]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/misc/cros_ec.c
dm: cros_ec: Convert the I2C tunnel code to use driver model
[people/ms/u-boot.git] / drivers / misc / cros_ec.c
1 /*
2 * Chromium OS cros_ec driver
3 *
4 * Copyright (c) 2012 The Chromium OS Authors.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 /*
10 * This is the interface to the Chrome OS EC. It provides keyboard functions,
11 * power control and battery management. Quite a few other functions are
12 * provided to enable the EC software to be updated, talk to the EC's I2C bus
13 * and store a small amount of data in a memory which persists while the EC
14 * is not reset.
15 */
16
17 #include <common.h>
18 #include <command.h>
19 #include <dm.h>
20 #include <i2c.h>
21 #include <cros_ec.h>
22 #include <fdtdec.h>
23 #include <malloc.h>
24 #include <spi.h>
25 #include <asm/errno.h>
26 #include <asm/io.h>
27 #include <asm-generic/gpio.h>
28 #include <dm/device-internal.h>
29 #include <dm/root.h>
30 #include <dm/uclass-internal.h>
31
32 #ifdef DEBUG_TRACE
33 #define debug_trace(fmt, b...) debug(fmt, #b)
34 #else
35 #define debug_trace(fmt, b...)
36 #endif
37
38 enum {
39 /* Timeout waiting for a flash erase command to complete */
40 CROS_EC_CMD_TIMEOUT_MS = 5000,
41 /* Timeout waiting for a synchronous hash to be recomputed */
42 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
43 };
44
45 DECLARE_GLOBAL_DATA_PTR;
46
47 /* Note: depends on enum ec_current_image */
48 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
49
50 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
51 {
52 #ifdef DEBUG
53 int i;
54
55 printf("%s: ", name);
56 if (cmd != -1)
57 printf("cmd=%#x: ", cmd);
58 for (i = 0; i < len; i++)
59 printf("%02x ", data[i]);
60 printf("\n");
61 #endif
62 }
63
64 /*
65 * Calculate a simple 8-bit checksum of a data block
66 *
67 * @param data Data block to checksum
68 * @param size Size of data block in bytes
69 * @return checksum value (0 to 255)
70 */
71 int cros_ec_calc_checksum(const uint8_t *data, int size)
72 {
73 int csum, i;
74
75 for (i = csum = 0; i < size; i++)
76 csum += data[i];
77 return csum & 0xff;
78 }
79
80 /**
81 * Create a request packet for protocol version 3.
82 *
83 * The packet is stored in the device's internal output buffer.
84 *
85 * @param dev CROS-EC device
86 * @param cmd Command to send (EC_CMD_...)
87 * @param cmd_version Version of command to send (EC_VER_...)
88 * @param dout Output data (may be NULL If dout_len=0)
89 * @param dout_len Size of output data in bytes
90 * @return packet size in bytes, or <0 if error.
91 */
92 static int create_proto3_request(struct cros_ec_dev *dev,
93 int cmd, int cmd_version,
94 const void *dout, int dout_len)
95 {
96 struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
97 int out_bytes = dout_len + sizeof(*rq);
98
99 /* Fail if output size is too big */
100 if (out_bytes > (int)sizeof(dev->dout)) {
101 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
102 return -EC_RES_REQUEST_TRUNCATED;
103 }
104
105 /* Fill in request packet */
106 rq->struct_version = EC_HOST_REQUEST_VERSION;
107 rq->checksum = 0;
108 rq->command = cmd;
109 rq->command_version = cmd_version;
110 rq->reserved = 0;
111 rq->data_len = dout_len;
112
113 /* Copy data after header */
114 memcpy(rq + 1, dout, dout_len);
115
116 /* Write checksum field so the entire packet sums to 0 */
117 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
118
119 cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
120
121 /* Return size of request packet */
122 return out_bytes;
123 }
124
125 /**
126 * Prepare the device to receive a protocol version 3 response.
127 *
128 * @param dev CROS-EC device
129 * @param din_len Maximum size of response in bytes
130 * @return maximum expected number of bytes in response, or <0 if error.
