 return 0;
1592 }
1593
1594 /******************************************************************************
1595 * Forces the MAC's flow control settings.
1596 *
1597 * hw - Struct containing variables accessed by shared code
1598 *
1599 * Sets the TFCE and RFCE bits in the device control register to reflect
1600 * the adapter settings. TFCE and RFCE need to be explicitly set by
1601 * software when a Copper PHY is used because autonegotiation is managed
1602 * by the PHY rather than the MAC. Software must also configure these
1603 * bits when link is forced on a fiber connection.
1604 *****************************************************************************/
1605 static int
1606 e1000_force_mac_fc(struct e1000_hw *hw)
1607 {
1608 uint32_t ctrl;
1609
1610 DEBUGFUNC();
1611
1612 /* Get the current configuration of the Device Control Register */
1613 ctrl = E1000_READ_REG(hw, CTRL);
1614
1615 /* Because we didn't get link via the internal auto-negotiation
1616 * mechanism (we either forced link or we got link via PHY
1617 * auto-neg), we have to manually enable/disable transmit an
1618 * receive flow control.
1619 *
1620 * The "Case" statement below enables/disable flow control
1621 * according to the "hw->fc" parameter.
1622 *
1623 * The possible values of the "fc" parameter are:
1624 * 0: Flow control is completely disabled
1625 * 1: Rx flow control is enabled (we can receive pause
1626 * frames but not send pause frames).
1627 * 2: Tx flow control is enabled (we can send pause frames
1628 * frames but we do not receive pause frames).
1629 * 3: Both Rx and TX flow control (symmetric) is enabled.
1630 * other: No other values should be possible at this point.
1631 */
1632
1633 switch (hw->fc) {
1634 case e1000_fc_none:
1635 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1636 break;
1637 case e1000_fc_rx_pause:
1638 ctrl &= (~E1000_CTRL_TFCE);
1639 ctrl |= E1000_CTRL_RFCE;
1640 break;
1641 case e1000_fc_tx_pause:
1642 ctrl &= (~E1000_CTRL_RFCE);
1643 ctrl |= E1000_CTRL_TFCE;
1644 break;
1645 case e1000_fc_full:
1646 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1647 break;
1648 default:
1649 DEBUGOUT("Flow control param set incorrectly\n");
1650 return -E1000_ERR_CONFIG;
1651 }
1652
1653 /* Disable TX Flow Control for 82542 (rev 2.0) */
1654 if (hw->mac_type == e1000_82542_rev2_0)
1655 ctrl &= (~E1000_CTRL_TFCE);
1656
1657 E1000_WRITE_REG(hw, CTRL, ctrl);
1658 return 0;
1659 }
1660
1661 /******************************************************************************
1662 * Configures flow control settings after link is established
1663 *
1664 * hw - Struct containing variables accessed by shared code
1665 *
1666 * Should be called immediately after a valid link has been established.
1667 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1668 * and autonegotiation is enabled, the MAC flow control settings will be set
1669 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1670 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1671 *****************************************************************************/
1672 static int
1673 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1674 {
1675 int32_t ret_val;
1676 uint16_t mii_status_reg;
1677 uint16_t mii_nway_adv_reg;
1678 uint16_t mii_nway_lp_ability_reg;
1679 uint16_t speed;
1680 uint16_t duplex;
1681
1682 DEBUGFUNC();
1683
1684 /* Check for the case where we have fiber media and auto-neg failed
1685 * so we had to force link. In this case, we need to force the
1686 * configuration of the MAC to match the "fc" parameter.
1687 */
1688 if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1689 ret_val = e1000_force_mac_fc(hw);
1690 if (ret_val < 0) {
1691 DEBUGOUT("Error forcing flow control settings\n");
1692 return ret_val;
1693 }
1694 }
1695
1696 /* Check for the case where we have copper media and auto-neg is
1697 * enabled. In this case, we need to check and see if Auto-Neg
1698 * has completed, and if so, how the PHY and link partner has
1699 * flow control configured.
1700 */
1701 if (hw->media_type == e1000_media_type_copper) {
1702 /* Read the MII Status Register and check to see if AutoNeg
1703 * has completed. We read this twice because this reg has
1704 * some "sticky" (latched) bits.
1705 */
1706 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1707 DEBUGOUT("PHY Read Error \n");
1708 return -E1000_ERR_PHY;
1709 }
1710 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1711 DEBUGOUT("PHY Read Error \n");
1712 return -E1000_ERR_PHY;
1713 }
1714
1715 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1716 /* The AutoNeg process has completed, so we now need to
1717 * read both the Auto Negotiation Advertisement Register
1718 * (Address 4) and the Auto_Negotiation Base Page Ability
1719 * Register (Address 5) to determine how flow control was
1720 * negotiated.
1721 */
1722 if (e1000_read_phy_reg
1723 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1724 DEBUGOUT("PHY Read Error\n");
1725 return -E1000_ERR_PHY;
1726 }
1727 if (e1000_read_phy_reg
1728 (hw, PHY_LP_ABILITY,
1729 &mii_nway_lp_ability_reg) < 0) {
1730 DEBUGOUT("PHY Read Error\n");
1731 return -E1000_ERR_PHY;
1732 }
1733
1734 /* Two bits in the Auto Negotiation Advertisement Register
1735 * (Address 4) and two bits in the Auto Negotiation Base
1736 * Page Ability Register (Address 5) determine flow control
1737 * for both the PHY and the link partner. The following
1738 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1739 * 1999, describes these PAUSE resolution bits and how flow
1740 * control is determined based upon these settings.
1741 * NOTE: DC = Don't Care
1742 *
1743 * LOCAL DEVICE | LINK PARTNER
1744 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1745 *-------|---------|-------|---------|--------------------
1746 * 0 | 0 | DC | DC | e1000_fc_none
1747 * 0 | 1 | 0 | DC | e1000_fc_none
1748 * 0 | 1 | 1 | 0 | e1000_fc_none
1749 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1750 * 1 | 0 | 0 | DC | e1000_fc_none
1751 * 1 | DC | 1 | DC | e1000_fc_full
1752 * 1 | 1 | 0 | 0 | e1000_fc_none
1753 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1754 *
1755 */
1756 /* Are both PAUSE bits set to 1? If so, this implies
1757 * Symmetric Flow Control is enabled at both ends. The
1758 * ASM_DIR bits are irrelevant per the spec.
