]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/i2c/fsl_i2c.c
Merge branch 'u-boot/master'
[people/ms/u-boot.git] / drivers / i2c / fsl_i2c.c
1 /*
2 * Copyright 2006,2009 Freescale Semiconductor, Inc.
3 *
4 * 2012, Heiko Schocher, DENX Software Engineering, hs@denx.de.
5 * Changes for multibus/multiadapter I2C support.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * Version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21
22 #include <common.h>
23 #include <command.h>
24 #include <i2c.h> /* Functional interface */
25 #include <asm/io.h>
26 #include <asm/fsl_i2c.h> /* HW definitions */
27
28 /* The maximum number of microseconds we will wait until another master has
29 * released the bus. If not defined in the board header file, then use a
30 * generic value.
31 */
32 #ifndef CONFIG_I2C_MBB_TIMEOUT
33 #define CONFIG_I2C_MBB_TIMEOUT 100000
34 #endif
35
36 /* The maximum number of microseconds we will wait for a read or write
37 * operation to complete. If not defined in the board header file, then use a
38 * generic value.
39 */
40 #ifndef CONFIG_I2C_TIMEOUT
41 #define CONFIG_I2C_TIMEOUT 10000
42 #endif
43
44 #define I2C_READ_BIT 1
45 #define I2C_WRITE_BIT 0
46
47 DECLARE_GLOBAL_DATA_PTR;
48
49 static const struct fsl_i2c *i2c_dev[2] = {
50 (struct fsl_i2c *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C_OFFSET),
51 #ifdef CONFIG_SYS_FSL_I2C2_OFFSET
52 (struct fsl_i2c *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C2_OFFSET)
53 #endif
54 };
55
56 /* I2C speed map for a DFSR value of 1 */
57
58 /*
59 * Map I2C frequency dividers to FDR and DFSR values
60 *
61 * This structure is used to define the elements of a table that maps I2C
62 * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be
63 * programmed into the Frequency Divider Ratio (FDR) and Digital Filter
64 * Sampling Rate (DFSR) registers.
65 *
66 * The actual table should be defined in the board file, and it must be called
67 * fsl_i2c_speed_map[].
68 *
69 * The last entry of the table must have a value of {-1, X}, where X is same
70 * FDR/DFSR values as the second-to-last entry. This guarantees that any
71 * search through the array will always find a match.
72 *
73 * The values of the divider must be in increasing numerical order, i.e.
74 * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider.
75 *
76 * For this table, the values are based on a value of 1 for the DFSR
77 * register. See the application note AN2919 "Determining the I2C Frequency
78 * Divider Ratio for SCL"
79 *
80 * ColdFire I2C frequency dividers for FDR values are different from
81 * PowerPC. The protocol to use the I2C module is still the same.
82 * A different table is defined and are based on MCF5xxx user manual.
83 *
84 */
85 static const struct {
86 unsigned short divider;
87 u8 fdr;
88 } fsl_i2c_speed_map[] = {
89 #ifdef __M68K__
90 {20, 32}, {22, 33}, {24, 34}, {26, 35},
91 {28, 0}, {28, 36}, {30, 1}, {32, 37},
92 {34, 2}, {36, 38}, {40, 3}, {40, 39},
93 {44, 4}, {48, 5}, {48, 40}, {56, 6},
94 {56, 41}, {64, 42}, {68, 7}, {72, 43},
95 {80, 8}, {80, 44}, {88, 9}, {96, 41},
96 {104, 10}, {112, 42}, {128, 11}, {128, 43},
97 {144, 12}, {160, 13}, {160, 48}, {192, 14},
98 {192, 49}, {224, 50}, {240, 15}, {256, 51},
99 {288, 16}, {320, 17}, {320, 52}, {384, 18},
100 {384, 53}, {448, 54}, {480, 19}, {512, 55},
101 {576, 20}, {640, 21}, {640, 56}, {768, 22},
102 {768, 57}, {960, 23}, {896, 58}, {1024, 59},
103 {1152, 24}, {1280, 25}, {1280, 60}, {1536, 26},
104 {1536, 61}, {1792, 62}, {1920, 27}, {2048, 63},
105 {2304, 28}, {2560, 29}, {3072, 30}, {3840, 31},
106 {-1, 31}
107 #endif
108 };
109
110 /**
111 * Set the I2C bus speed for a given I2C device
112 *
113 * @param dev: the I2C device
114 * @i2c_clk: I2C bus clock frequency
115 * @speed: the desired speed of the bus
116 *
117 * The I2C device must be stopped before calling this function.