131 */
132 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
133 {
134 int in_bytes = din_len + sizeof(struct ec_host_response);
135
136 /* Fail if input size is too big */
137 if (in_bytes > (int)sizeof(dev->din)) {
138 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
139 return -EC_RES_RESPONSE_TOO_BIG;
140 }
141
142 /* Return expected size of response packet */
143 return in_bytes;
144 }
145
146 /**
147 * Handle a protocol version 3 response packet.
148 *
149 * The packet must already be stored in the device's internal input buffer.
150 *
151 * @param dev CROS-EC device
152 * @param dinp Returns pointer to response data
153 * @param din_len Maximum size of response in bytes
154 * @return number of bytes of response data, or <0 if error. Note that error
155 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
156 * overlap!)
157 */
158 static int handle_proto3_response(struct cros_ec_dev *dev,
159 uint8_t **dinp, int din_len)
160 {
161 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
162 int in_bytes;
163 int csum;
164
165 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
166
167 /* Check input data */
168 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
169 debug("%s: EC response version mismatch\n", __func__);
170 return -EC_RES_INVALID_RESPONSE;
171 }
172
173 if (rs->reserved) {
174 debug("%s: EC response reserved != 0\n", __func__);
175 return -EC_RES_INVALID_RESPONSE;
176 }
177
178 if (rs->data_len > din_len) {
179 debug("%s: EC returned too much data\n", __func__);
180 return -EC_RES_RESPONSE_TOO_BIG;
181 }
182
183 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
184
185 /* Update in_bytes to actual data size */
186 in_bytes = sizeof(*rs) + rs->data_len;
187
188 /* Verify checksum */
189 csum = cros_ec_calc_checksum(dev->din, in_bytes);
190 if (csum) {
191 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
192 csum);
193 return -EC_RES_INVALID_CHECKSUM;
194 }
195
196 /* Return error result, if any */
197 if (rs->result)
198 return -(int)rs->result;
199
200 /* If we're still here, set response data pointer and return length */
201 *dinp = (uint8_t *)(rs + 1);
202
203 return rs->data_len;
204 }
205
206 static int send_command_proto3(struct cros_ec_dev *dev,
207 int cmd, int cmd_version,
208 const void *dout, int dout_len,
209 uint8_t **dinp, int din_len)
210 {
211 struct dm_cros_ec_ops *ops;
212 int out_bytes, in_bytes;
213 int rv;
214
215 /* Create request packet */
216 out_bytes = create_proto3_request(dev, cmd, cmd_version,
217 dout, dout_len);
218 if (out_bytes < 0)
219 return out_bytes;
220
221 /* Prepare response buffer */
222 in_bytes = prepare_proto3_response_buffer(dev, din_len);
223 if (in_bytes < 0)
224 return in_bytes;
225
226 ops = dm_cros_ec_get_ops(dev->dev);
227 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS;
228 if (rv < 0)
229 return rv;
230
231 /* Process the response */
232 return handle_proto3_response(dev, dinp, din_len);
233 }
234
235 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
236 const void *dout, int dout_len,
237 uint8_t **dinp, int din_len)
238 {
239 struct dm_cros_ec_ops *ops;
240 int ret = -1;
241
242 /* Handle protocol version 3 support */
243 if (dev->protocol_version == 3) {
244 return send_command_proto3(dev, cmd, cmd_version,
245 dout, dout_len, dinp, din_len);
246 }
247
248 ops = dm_cros_ec_get_ops(dev->dev);
249 ret = ops->command(dev->dev, cmd, cmd_version,
250 (const uint8_t *)dout, dout_len, dinp, din_len);
251
252 return ret;
253 }
254
255 /**
256 * Send a command to the CROS-EC device and return the reply.
257 *
258 * The device's internal input/output buffers are used.
259 *
260 * @param dev CROS-EC device
261 * @param cmd Command to send (EC_CMD_...)
262 * @param cmd_version Version of command to send (EC_VER_...)
263 * @param dout Output data (may be NULL If dout_len=0)
264 * @param dout_len Size of output data in bytes
265 * @param dinp Response data (may be NULL If din_len=0).