1759 *
1760 * For Symmetric Flow Control:
1761 *
1762 * LOCAL DEVICE | LINK PARTNER
1763 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1764 *-------|---------|-------|---------|--------------------
1765 * 1 | DC | 1 | DC | e1000_fc_full
1766 *
1767 */
1768 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1769 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1770 /* Now we need to check if the user selected RX ONLY
1771 * of pause frames. In this case, we had to advertise
1772 * FULL flow control because we could not advertise RX
1773 * ONLY. Hence, we must now check to see if we need to
1774 * turn OFF the TRANSMISSION of PAUSE frames.
1775 */
1776 if (hw->original_fc == e1000_fc_full) {
1777 hw->fc = e1000_fc_full;
1778 DEBUGOUT("Flow Control = FULL.\r\n");
1779 } else {
1780 hw->fc = e1000_fc_rx_pause;
1781 DEBUGOUT
1782 ("Flow Control = RX PAUSE frames only.\r\n");
1783 }
1784 }
1785 /* For receiving PAUSE frames ONLY.
1786 *
1787 * LOCAL DEVICE | LINK PARTNER
1788 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1789 *-------|---------|-------|---------|--------------------
1790 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1791 *
1792 */
1793 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1794 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1795 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1796 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1797 {
1798 hw->fc = e1000_fc_tx_pause;
1799 DEBUGOUT
1800 ("Flow Control = TX PAUSE frames only.\r\n");
1801 }
1802 /* For transmitting PAUSE frames ONLY.
1803 *
1804 * LOCAL DEVICE | LINK PARTNER
1805 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1806 *-------|---------|-------|---------|--------------------
1807 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1808 *
1809 */
1810 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1811 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1812 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1813 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1814 {
1815 hw->fc = e1000_fc_rx_pause;
1816 DEBUGOUT
1817 ("Flow Control = RX PAUSE frames only.\r\n");
1818 }
1819 /* Per the IEEE spec, at this point flow control should be
1820 * disabled. However, we want to consider that we could
1821 * be connected to a legacy switch that doesn't advertise
1822 * desired flow control, but can be forced on the link
1823 * partner. So if we advertised no flow control, that is
1824 * what we will resolve to. If we advertised some kind of
1825 * receive capability (Rx Pause Only or Full Flow Control)
1826 * and the link partner advertised none, we will configure
1827 * ourselves to enable Rx Flow Control only. We can do
1828 * this safely for two reasons: If the link partner really
1829 * didn't want flow control enabled, and we enable Rx, no
1830 * harm done since we won't be receiving any PAUSE frames
1831 * anyway. If the intent on the link partner was to have
1832 * flow control enabled, then by us enabling RX only, we
1833 * can at least receive pause frames and process them.
1834 * This is a good idea because in most cases, since we are
1835 * predominantly a server NIC, more times than not we will
1836 * be asked to delay transmission of packets than asking
1837 * our link partner to pause transmission of frames.
1838 */
1839 else if (hw->original_fc == e1000_fc_none ||
1840 hw->original_fc == e1000_fc_tx_pause) {
1841 hw->fc = e1000_fc_none;
1842 DEBUGOUT("Flow Control = NONE.\r\n");
1843 } else {
1844 hw->fc = e1000_fc_rx_pause;
1845 DEBUGOUT
1846 ("Flow Control = RX PAUSE frames only.\r\n");
1847 }
1848
1849 /* Now we need to do one last check... If we auto-
1850 * negotiated to HALF DUPLEX, flow control should not be
1851 * enabled per IEEE 802.3 spec.
1852 */
1853 e1000_get_speed_and_duplex(hw, &speed, &duplex);
1854
1855 if (duplex == HALF_DUPLEX)
1856 hw->fc = e1000_fc_none;
1857
1858 /* Now we call a subroutine to actually force the MAC
1859 * controller to use the correct flow control settings.
1860 */
1861 ret_val = e1000_force_mac_fc(hw);
1862 if (ret_val < 0) {
1863 DEBUGOUT
1864 ("Error forcing flow control settings\n");
1865 return ret_val;
1866 }
1867 } else {
1868 DEBUGOUT
1869 ("Copper PHY and Auto Neg has not completed.\r\n");
1870 }
1871 }
1872 return 0;
1873 }
1874
1875 /******************************************************************************
1876 * Checks to see if the link status of the hardware has changed.
1877 *
1878 * hw - Struct containing variables accessed by shared code
1879 *
1880 * Called by any function that needs to check the link status of the adapter.
1881 *****************************************************************************/
1882 static int
1883 e1000_check_for_link(struct eth_device *nic)
1884 {
1885 struct e1000_hw *hw = nic->priv;
1886 uint32_t rxcw;
1887 uint32_t ctrl;
1888 uint32_t status;
1889 uint32_t rctl;
1890 uint32_t signal;
1891 int32_t ret_val;
1892 uint16_t phy_data;
1893 uint16_t lp_capability;
1894
1895 DEBUGFUNC();
1896
1897 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1898 * set when the optics detect a signal. On older adapters, it will be
1899 * cleared when there is a signal
1900 */
1901 ctrl = E1000_READ_REG(hw, CTRL);
1902 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1903 signal = E1000_CTRL_SWDPIN1;
1904 else
1905 signal = 0;
1906
1907 status = E1000_READ_REG(hw, STATUS);
1908 rxcw = E1000_READ_REG(hw, RXCW);
1909 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1910
1911 /* If we have a copper PHY then we only want to go out to the PHY
1912 * registers to see if Auto-Neg has completed and/or if our link
1913 * status has changed. The get_link_status flag will be set if we
1914 * receive a Link Status Change interrupt or we have Rx Sequence
1915 * Errors.