118 *
119 * The return value is the actual bus speed that is set.
120 */
121 static unsigned int set_i2c_bus_speed(const struct fsl_i2c *dev,
122 unsigned int i2c_clk, unsigned int speed)
123 {
124 unsigned short divider = min(i2c_clk / speed, (unsigned short) -1);
125
126 /*
127 * We want to choose an FDR/DFSR that generates an I2C bus speed that
128 * is equal to or lower than the requested speed. That means that we
129 * want the first divider that is equal to or greater than the
130 * calculated divider.
131 */
132 #ifdef __PPC__
133 u8 dfsr, fdr = 0x31; /* Default if no FDR found */
134 /* a, b and dfsr matches identifiers A,B and C respectively in AN2919 */
135 unsigned short a, b, ga, gb;
136 unsigned long c_div, est_div;
137
138 #ifdef CONFIG_FSL_I2C_CUSTOM_DFSR
139 dfsr = CONFIG_FSL_I2C_CUSTOM_DFSR;
140 #else
141 /* Condition 1: dfsr <= 50/T */
142 dfsr = (5 * (i2c_clk / 1000)) / 100000;
143 #endif
144 #ifdef CONFIG_FSL_I2C_CUSTOM_FDR
145 fdr = CONFIG_FSL_I2C_CUSTOM_FDR;
146 speed = i2c_clk / divider; /* Fake something */
147 #else
148 debug("Requested speed:%d, i2c_clk:%d\n", speed, i2c_clk);
149 if (!dfsr)
150 dfsr = 1;
151
152 est_div = ~0;
153 for (ga = 0x4, a = 10; a <= 30; ga++, a += 2) {
154 for (gb = 0; gb < 8; gb++) {
155 b = 16 << gb;
156 c_div = b * (a + ((3*dfsr)/b)*2);
157 if ((c_div > divider) && (c_div < est_div)) {
158 unsigned short bin_gb, bin_ga;
159
160 est_div = c_div;
161 bin_gb = gb << 2;
162 bin_ga = (ga & 0x3) | ((ga & 0x4) << 3);
163 fdr = bin_gb | bin_ga;
164 speed = i2c_clk / est_div;
165 debug("FDR:0x%.2x, div:%ld, ga:0x%x, gb:0x%x, "
166 "a:%d, b:%d, speed:%d\n",
167 fdr, est_div, ga, gb, a, b, speed);
168 /* Condition 2 not accounted for */
169 debug("Tr <= %d ns\n",
170 (b - 3 * dfsr) * 1000000 /
171 (i2c_clk / 1000));
172 }
173 }
174 if (a == 20)
175 a += 2;
176 if (a == 24)
177 a += 4;
178 }
179 debug("divider:%d, est_div:%ld, DFSR:%d\n", divider, est_div, dfsr);
180 debug("FDR:0x%.2x, speed:%d\n", fdr, speed);
181 #endif
182 writeb(dfsr, &dev->dfsrr); /* set default filter */
183 writeb(fdr, &dev->fdr); /* set bus speed */
184 #else
185 unsigned int i;
186
187 for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++)
188 if (fsl_i2c_speed_map[i].divider >= divider) {
189 u8 fdr;
190
191 fdr = fsl_i2c_speed_map[i].fdr;
192 speed = i2c_clk / fsl_i2c_speed_map[i].divider;
193 writeb(fdr, &dev->fdr); /* set bus speed */
194
195 break;
196 }
197 #endif
198 return speed;
199 }
200
201 static unsigned int get_i2c_clock(int bus)
202 {
203 if (bus)
204 return gd->arch.i2c2_clk; /* I2C2 clock */
205 else
206 return gd->arch.i2c1_clk; /* I2C1 clock */