266 * If not NULL, it will be updated to point to the data
267 * and will always be double word aligned (64-bits)
268 * @param din_len Maximum size of response in bytes
269 * @return number of bytes in response, or -ve on error
270 */
271 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
272 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
273 int din_len)
274 {
275 uint8_t *din = NULL;
276 int len;
277
278 len = send_command(dev, cmd, cmd_version, dout, dout_len,
279 &din, din_len);
280
281 /* If the command doesn't complete, wait a while */
282 if (len == -EC_RES_IN_PROGRESS) {
283 struct ec_response_get_comms_status *resp = NULL;
284 ulong start;
285
286 /* Wait for command to complete */
287 start = get_timer(0);
288 do {
289 int ret;
290
291 mdelay(50); /* Insert some reasonable delay */
292 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
293 NULL, 0,
294 (uint8_t **)&resp, sizeof(*resp));
295 if (ret < 0)
296 return ret;
297
298 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
299 debug("%s: Command %#02x timeout\n",
300 __func__, cmd);
301 return -EC_RES_TIMEOUT;
302 }
303 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
304
305 /* OK it completed, so read the status response */
306 /* not sure why it was 0 for the last argument */
307 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
308 NULL, 0, &din, din_len);
309 }
310
311 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
312 dinp ? *dinp : NULL);
313 if (dinp) {
314 /* If we have any data to return, it must be 64bit-aligned */
315 assert(len <= 0 || !((uintptr_t)din & 7));
316 *dinp = din;
317 }
318
319 return len;
320 }
321
322 /**
323 * Send a command to the CROS-EC device and return the reply.
324 *
325 * The device's internal input/output buffers are used.
326 *
327 * @param dev CROS-EC device
328 * @param cmd Command to send (EC_CMD_...)
329 * @param cmd_version Version of command to send (EC_VER_...)
330 * @param dout Output data (may be NULL If dout_len=0)
331 * @param dout_len Size of output data in bytes
332 * @param din Response data (may be NULL If din_len=0).
333 * It not NULL, it is a place for ec_command() to copy the
334 * data to.
335 * @param din_len Maximum size of response in bytes
336 * @return number of bytes in response, or -ve on error
337 */
338 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
339 const void *dout, int dout_len,
340 void *din, int din_len)
341 {
342 uint8_t *in_buffer;
343 int len;
344
345 assert((din_len == 0) || din);
346 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
347 &in_buffer, din_len);
348 if (len > 0) {
349 /*
350 * If we were asked to put it somewhere, do so, otherwise just
351 * disregard the result.
352 */
353 if (din && in_buffer) {
354 assert(len <= din_len);
355 memmove(din, in_buffer, len);
356 }
357 }
358 return len;
359 }
360
361 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
362 {
363 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
364 sizeof(scan->data)) != sizeof(scan->data))
365 return -1;
366
367 return 0;
368 }
369
370 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
371 {
372 struct ec_response_get_version *r;
373
374 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
375 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
376 return -1;
377
378 if (maxlen > (int)sizeof(r->version_string_ro))
379 maxlen = sizeof(r->version_string_ro);
380
381 switch (r->current_image) {
382 case EC_IMAGE_RO:
383 memcpy(id, r->version_string_ro, maxlen);
384 break;
385 case EC_IMAGE_RW:
386 memcpy(id, r->version_string_rw, maxlen);
387 break;
388 default:
389 return -1;
390 }
391
392 id[maxlen - 1] = '\0';
393 return 0;
394 }
395
396 int cros_ec_read_version(struct cros_ec_dev *dev,
397 struct ec_response_get_version **versionp)
398 {
399 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
400 (uint8_t **)versionp, sizeof(**versionp))
401 != sizeof(**versionp))
402 return -1;
403
404 return 0;
405 }
406
407 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
408 {
409 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
410 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
411 return -1;
412
413 return 0;
414 }
415
416 int cros_ec_read_current_image(struct cros_ec_dev *dev,
417 enum ec_current_image *image)
418 {
419 struct ec_response_get_version *r;
420
421 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
422 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
423 return -1;
424
425 *image = r->current_image;
426 return 0;
427 }
428
429 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