1916 */
1917 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1918 /* First we want to see if the MII Status Register reports
1919 * link. If so, then we want to get the current speed/duplex
1920 * of the PHY.
1921 * Read the register twice since the link bit is sticky.
1922 */
1923 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1924 DEBUGOUT("PHY Read Error\n");
1925 return -E1000_ERR_PHY;
1926 }
1927 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1928 DEBUGOUT("PHY Read Error\n");
1929 return -E1000_ERR_PHY;
1930 }
1931
1932 if (phy_data & MII_SR_LINK_STATUS) {
1933 hw->get_link_status = FALSE;
1934 } else {
1935 /* No link detected */
1936 return -E1000_ERR_NOLINK;
1937 }
1938
1939 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
1940 * have Si on board that is 82544 or newer, Auto
1941 * Speed Detection takes care of MAC speed/duplex
1942 * configuration. So we only need to configure Collision
1943 * Distance in the MAC. Otherwise, we need to force
1944 * speed/duplex on the MAC to the current PHY speed/duplex
1945 * settings.
1946 */
1947 if (hw->mac_type >= e1000_82544)
1948 e1000_config_collision_dist(hw);
1949 else {
1950 ret_val = e1000_config_mac_to_phy(hw);
1951 if (ret_val < 0) {
1952 DEBUGOUT
1953 ("Error configuring MAC to PHY settings\n");
1954 return ret_val;
1955 }
1956 }
1957
1958 /* Configure Flow Control now that Auto-Neg has completed. First, we
1959 * need to restore the desired flow control settings because we may
1960 * have had to re-autoneg with a different link partner.
1961 */
1962 ret_val = e1000_config_fc_after_link_up(hw);
1963 if (ret_val < 0) {
1964 DEBUGOUT("Error configuring flow control\n");
1965 return ret_val;
1966 }
1967
1968 /* At this point we know that we are on copper and we have
1969 * auto-negotiated link. These are conditions for checking the link
1970 * parter capability register. We use the link partner capability to
1971 * determine if TBI Compatibility needs to be turned on or off. If
1972 * the link partner advertises any speed in addition to Gigabit, then
1973 * we assume that they are GMII-based, and TBI compatibility is not
1974 * needed. If no other speeds are advertised, we assume the link
1975 * partner is TBI-based, and we turn on TBI Compatibility.
1976 */
1977 if (hw->tbi_compatibility_en) {
1978 if (e1000_read_phy_reg
1979 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1980 DEBUGOUT("PHY Read Error\n");
1981 return -E1000_ERR_PHY;
1982 }
1983 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1984 NWAY_LPAR_10T_FD_CAPS |
1985 NWAY_LPAR_100TX_HD_CAPS |
1986 NWAY_LPAR_100TX_FD_CAPS |
1987 NWAY_LPAR_100T4_CAPS)) {
1988 /* If our link partner advertises anything in addition to
1989 * gigabit, we do not need to enable TBI compatibility.
1990 */
1991 if (hw->tbi_compatibility_on) {
1992 /* If we previously were in the mode, turn it off. */
1993 rctl = E1000_READ_REG(hw, RCTL);
1994 rctl &= ~E1000_RCTL_SBP;
1995 E1000_WRITE_REG(hw, RCTL, rctl);
1996 hw->tbi_compatibility_on = FALSE;
1997 }
1998 } else {
1999 /* If TBI compatibility is was previously off, turn it on. For
2000 * compatibility with a TBI link partner, we will store bad
2001 * packets. Some frames have an additional byte on the end and
2002 * will look like CRC errors to to the hardware.
2003 */
2004 if (!hw->tbi_compatibility_on) {
2005 hw->tbi_compatibility_on = TRUE;
2006 rctl = E1000_READ_REG(hw, RCTL);
2007 rctl |= E1000_RCTL_SBP;
2008 E1000_WRITE_REG(hw, RCTL, rctl);
2009 }
2010 }
2011 }
2012 }
2013 /* If we don't have link (auto-negotiation failed or link partner cannot
2014 * auto-negotiate), the cable is plugged in (we have signal), and our
2015 * link partner is not trying to auto-negotiate with us (we are receiving
2016 * idles or data), we need to force link up. We also need to give
2017 * auto-negotiation time to complete, in case the cable was just plugged
2018 * in. The autoneg_failed flag does this.
2019 */
2020 else if ((hw->media_type == e1000_media_type_fiber) &&
2021 (!(status & E1000_STATUS_LU)) &&
2022 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2023 (!(rxcw & E1000_RXCW_C))) {
2024 if (hw->autoneg_failed == 0) {
2025 hw->autoneg_failed = 1;
2026 return 0;
2027 }
2028 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2029
2030 /* Disable auto-negotiation in the TXCW register */
2031 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2032
2033 /* Force link-up and also force full-duplex. */
2034 ctrl = E1000_READ_REG(hw, CTRL);
2035 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2036 E1000_WRITE_REG(hw, CTRL, ctrl);
2037
2038 /* Configure Flow Control after forcing link up. */
2039 ret_val = e1000_config_fc_after_link_up(hw);
2040 if (ret_val < 0) {
2041 DEBUGOUT("Error configuring flow control\n");
2042 return ret_val;
2043 }
2044 }
2045 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2046 * auto-negotiation in the TXCW register and disable forced link in the
2047 * Device Control register in an attempt to auto-negotiate with our link
2048 * partner.
2049 */
2050 else if ((hw->media_type == e1000_media_type_fiber) &&
2051 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2052 DEBUGOUT
2053 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2054 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2055 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2056 }
2057 return 0;
2058 }
2059
2060 /******************************************************************************
2061 * Detects the current speed and duplex settings of the hardware.