207 }
208
209 static int fsl_i2c_fixup(const struct fsl_i2c *dev)
210 {
211 const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
212 unsigned long long timeval = 0;
213 int ret = -1;
214 unsigned int flags = 0;
215
216 #ifdef CONFIG_SYS_FSL_ERRATUM_I2C_A004447
217 unsigned int svr = get_svr();
218 if ((SVR_SOC_VER(svr) == SVR_8548 && IS_SVR_REV(svr, 3, 1)) ||
219 (SVR_REV(svr) <= CONFIG_SYS_FSL_A004447_SVR_REV))
220 flags = I2C_CR_BIT6;
221 #endif
222
223 writeb(I2C_CR_MEN | I2C_CR_MSTA, &dev->cr);
224
225 timeval = get_ticks();
226 while (!(readb(&dev->sr) & I2C_SR_MBB)) {
227 if ((get_ticks() - timeval) > timeout)
228 goto err;
229 }
230
231 if (readb(&dev->sr) & I2C_SR_MAL) {
232 /* SDA is stuck low */
233 writeb(0, &dev->cr);
234 udelay(100);
235 writeb(I2C_CR_MSTA | flags, &dev->cr);
236 writeb(I2C_CR_MEN | I2C_CR_MSTA | flags, &dev->cr);
237 }
238
239 readb(&dev->dr);
240
241 timeval = get_ticks();
242 while (!(readb(&dev->sr) & I2C_SR_MIF)) {
243 if ((get_ticks() - timeval) > timeout)
244 goto err;
245 }
246 ret = 0;
247
248 err:
249 writeb(I2C_CR_MEN | flags, &dev->cr);
250 writeb(0, &dev->sr);
251 udelay(100);
252
253 return ret;
254 }
255
256 static void fsl_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
257 {
258 const struct fsl_i2c *dev;
259 const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
260 unsigned long long timeval;
261
262 #ifdef CONFIG_SYS_I2C_INIT_BOARD
263 /* Call board specific i2c bus reset routine before accessing the
264 * environment, which might be in a chip on that bus. For details
265 * about this problem see doc/I2C_Edge_Conditions.
266 */
267 i2c_init_board();
268 #endif
269 dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
270
271 writeb(0, &dev->cr); /* stop I2C controller */
272 udelay(5); /* let it shutdown in peace */
273 set_i2c_bus_speed(dev, get_i2c_clock(adap->hwadapnr), speed);
274 writeb(slaveadd << 1, &dev->adr);/* write slave address */
275 writeb(0x0, &dev->sr); /* clear status register */
276 writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */
277
278 timeval = get_ticks();
279 while (readb(&dev->sr) & I2C_SR_MBB) {
280 if ((get_ticks() - timeval) < timeout)
281 continue;
282
283 if (fsl_i2c_fixup(dev))
284 debug("i2c_init: BUS#%d failed to init\n",
285 adap->hwadapnr);
286
287 break;
288 }
289
290 #ifdef CONFIG_SYS_I2C_BOARD_LATE_INIT
291 /* Call board specific i2c bus reset routine AFTER the bus has been
292 * initialized. Use either this callpoint or i2c_init_board;
293 * which is called before i2c_init operations.
294 * For details about this problem see doc/I2C_Edge_Conditions.