430 struct ec_response_vboot_hash *hash)
431 {
432 struct ec_params_vboot_hash p;
433 ulong start;
434
435 start = get_timer(0);
436 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
437 mdelay(50); /* Insert some reasonable delay */
438
439 p.cmd = EC_VBOOT_HASH_GET;
440 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
441 hash, sizeof(*hash)) < 0)
442 return -1;
443
444 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
445 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
446 return -EC_RES_TIMEOUT;
447 }
448 }
449 return 0;
450 }
451
452
453 int cros_ec_read_hash(struct cros_ec_dev *dev,
454 struct ec_response_vboot_hash *hash)
455 {
456 struct ec_params_vboot_hash p;
457 int rv;
458
459 p.cmd = EC_VBOOT_HASH_GET;
460 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
461 hash, sizeof(*hash)) < 0)
462 return -1;
463
464 /* If the EC is busy calculating the hash, fidget until it's done. */
465 rv = cros_ec_wait_on_hash_done(dev, hash);
466 if (rv)
467 return rv;
468
469 /* If the hash is valid, we're done. Otherwise, we have to kick it off
470 * again and wait for it to complete. Note that we explicitly assume
471 * that hashing zero bytes is always wrong, even though that would
472 * produce a valid hash value. */
473 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
474 return 0;
475
476 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
477 __func__, hash->status, hash->size);
478
479 p.cmd = EC_VBOOT_HASH_START;
480 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
481 p.nonce_size = 0;
482 p.offset = EC_VBOOT_HASH_OFFSET_RW;
483
484 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
485 hash, sizeof(*hash)) < 0)
486 return -1;
487
488 rv = cros_ec_wait_on_hash_done(dev, hash);
489 if (rv)
490 return rv;
491
492 debug("%s: hash done\n", __func__);
493
494 return 0;
495 }
496
497 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
498 {
499 struct ec_params_vboot_hash p;
500 struct ec_response_vboot_hash *hash;
501
502 /* We don't have an explict command for the EC to discard its current
503 * hash value, so we'll just tell it to calculate one that we know is
504 * wrong (we claim that hashing zero bytes is always invalid).
505 */
506 p.cmd = EC_VBOOT_HASH_RECALC;
507 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
508 p.nonce_size = 0;
509 p.offset = 0;
510 p.size = 0;
511
512 debug("%s:\n", __func__);
513
514 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
515 (uint8_t **)&hash, sizeof(*hash)) < 0)
516 return -1;
517
518 /* No need to wait for it to finish */
519 return 0;
520 }
521
522 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
523 uint8_t flags)
524 {
525 struct ec_params_reboot_ec p;
526
527 p.cmd = cmd;
528 p.flags = flags;
529
530 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
531 < 0)
532 return -1;
533
534 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
535 /*
536 * EC reboot will take place immediately so delay to allow it
537 * to complete. Note that some reboot types (EC_REBOOT_COLD)
538 * will reboot the AP as well, in which case we won't actually
539 * get to this point.
540 */
541 /*
542 * TODO(rspangler@chromium.org): Would be nice if we had a
543 * better way to determine when the reboot is complete. Could
544 * we poll a memory-mapped LPC value?
545 */
546 udelay(50000);
547 }
548
549 return 0;
550 }
551
552 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
553 {
554 /* no interrupt support : always poll */
555 if (!dm_gpio_is_valid(&dev->ec_int))
556 return -ENOENT;
557
558 return dm_gpio_get_value(&dev->ec_int);
559 }
560
561 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
562 {
563 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
564 sizeof(*info)) != sizeof(*info))
565 return -1;
566
567 return 0;
568 }
569
570 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
571 {
572 struct ec_response_host_event_mask *resp;
573
574 /*
575 * Use the B copy of the event flags, because the main copy is already
576 * used by ACPI/SMI.
577 */
578 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
579 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
580 return -1;
581
582 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
583 return -1;
584
585 *events_ptr = resp->mask;
586 return 0;
587 }
588
589 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
590 {
591 struct ec_params_host_event_mask params;
592
593 params.mask = events;
594
595 /*
596 * Use the B copy of the event flags, so it affects the data returned
597 * by cros_ec_get_host_events().