2062 *
2063 * hw - Struct containing variables accessed by shared code
2064 * speed - Speed of the connection
2065 * duplex - Duplex setting of the connection
2066 *****************************************************************************/
2067 static void
2068 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2069 uint16_t * speed, uint16_t * duplex)
2070 {
2071 uint32_t status;
2072
2073 DEBUGFUNC();
2074
2075 if (hw->mac_type >= e1000_82543) {
2076 status = E1000_READ_REG(hw, STATUS);
2077 if (status & E1000_STATUS_SPEED_1000) {
2078 *speed = SPEED_1000;
2079 DEBUGOUT("1000 Mbs, ");
2080 } else if (status & E1000_STATUS_SPEED_100) {
2081 *speed = SPEED_100;
2082 DEBUGOUT("100 Mbs, ");
2083 } else {
2084 *speed = SPEED_10;
2085 DEBUGOUT("10 Mbs, ");
2086 }
2087
2088 if (status & E1000_STATUS_FD) {
2089 *duplex = FULL_DUPLEX;
2090 DEBUGOUT("Full Duplex\r\n");
2091 } else {
2092 *duplex = HALF_DUPLEX;
2093 DEBUGOUT(" Half Duplex\r\n");
2094 }
2095 } else {
2096 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2097 *speed = SPEED_1000;
2098 *duplex = FULL_DUPLEX;
2099 }
2100 }
2101
2102 /******************************************************************************
2103 * Blocks until autoneg completes or times out (~4.5 seconds)
2104 *
2105 * hw - Struct containing variables accessed by shared code
2106 ******************************************************************************/
2107 static int
2108 e1000_wait_autoneg(struct e1000_hw *hw)
2109 {
2110 uint16_t i;
2111 uint16_t phy_data;
2112
2113 DEBUGFUNC();
2114 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2115
2116 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2117 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2118 /* Read the MII Status Register and wait for Auto-Neg
2119 * Complete bit to be set.
2120 */
2121 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2122 DEBUGOUT("PHY Read Error\n");
2123 return -E1000_ERR_PHY;
2124 }
2125 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2126 DEBUGOUT("PHY Read Error\n");
2127 return -E1000_ERR_PHY;
2128 }
2129 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2130 DEBUGOUT("Auto-Neg complete.\n");
2131 return 0;
2132 }
2133 mdelay(100);
2134 }
2135 DEBUGOUT("Auto-Neg timedout.\n");
2136 return -E1000_ERR_TIMEOUT;
2137 }
2138
2139 /******************************************************************************
2140 * Raises the Management Data Clock
2141 *
2142 * hw - Struct containing variables accessed by shared code
2143 * ctrl - Device control register's current value
2144 ******************************************************************************/
2145 static void
2146 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2147 {
2148 /* Raise the clock input to the Management Data Clock (by setting the MDC
2149 * bit), and then delay 2 microseconds.
2150 */
2151 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2152 E1000_WRITE_FLUSH(hw);
2153 udelay(2);
2154 }
2155
2156 /******************************************************************************
2157 * Lowers the Management Data Clock
2158 *
2159 * hw - Struct containing variables accessed by shared code
2160 * ctrl - Device control register's current value
2161 ******************************************************************************/
2162 static void
2163 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2164 {
2165 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2166 * bit), and then delay 2 microseconds.
2167 */
2168 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2169 E1000_WRITE_FLUSH(hw);
2170 udelay(2);
2171 }
2172
2173 /******************************************************************************
2174 * Shifts data bits out to the PHY
2175 *
2176 * hw - Struct containing variables accessed by shared code
2177 * data - Data to send out to the PHY
2178 * count - Number of bits to shift out
2179 *
2180 * Bits are shifted out in MSB to LSB order.
2181 ******************************************************************************/
2182 static void
2183 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2184 {
2185 uint32_t ctrl;
2186 uint32_t mask;
2187
2188 /* We need to shift "count" number of bits out to the PHY. So, the value
2189 * in the "data" parameter will be shifted out to the PHY one bit at a
2190 * time. In order to do this, "data" must be broken down into bits.
2191 */
2192 mask = 0x01;
2193 mask <<= (count - 1);
2194
2195 ctrl = E1000_READ_REG(hw, CTRL);
2196
2197 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2198 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2199
2200 while (mask) {
2201 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2202 * then raising and lowering the Management Data Clock. A "0" is
2203 * shifted out to the PHY by setting the MDIO bit to "0" and then
2204 * raising and lowering the clock.
2205 */
2206 if (data & mask)
2207 ctrl |= E1000_CTRL_MDIO;
2208 else
2209 ctrl &= ~E1000_CTRL_MDIO;
2210
2211 E1000_WRITE_REG(hw, CTRL, ctrl);
2212 E1000_WRITE_FLUSH(hw);
2213
2214 udelay(2);
2215
2216 e1000_raise_mdi_clk(hw, &ctrl);
2217 e1000_lower_mdi_clk(hw, &ctrl);
2218
2219 mask = mask >> 1;
2220 }
2221 }
2222
2223 /******************************************************************************
2224 * Shifts data bits in from the PHY
2225 *
2226 * hw - Struct containing variables accessed by shared code
2227 *
2228 * Bits are shifted in in MSB to LSB order.
2229 ******************************************************************************/
2230 static uint16_t
2231 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2232 {
2233 uint32_t ctrl;
2234 uint16_t data = 0;
2235 uint8_t i;
2236
2237 /* In order to read a register from the PHY, we need to shift in a total
2238 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2239 * to avoid contention on the MDIO pin when a read operation is performed.
2240 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2241 * by raising the input to the Management Data Clock (setting the MDC bit),
2242 * and then reading the value of the MDIO bit.
2243 */
2244 ctrl = E1000_READ_REG(hw, CTRL);
2245
2246 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2247 ctrl &= ~E1000_CTRL_MDIO_DIR;
2248 ctrl &= ~E1000_CTRL_MDIO;
2249
2250 E1000_WRITE_REG(hw, CTRL, ctrl);
2251 E1000_WRITE_FLUSH(hw);
2252
2253 /* Raise and Lower the clock before reading in the data. This accounts for
2254 * the turnaround bits. The first clock occurred when we clocked out the
2255 * last bit of the Register Address.