295 */
296 i2c_board_late_init();
297 #endif
298 }
299
300 static int
301 i2c_wait4bus(struct i2c_adapter *adap)
302 {
303 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
304 unsigned long long timeval = get_ticks();
305 const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
306
307 while (readb(&dev->sr) & I2C_SR_MBB) {
308 if ((get_ticks() - timeval) > timeout)
309 return -1;
310 }
311
312 return 0;
313 }
314
315 static __inline__ int
316 i2c_wait(struct i2c_adapter *adap, int write)
317 {
318 u32 csr;
319 unsigned long long timeval = get_ticks();
320 const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT);
321 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
322
323 do {
324 csr = readb(&dev->sr);
325 if (!(csr & I2C_SR_MIF))
326 continue;
327 /* Read again to allow register to stabilise */
328 csr = readb(&dev->sr);
329
330 writeb(0x0, &dev->sr);
331
332 if (csr & I2C_SR_MAL) {
333 debug("i2c_wait: MAL\n");
334 return -1;
335 }
336
337 if (!(csr & I2C_SR_MCF)) {
338 debug("i2c_wait: unfinished\n");
339 return -1;
340 }
341
342 if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) {
343 debug("i2c_wait: No RXACK\n");
344 return -1;
345 }
346
347 return 0;
348 } while ((get_ticks() - timeval) < timeout);
349
350 debug("i2c_wait: timed out\n");
351 return -1;
352 }
353
354 static __inline__ int
355 i2c_write_addr(struct i2c_adapter *adap, u8 dev, u8 dir, int rsta)
356 {
357 struct fsl_i2c *device = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
358
359 writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX
360 | (rsta ? I2C_CR_RSTA : 0),
361 &device->cr);
362
363 writeb((dev << 1) | dir, &device->dr);
364
365 if (i2c_wait(adap, I2C_WRITE_BIT) < 0)
366 return 0;
367
368 return 1;
369 }
370
371 static __inline__ int
372 __i2c_write(struct i2c_adapter *adap, u8 *data, int length)
373 {
374 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
375 int i;
376
377 for (i = 0; i < length; i++) {
378 writeb(data[i], &dev->dr);
379
380 if (i2c_wait(adap, I2C_WRITE_BIT) < 0)
381 break;
382 }
383
384 return i;
385 }
386
387 static __inline__ int
388 __i2c_read(struct i2c_adapter *adap, u8 *data, int length)
389 {
390 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
391 int i;
392
393 writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0),
394 &dev->cr);
395
396 /* dummy read */
397 readb(&dev->dr);
398
399 for (i = 0; i < length; i++) {
400 if (i2c_wait(adap, I2C_READ_BIT) < 0)
401 break;
402
403 /* Generate ack on last next to last byte */
404 if (i == length - 2)
405 writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK,
406 &dev->cr);
407
408 /* Do not generate stop on last byte */
409 if (i == length - 1)
410 writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX,
411 &dev->cr);
412
413 data[i] = readb(&dev->dr);
414 }
415
416 return i;
417 }
418
419 static int
420 fsl_i2c_read(struct i2c_adapter *adap, u8 dev, uint addr, int alen, u8 *data,
421 int length)
422 {
423 struct fsl_i2c *device = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
424 int i = -1; /* signal error */
425 u8 *a = (u8*)&addr;
426 int len = alen * -1;
427
428 if (i2c_wait4bus(adap) < 0)
429 return -1;
430
431 /* To handle the need of I2C devices that require to write few bytes
432 * (more than 4 bytes of address as in the case of else part)
433 * of data before reading, Negative equivalent of length(bytes to write)
434 * is passed, but used the +ve part of len for writing data
435 */
436 if (alen < 0) {
437 /* Generate a START and send the Address and
438 * the Tx Bytes to the slave.
439 * "START: Address: Write bytes data[len]"
440 * IF part supports writing any number of bytes in contrast
441 * to the else part, which supports writing address offset
442 * of upto 4 bytes only.