598 */
599 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
600 &params, sizeof(params), NULL, 0) < 0)
601 return -1;
602
603 return 0;
604 }
605
606 int cros_ec_flash_protect(struct cros_ec_dev *dev,
607 uint32_t set_mask, uint32_t set_flags,
608 struct ec_response_flash_protect *resp)
609 {
610 struct ec_params_flash_protect params;
611
612 params.mask = set_mask;
613 params.flags = set_flags;
614
615 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
616 &params, sizeof(params),
617 resp, sizeof(*resp)) != sizeof(*resp))
618 return -1;
619
620 return 0;
621 }
622
623 static int cros_ec_check_version(struct cros_ec_dev *dev)
624 {
625 struct ec_params_hello req;
626 struct ec_response_hello *resp;
627
628 struct dm_cros_ec_ops *ops;
629 int ret;
630
631 ops = dm_cros_ec_get_ops(dev->dev);
632 if (ops->check_version) {
633 ret = ops->check_version(dev->dev);
634 if (ret)
635 return ret;
636 }
637
638 /*
639 * TODO(sjg@chromium.org).
640 * There is a strange oddity here with the EC. We could just ignore
641 * the response, i.e. pass the last two parameters as NULL and 0.
642 * In this case we won't read back very many bytes from the EC.
643 * On the I2C bus the EC gets upset about this and will try to send
644 * the bytes anyway. This means that we will have to wait for that
645 * to complete before continuing with a new EC command.
646 *
647 * This problem is probably unique to the I2C bus.
648 *
649 * So for now, just read all the data anyway.
650 */
651
652 /* Try sending a version 3 packet */
653 dev->protocol_version = 3;
654 req.in_data = 0;
655 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
656 (uint8_t **)&resp, sizeof(*resp)) > 0) {
657 return 0;
658 }
659
660 /* Try sending a version 2 packet */
661 dev->protocol_version = 2;
662 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
663 (uint8_t **)&resp, sizeof(*resp)) > 0) {
664 return 0;
665 }
666
667 /*
668 * Fail if we're still here, since the EC doesn't understand any
669 * protcol version we speak. Version 1 interface without command
670 * version is no longer supported, and we don't know about any new
671 * protocol versions.
672 */
673 dev->protocol_version = 0;
674 printf("%s: ERROR: old EC interface not supported\n", __func__);
675 return -1;
676 }
677
678 int cros_ec_test(struct cros_ec_dev *dev)
679 {
680 struct ec_params_hello req;
681 struct ec_response_hello *resp;
682
683 req.in_data = 0x12345678;
684 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
685 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
686 printf("ec_command_inptr() returned error\n");
687 return -1;
688 }
689 if (resp->out_data != req.in_data + 0x01020304) {
690 printf("Received invalid handshake %x\n", resp->out_data);
691 return -1;
692 }
693
694 return 0;
695 }
696
697 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
698 uint32_t *offset, uint32_t *size)
699 {
700 struct ec_params_flash_region_info p;
701 struct ec_response_flash_region_info *r;
702 int ret;
703
704 p.region = region;
705 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
706 EC_VER_FLASH_REGION_INFO,
707 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
708 if (ret != sizeof(*r))
709 return -1;
710
711 if (offset)
712 *offset = r->offset;
713 if (size)
714 *size = r->size;
715
716 return 0;
717 }
718
719 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
720 {
721 struct ec_params_flash_erase p;
722
723 p.offset = offset;
724 p.size = size;
725 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
726 NULL, 0);
727 }
728
729 /**
730 * Write a single block to the flash
731 *
732 * Write a block of data to the EC flash. The size must not exceed the flash
733 * write block size which you can obtain from cros_ec_flash_write_burst_size().
734 *
735 * The offset starts at 0. You can obtain the region information from
736 * cros_ec_flash_offset() to find out where to write for a particular region.
737 *
738 * Attempting to write to the region where the EC is currently running from
739 * will result in an error.
740 *
741 * @param dev CROS-EC device
742 * @param data Pointer to data buffer to write
743 * @param offset Offset within flash to write to.
744 * @param size Number of bytes to write
745 * @return 0 if ok, -1 on error
746 */
747 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
748 const uint8_t *data, uint32_t offset, uint32_t size)
749 {
750 struct ec_params_flash_write p;
751
752 p.offset = offset;
753 p.size = size;
754 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
755 memcpy(&p + 1, data, p.size);
756
757 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
758 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
759 }
760
761 /**
762 * Return optimal flash write burst size
763 */
764 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
765 {
766 return EC_FLASH_WRITE_VER0_SIZE;
767 }
768
769 /**
770 * Check if a block of data is erased (all 0xff)
771 *
772 * This function is useful when dealing with flash, for checking whether a
773 * data block is erased and thus does not need to be programmed.