2256 */
2257 e1000_raise_mdi_clk(hw, &ctrl);
2258 e1000_lower_mdi_clk(hw, &ctrl);
2259
2260 for (data = 0, i = 0; i < 16; i++) {
2261 data = data << 1;
2262 e1000_raise_mdi_clk(hw, &ctrl);
2263 ctrl = E1000_READ_REG(hw, CTRL);
2264 /* Check to see if we shifted in a "1". */
2265 if (ctrl & E1000_CTRL_MDIO)
2266 data |= 1;
2267 e1000_lower_mdi_clk(hw, &ctrl);
2268 }
2269
2270 e1000_raise_mdi_clk(hw, &ctrl);
2271 e1000_lower_mdi_clk(hw, &ctrl);
2272
2273 return data;
2274 }
2275
2276 /*****************************************************************************
2277 * Reads the value from a PHY register
2278 *
2279 * hw - Struct containing variables accessed by shared code
2280 * reg_addr - address of the PHY register to read
2281 ******************************************************************************/
2282 static int
2283 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2284 {
2285 uint32_t i;
2286 uint32_t mdic = 0;
2287 const uint32_t phy_addr = 1;
2288
2289 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2290 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2291 return -E1000_ERR_PARAM;
2292 }
2293
2294 if (hw->mac_type > e1000_82543) {
2295 /* Set up Op-code, Phy Address, and register address in the MDI
2296 * Control register. The MAC will take care of interfacing with the
2297 * PHY to retrieve the desired data.
2298 */
2299 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2300 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2301 (E1000_MDIC_OP_READ));
2302
2303 E1000_WRITE_REG(hw, MDIC, mdic);
2304
2305 /* Poll the ready bit to see if the MDI read completed */
2306 for (i = 0; i < 64; i++) {
2307 udelay(10);
2308 mdic = E1000_READ_REG(hw, MDIC);
2309 if (mdic & E1000_MDIC_READY)
2310 break;
2311 }
2312 if (!(mdic & E1000_MDIC_READY)) {
2313 DEBUGOUT("MDI Read did not complete\n");
2314 return -E1000_ERR_PHY;
2315 }
2316 if (mdic & E1000_MDIC_ERROR) {
2317 DEBUGOUT("MDI Error\n");
2318 return -E1000_ERR_PHY;
2319 }
2320 *phy_data = (uint16_t) mdic;
2321 } else {
2322 /* We must first send a preamble through the MDIO pin to signal the
2323 * beginning of an MII instruction. This is done by sending 32
2324 * consecutive "1" bits.
2325 */
2326 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2327
2328 /* Now combine the next few fields that are required for a read
2329 * operation. We use this method instead of calling the
2330 * e1000_shift_out_mdi_bits routine five different times. The format of
2331 * a MII read instruction consists of a shift out of 14 bits and is
2332 * defined as follows:
2333 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2334 * followed by a shift in of 18 bits. This first two bits shifted in
2335 * are TurnAround bits used to avoid contention on the MDIO pin when a
2336 * READ operation is performed. These two bits are thrown away
2337 * followed by a shift in of 16 bits which contains the desired data.
2338 */
2339 mdic = ((reg_addr) | (phy_addr << 5) |
2340 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2341
2342 e1000_shift_out_mdi_bits(hw, mdic, 14);
2343
2344 /* Now that we've shifted out the read command to the MII, we need to
2345 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2346 * register address.
2347 */
2348 *phy_data = e1000_shift_in_mdi_bits(hw);
2349 }
2350 return 0;
2351 }
2352
2353 /******************************************************************************
2354 * Writes a value to a PHY register
2355 *
2356 * hw - Struct containing variables accessed by shared code
2357 * reg_addr - address of the PHY register to write
2358 * data - data to write to the PHY
2359 ******************************************************************************/
2360 static int
2361 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2362 {
2363 uint32_t i;
2364 uint32_t mdic = 0;
2365 const uint32_t phy_addr = 1;
2366
2367 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2368 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2369 return -E1000_ERR_PARAM;
2370 }
2371
2372 if (hw->mac_type > e1000_82543) {
2373 /* Set up Op-code, Phy Address, register address, and data intended
2374 * for the PHY register in the MDI Control register. The MAC will take
2375 * care of interfacing with the PHY to send the desired data.
2376 */
2377 mdic = (((uint32_t) phy_data) |
2378 (reg_addr << E1000_MDIC_REG_SHIFT) |
2379 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2380 (E1000_MDIC_OP_WRITE));
2381
2382 E1000_WRITE_REG(hw, MDIC, mdic);
2383
2384 /* Poll the ready bit to see if the MDI read completed */
2385 for (i = 0; i < 64; i++) {
2386 udelay(10);
2387 mdic = E1000_READ_REG(hw, MDIC);
2388 if (mdic & E1000_MDIC_READY)
2389 break;
2390 }
2391 if (!(mdic & E1000_MDIC_READY)) {
2392 DEBUGOUT("MDI Write did not complete\n");
2393 return -E1000_ERR_PHY;
2394 }
2395 } else {
2396 /* We'll need to use the SW defined pins to shift the write command
2397 * out to the PHY. We first send a preamble to the PHY to signal the
2398 * beginning of the MII instruction. This is done by sending 32
2399 * consecutive "1" bits.
2400 */
2401 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2402
2403 /* Now combine the remaining required fields that will indicate a
2404 * write operation. We use this method instead of calling the
2405 * e1000_shift_out_mdi_bits routine for each field in the command. The
2406 * format of a MII write instruction is as follows:
2407 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2408 */
2409 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2410 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2411 mdic <<= 16;
2412 mdic |= (uint32_t) phy_data;
2413
2414 e1000_shift_out_mdi_bits(hw, mdic, 32);
2415 }
2416 return 0;
2417 }
2418
2419 /******************************************************************************
2420 * Returns the PHY to the power-on reset state
2421 *
2422 * hw - Struct containing variables accessed by shared code
2423 ******************************************************************************/
2424 static void
2425 e1000_phy_hw_reset(struct e1000_hw *hw)
2426 {
2427 uint32_t ctrl;
2428 uint32_t ctrl_ext;
2429
2430 DEBUGFUNC();
2431
2432 DEBUGOUT("Resetting Phy...\n");
2433
2434 if (hw->mac_type > e1000_82543) {
2435 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2436 * bit. Then, take it out of reset.