443 * bytes that need to be written are passed in
444 * "data", which will eventually keep the data READ,
445 * after writing the len bytes out of it
446 */
447 if (i2c_write_addr(adap, dev, I2C_WRITE_BIT, 0) != 0)
448 i = __i2c_write(adap, data, len);
449
450 if (i != len)
451 return -1;
452
453 if (length && i2c_write_addr(adap, dev, I2C_READ_BIT, 1) != 0)
454 i = __i2c_read(adap, data, length);
455 } else {
456 if ((!length || alen > 0) &&
457 i2c_write_addr(adap, dev, I2C_WRITE_BIT, 0) != 0 &&
458 __i2c_write(adap, &a[4 - alen], alen) == alen)
459 i = 0; /* No error so far */
460
461 if (length &&
462 i2c_write_addr(adap, dev, I2C_READ_BIT, alen ? 1 : 0) != 0)
463 i = __i2c_read(adap, data, length);
464 }
465
466 writeb(I2C_CR_MEN, &device->cr);
467
468 if (i2c_wait4bus(adap)) /* Wait until STOP */
469 debug("i2c_read: wait4bus timed out\n");
470
471 if (i == length)
472 return 0;
473
474 return -1;
475 }
476
477 static int
478 fsl_i2c_write(struct i2c_adapter *adap, u8 dev, uint addr, int alen,
479 u8 *data, int length)
480 {
481 struct fsl_i2c *device = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
482 int i = -1; /* signal error */
483 u8 *a = (u8*)&addr;
484
485 if (i2c_wait4bus(adap) < 0)
486 return -1;
487
488 if (i2c_write_addr(adap, dev, I2C_WRITE_BIT, 0) != 0 &&
489 __i2c_write(adap, &a[4 - alen], alen) == alen) {
490 i = __i2c_write(adap, data, length);
491 }
492
493 writeb(I2C_CR_MEN, &device->cr);
494 if (i2c_wait4bus(adap)) /* Wait until STOP */
495 debug("i2c_write: wait4bus timed out\n");
496
497 if (i == length)
498 return 0;
499
500 return -1;
501 }
502
503 static int
504 fsl_i2c_probe(struct i2c_adapter *adap, uchar chip)
505 {
506 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
507 /* For unknow reason the controller will ACK when
508 * probing for a slave with the same address, so skip
509 * it.
510 */
511 if (chip == (readb(&dev->adr) >> 1))
512 return -1;
513
514 return fsl_i2c_read(adap, chip, 0, 0, NULL, 0);
515 }
516
517 static unsigned int fsl_i2c_set_bus_speed(struct i2c_adapter *adap,
518 unsigned int speed)
519 {
520 struct fsl_i2c *dev = (struct fsl_i2c *)i2c_dev[adap->hwadapnr];
521
522 writeb(0, &dev->cr); /* stop controller */
523 set_i2c_bus_speed(dev, get_i2c_clock(adap->hwadapnr), speed);
524 writeb(I2C_CR_MEN, &dev->cr); /* start controller */
525
526 return 0;
527 }
528
529 /*
530 * Register fsl i2c adapters
531 */
532 U_BOOT_I2C_ADAP_COMPLETE(fsl_0, fsl_i2c_init, fsl_i2c_probe, fsl_i2c_read,
533 fsl_i2c_write, fsl_i2c_set_bus_speed,
534 CONFIG_SYS_FSL_I2C_SPEED, CONFIG_SYS_FSL_I2C_SLAVE,
535 0)
536 #ifdef CONFIG_SYS_FSL_I2C2_OFFSET
537 U_BOOT_I2C_ADAP_COMPLETE(fsl_1, fsl_i2c_init, fsl_i2c_probe, fsl_i2c_read,
538 fsl_i2c_write, fsl_i2c_set_bus_speed,
539 CONFIG_SYS_FSL_I2C2_SPEED, CONFIG_SYS_FSL_I2C2_SLAVE,
540 1)
541 #endif