2437 */
2438 ctrl = E1000_READ_REG(hw, CTRL);
2439 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2440 E1000_WRITE_FLUSH(hw);
2441 mdelay(10);
2442 E1000_WRITE_REG(hw, CTRL, ctrl);
2443 E1000_WRITE_FLUSH(hw);
2444 } else {
2445 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2446 * bit to put the PHY into reset. Then, take it out of reset.
2447 */
2448 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2449 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2450 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2451 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2452 E1000_WRITE_FLUSH(hw);
2453 mdelay(10);
2454 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2455 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2456 E1000_WRITE_FLUSH(hw);
2457 }
2458 udelay(150);
2459 }
2460
2461 /******************************************************************************
2462 * Resets the PHY
2463 *
2464 * hw - Struct containing variables accessed by shared code
2465 *
2466 * Sets bit 15 of the MII Control regiser
2467 ******************************************************************************/
2468 static int
2469 e1000_phy_reset(struct e1000_hw *hw)
2470 {
2471 uint16_t phy_data;
2472
2473 DEBUGFUNC();
2474
2475 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2476 DEBUGOUT("PHY Read Error\n");
2477 return -E1000_ERR_PHY;
2478 }
2479 phy_data |= MII_CR_RESET;
2480 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2481 DEBUGOUT("PHY Write Error\n");
2482 return -E1000_ERR_PHY;
2483 }
2484 udelay(1);
2485 return 0;
2486 }
2487
2488 /******************************************************************************
2489 * Probes the expected PHY address for known PHY IDs
2490 *
2491 * hw - Struct containing variables accessed by shared code
2492 ******************************************************************************/
2493 static int
2494 e1000_detect_gig_phy(struct e1000_hw *hw)
2495 {
2496 uint16_t phy_id_high, phy_id_low;
2497 int match = FALSE;
2498
2499 DEBUGFUNC();
2500
2501 /* Read the PHY ID Registers to identify which PHY is onboard. */
2502 if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2503 DEBUGOUT("PHY Read Error\n");
2504 return -E1000_ERR_PHY;
2505 }
2506 hw->phy_id = (uint32_t) (phy_id_high << 16);
2507 udelay(2);
2508 if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2509 DEBUGOUT("PHY Read Error\n");
2510 return -E1000_ERR_PHY;
2511 }
2512 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2513
2514 switch (hw->mac_type) {
2515 case e1000_82543:
2516 if (hw->phy_id == M88E1000_E_PHY_ID)
2517 match = TRUE;
2518 break;
2519 case e1000_82544:
2520 if (hw->phy_id == M88E1000_I_PHY_ID)
2521 match = TRUE;
2522 break;
2523 case e1000_82540:
2524 case e1000_82545:
2525 case e1000_82546:
2526 if (hw->phy_id == M88E1011_I_PHY_ID)
2527 match = TRUE;
2528 break;
2529 default:
2530 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2531 return -E1000_ERR_CONFIG;
2532 }
2533 if (match) {
2534 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2535 return 0;
2536 }
2537 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2538 return -E1000_ERR_PHY;
2539 }
2540
2541 /**
2542 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2543 *
2544 * e1000_sw_init initializes the Adapter private data structure.
2545 * Fields are initialized based on PCI device information and
2546 * OS network device settings (MTU size).
2547 **/
2548
2549 static int
2550 e1000_sw_init(struct eth_device *nic, int cardnum)
2551 {
2552 struct e1000_hw *hw = (typeof(hw)) nic->priv;
2553 int result;
2554
2555 /* PCI config space info */
2556 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2557 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2558 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2559 &hw->subsystem_vendor_id);
2560 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2561
2562 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2563 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2564
2565 /* identify the MAC */
2566 result = e1000_set_mac_type(hw);
2567 if (result) {
2568 E1000_ERR("Unknown MAC Type\n");
2569 return result;
2570 }
2571
2572 /* lan a vs. lan b settings */
2573 if (hw->mac_type == e1000_82546)
2574 /*this also works w/ multiple 82546 cards */
2575 /*but not if they're intermingled /w other e1000s */
2576 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2577 else
2578 hw->lan_loc = e1000_lan_a;
2579
2580 /* flow control settings */
2581 hw->fc_high_water = E1000_FC_HIGH_THRESH;
2582 hw->fc_low_water = E1000_FC_LOW_THRESH;
2583 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2584 hw->fc_send_xon = 1;
2585
2586 /* Media type - copper or fiber */
2587
2588 if (hw->mac_type >= e1000_82543) {
2589 uint32_t status = E1000_READ_REG(hw, STATUS);
2590
2591 if (status & E1000_STATUS_TBIMODE) {
2592 DEBUGOUT("fiber interface\n");
2593 hw->media_type = e1000_media_type_fiber;
2594 } else {
2595 DEBUGOUT("copper interface\n");
2596 hw->media_type = e1000_media_type_copper;
2597 }
2598 } else {
2599 hw->media_type = e1000_media_type_fiber;
2600 }
2601
2602 if (hw->mac_type < e1000_82543)
2603 hw->report_tx_early = 0;
2604 else
2605 hw->report_tx_early = 1;
2606
2607 hw->tbi_compatibility_en = TRUE;
2608 #if 0
2609 hw->wait_autoneg_complete = FALSE;
2610 hw->adaptive_ifs = TRUE;
2611
2612 /* Copper options */
2613 if (hw->media_type == e1000_media_type_copper) {
2614 hw->mdix = AUTO_ALL_MODES;
2615 hw->disable_polarity_correction = FALSE;
2616 }
2617 #endif
2618 return E1000_SUCCESS;
2619 }
2620
2621 void
2622 fill_rx(struct e1000_hw *hw)
2623 {
2624 struct e1000_rx_desc *rd;
2625
2626 rx_last = rx_tail;
2627 rd = rx_base + rx_tail;
2628 rx_tail = (rx_tail + 1) % 8;
2629 memset(rd, 0, 16);
2630 rd->buffer_addr = cpu_to_le64((u32) & packet);
2631 E1000_WRITE_REG(hw, RDT, rx_tail);
2632 }
2633
2634 /**
2635 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2636 * @adapter: board private structure
2637 *
2638 * Configure the Tx unit of the MAC after a reset.
2639 **/
2640
2641 static void
2642 e1000_configure_tx(struct e1000_hw *hw)
2643 {
2644 unsigned long ptr;
2645 unsigned long tctl;
2646 unsigned long tipg;
2647
2648 ptr = (u32) tx_pool;
2649 if (ptr & 0xf)
2650 ptr = (ptr + 0x10) & (~0xf);
2651
2652 tx_base = (typeof(tx_base)) ptr;
2653
2654 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2655 E1000_WRITE_REG(hw, TDBAH, 0);
2656
2657 E1000_WRITE_REG(hw, TDLEN, 128);
2658
2659 /* Setup the HW Tx Head and Tail descriptor pointers */
2660 E1000_WRITE_REG(hw, TDH, 0);
2661 E1000_WRITE_REG(hw, TDT, 0);
2662 tx_tail = 0;
2663
2664 /* Set the default values for the Tx Inter Packet Gap timer */
2665 switch (hw->mac_type) {
2666 case e1000_82542_rev2_0:
2667 case e1000_82542_rev2_1:
2668 tipg = DEFAULT_82542_TIPG_IPGT;
2669 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2670 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2671 break;
2672 default:
2673 if (hw->media_type == e1000_media_type_fiber)
2674 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2675 else
2676 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2677 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2678 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2679 }
2680 E1000_WRITE_REG(hw, TIPG, tipg);
2681 #if 0
2682 /* Set the Tx Interrupt Delay register */
2683 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2684 if (hw->mac_type >= e1000_82540)
2685 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2686 #endif
2687 /* Program the Transmit Control Register */
2688 tctl = E1000_READ_REG(hw, TCTL);
2689 tctl &= ~E1000_TCTL_CT;
2690 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2691 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2692 E1000_WRITE_REG(hw, TCTL, tctl);
2693
2694 e1000_config_collision_dist(hw);
2695 #if 0
2696 /* Setup Transmit Descriptor Settings for this adapter */
2697 adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2698
2699 if (adapter->hw.report_tx_early == 1)
2700 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2701 else
2702 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2703 #endif
2704 }
2705
2706 /**
2707 * e1000_setup_rctl - configure the receive control register
2708 * @adapter: Board private structure
2709 **/
2710 static void
2711 e1000_setup_rctl(struct e1000_hw *hw)
2712 {
2713 uint32_t rctl;
2714
2715 rctl = E1000_READ_REG(hw, RCTL);
2716
2717 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2718
2719 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
2720 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2721
2722 if (hw->tbi_compatibility_on == 1)
2723 rctl |= E1000_RCTL_SBP;
2724 else
2725 rctl &= ~E1000_RCTL_SBP;
2726
2727 rctl &= ~(E1000_RCTL_SZ_4096);
2728 #if 0
2729 switch (adapter->rx_buffer_len) {
2730 case E1000_RXBUFFER_2048:
2731 default:
2732 #endif
2733 rctl |= E1000_RCTL_SZ_2048;
2734 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2735 #if 0
2736 break;
2737 case E1000_RXBUFFER_4096:
2738 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2739 break;
2740 case E1000_RXBUFFER_8192:
2741 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2742 break;
2743 case E1000_RXBUFFER_16384:
2744 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2745 break;
2746 }
2747 #endif
2748 E1000_WRITE_REG(hw, RCTL, rctl);
2749 }
2750
2751 /**
2752 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2753 * @adapter: board private structure
2754 *
2755 * Configure the Rx unit of the MAC after a reset.
2756 **/
2757 static void
2758 e1000_configure_rx(struct e1000_hw *hw)
2759 {
2760 unsigned long ptr;
2761 unsigned long rctl;
2762 #if 0
2763 unsigned long rxcsum;
2764 #endif
2765 rx_tail = 0;
2766 /* make sure receives are disabled while setting up the descriptors */
2767 rctl = E1000_READ_REG(hw, RCTL);
2768 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2769 #if 0
2770 /* set the Receive Delay Timer Register */
2771
2772 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2773 #endif
2774 if (hw->mac_type >= e1000_82540) {
2775 #if 0
2776 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2777 #endif
2778 /* Set the interrupt throttling rate. Value is calculated
2779 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2780 #define MAX_INTS_PER_SEC 8000
2781 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
2782 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2783 }
2784
2785 /* Setup the Base and Length of the Rx Descriptor Ring */
2786 ptr = (u32) rx_pool;
2787 if (ptr & 0xf)
2788 ptr = (ptr + 0x10) & (~0xf);
2789 rx_base = (typeof(rx_base)) ptr;
2790 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2791 E1000_WRITE_REG(hw, RDBAH, 0);
2792
2793 E1000_WRITE_REG(hw, RDLEN, 128);
2794
2795 /* Setup the HW Rx Head and Tail Descriptor Pointers */
2796 E1000_WRITE_REG(hw, RDH, 0);
2797 E1000_WRITE_REG(hw, RDT, 0);
2798 #if 0
2799 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2800 if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2801 rxcsum = E1000_READ_REG(hw, RXCSUM);
2802 rxcsum |= E1000_RXCSUM_TUOFL;
2803 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2804 }
2805 #endif
2806 /* Enable Receives */
2807
2808 E1000_WRITE_REG(hw, RCTL, rctl);
2809 fill_rx(hw);
2810 }
2811
2812 /**************************************************************************
2813 POLL - Wait for a frame
2814 ***************************************************************************/
2815 static int
2816 e1000_poll(struct eth_device *nic)
2817 {
2818 struct e1000_hw *hw = nic->priv;
2819 struct e1000_rx_desc *rd;
2820 /* return true if there's an ethernet packet ready to read */
2821 rd = rx_base + rx_last;
2822 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2823 return 0;
2824 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2825 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2826 fill_rx(hw);
2827 return 1;
2828 }
2829
2830 /**************************************************************************
2831 TRANSMIT - Transmit a frame
2832 ***************************************************************************/
2833 static int
2834 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2835 {
2836 struct e1000_hw *hw = nic->priv;
2837 struct e1000_tx_desc *txp;
2838 int i = 0;
2839
2840 txp = tx_base + tx_tail;
2841 tx_tail = (tx_tail + 1) % 8;
2842
2843 txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2844 txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2845 E1000_TXD_CMD_IFCS | length);
2846 txp->upper.data = 0;
2847 E1000_WRITE_REG(hw, TDT, tx_tail);
2848
2849 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2850 if (i++ > TOUT_LOOP) {
2851 DEBUGOUT("e1000: tx timeout\n");
2852 return 0;
2853 }
2854 udelay(10); /* give the nic a chance to write to the register */
2855 }
2856 return 1;
2857 }
2858
2859 /*reset function*/
2860 static inline int
2861 e1000_reset(struct eth_device *nic)
2862 {
2863 struct e1000_hw *hw = nic->priv;
2864
2865 e1000_reset_hw(hw);
2866 if (hw->mac_type >= e1000_82544) {
2867 E1000_WRITE_REG(hw, WUC, 0);
2868 }
2869 return e1000_init_hw(nic);
2870 }
2871
2872 /**************************************************************************
2873 DISABLE - Turn off ethernet interface
2874 ***************************************************************************/
2875 static void
2876 e1000_disable(struct eth_device *nic)
2877 {
2878 struct e1000_hw *hw = nic->priv;
2879
2880 /* Turn off the ethernet interface */
2881 E1000_WRITE_REG(hw, RCTL, 0);
2882 E1000_WRITE_REG(hw, TCTL, 0);
2883
2884 /* Clear the transmit ring */
2885 E1000_WRITE_REG(hw, TDH, 0);
2886 E1000_WRITE_REG(hw, TDT, 0);
2887
2888 /* Clear the receive ring */
2889 E1000_WRITE_REG(hw, RDH, 0);
2890 E1000_WRITE_REG(hw, RDT, 0);
2891
2892 /* put the card in its initial state */
2893 #if 0
2894 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2895 #endif
2896 mdelay(10);
2897
2898 }
2899
2900 /**************************************************************************
2901 INIT - set up ethernet interface(s)
2902 ***************************************************************************/
2903 static int
2904 e1000_init(struct eth_device *nic, bd_t * bis)
2905 {
2906 struct e1000_hw *hw = nic->priv;
2907 int ret_val = 0;
2908
2909 ret_val = e1000_reset(nic);
2910 if (ret_val < 0) {
2911 if ((ret_val == -E1000_ERR_NOLINK) ||
2912 (ret_val == -E1000_ERR_TIMEOUT)) {
2913 E1000_ERR("Valid Link not detected\n");
2914 } else {
2915 E1000_ERR("Hardware Initialization Failed\n");
2916 }
2917 return 0;
2918 }
2919 e1000_configure_tx(hw);
2920 e1000_setup_rctl(hw);
2921 e1000_configure_rx(hw);
2922 return 1;
2923 }
2924
2925 /**************************************************************************
2926 PROBE - Look for an adapter, this routine's visible to the outside
2927 You should omit the last argument struct pci_device * for a non-PCI NIC
2928 ***************************************************************************/
2929 int
2930 e1000_initialize(bd_t * bis)
2931 {
2932 pci_dev_t devno;
2933 int card_number = 0;
2934 struct eth_device *nic = NULL;
2935 struct e1000_hw *hw = NULL;
2936 u32 iobase;
2937 int idx = 0;
2938 u32 PciCommandWord;
2939
2940 while (1) { /* Find PCI device(s) */
2941 if ((devno = pci_find_devices(supported, idx++)) < 0) {
2942 break;
2943 }
2944
2945 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2946 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
2947 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2948
2949 pci_write_config_dword(devno, PCI_COMMAND,
2950 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2951 /* Check if I/O accesses and Bus Mastering are enabled. */
2952 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
2953 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
2954 printf("Error: Can not enable MEM access.\n");
2955 continue;
2956 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
2957 printf("Error: Can not enable Bus Mastering.\n");
2958 continue;
2959 }
2960
2961 nic = (struct eth_device *) malloc(sizeof (*nic));
2962 hw = (struct e1000_hw *) malloc(sizeof (*hw));
2963 hw->pdev = devno;
2964 nic->priv = hw;
2965 nic->iobase = bus_to_phys(devno, iobase);
2966
2967 sprintf(nic->name, "e1000#%d", card_number);
2968
2969 /* Are these variables needed? */
2970 #if 0
2971 hw->fc = e1000_fc_none;
2972 hw->original_fc = e1000_fc_none;
2973 #else
2974 hw->fc = e1000_fc_default;
2975 hw->original_fc = e1000_fc_default;
2976 #endif
2977 hw->autoneg_failed = 0;
2978 hw->get_link_status = TRUE;
2979 hw->hw_addr = (typeof(hw->hw_addr)) iobase;
2980 hw->mac_type = e1000_undefined;
2981
2982 /* MAC and Phy settings */
2983 if (e1000_sw_init(nic, card_number) < 0) {
2984 free(hw);
2985 free(nic);
2986 return 0;
2987 }
2988 #ifndef CONFIG_AP1000
2989 if (e1000_validate_eeprom_checksum(nic) < 0) {
2990 printf("The EEPROM Checksum Is Not Valid\n");
2991 free(hw);
2992 free(nic);
2993 return 0;
2994 }
2995 #endif
2996 e1000_read_mac_addr(nic);
2997
2998 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
2999
3000 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3001 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3002 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3003
3004 nic->init = e1000_init;
3005 nic->recv = e1000_poll;
3006 nic->send = e1000_transmit;
3007 nic->halt = e1000_disable;
3008
3009 eth_register(nic);
3010
3011 card_number++;
3012 }
3013 return 1;
3014 }
3015
3016 #endif