774 *
775 * @param data Pointer to data to check (must be word-aligned)
776 * @param size Number of bytes to check (must be word-aligned)
777 * @return 0 if erased, non-zero if any word is not erased
778 */
779 static int cros_ec_data_is_erased(const uint32_t *data, int size)
780 {
781 assert(!(size & 3));
782 size /= sizeof(uint32_t);
783 for (; size > 0; size -= 4, data++)
784 if (*data != -1U)
785 return 0;
786
787 return 1;
788 }
789
790 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
791 uint32_t offset, uint32_t size)
792 {
793 uint32_t burst = cros_ec_flash_write_burst_size(dev);
794 uint32_t end, off;
795 int ret;
796
797 /*
798 * TODO: round up to the nearest multiple of write size. Can get away
799 * without that on link right now because its write size is 4 bytes.
800 */
801 end = offset + size;
802 for (off = offset; off < end; off += burst, data += burst) {
803 uint32_t todo;
804
805 /* If the data is empty, there is no point in programming it */
806 todo = min(end - off, burst);
807 if (dev->optimise_flash_write &&
808 cros_ec_data_is_erased((uint32_t *)data, todo))
809 continue;
810
811 ret = cros_ec_flash_write_block(dev, data, off, todo);
812 if (ret)
813 return ret;
814 }
815
816 return 0;
817 }
818
819 /**
820 * Read a single block from the flash
821 *
822 * Read a block of data from the EC flash. The size must not exceed the flash
823 * write block size which you can obtain from cros_ec_flash_write_burst_size().
824 *
825 * The offset starts at 0. You can obtain the region information from
826 * cros_ec_flash_offset() to find out where to read for a particular region.
827 *
828 * @param dev CROS-EC device
829 * @param data Pointer to data buffer to read into
830 * @param offset Offset within flash to read from
831 * @param size Number of bytes to read
832 * @return 0 if ok, -1 on error
833 */
834 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
835 uint32_t offset, uint32_t size)
836 {
837 struct ec_params_flash_read p;
838
839 p.offset = offset;
840 p.size = size;
841
842 return ec_command(dev, EC_CMD_FLASH_READ, 0,
843 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
844 }
845
846 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
847 uint32_t size)
848 {
849 uint32_t burst = cros_ec_flash_write_burst_size(dev);
850 uint32_t end, off;
851 int ret;
852
853 end = offset + size;
854 for (off = offset; off < end; off += burst, data += burst) {
855 ret = cros_ec_flash_read_block(dev, data, off,
856 min(end - off, burst));
857 if (ret)
858 return ret;
859 }
860
861 return 0;
862 }
863
864 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
865 const uint8_t *image, int image_size)
866 {
867 uint32_t rw_offset, rw_size;
868 int ret;
869
870 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
871 return -1;
872 if (image_size > (int)rw_size)
873 return -1;
874
875 /* Invalidate the existing hash, just in case the AP reboots
876 * unexpectedly during the update. If that happened, the EC RW firmware
877 * would be invalid, but the EC would still have the original hash.
878 */
879 ret = cros_ec_invalidate_hash(dev);
880 if (ret)
881 return ret;
882
883 /*
884 * Erase the entire RW section, so that the EC doesn't see any garbage
885 * past the new image if it's smaller than the current image.
886 *
887 * TODO: could optimize this to erase just the current image, since
888 * presumably everything past that is 0xff's. But would still need to
889 * round up to the nearest multiple of erase size.
890 */
891 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
892 if (ret)
893 return ret;
894
895 /* Write the image */
896 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
897 if (ret)
898 return ret;
899
900 return 0;
901 }
902
903 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
904 {
905 struct ec_params_vbnvcontext p;
906 int len;
907
908 p.op = EC_VBNV_CONTEXT_OP_READ;
909
910 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
911 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
912 if (len < EC_VBNV_BLOCK_SIZE)
913 return -1;
914
915 return 0;
916 }
917
918 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
919 {
920 struct ec_params_vbnvcontext p;
921 int len;
922
923 p.op = EC_VBNV_CONTEXT_OP_WRITE;
924 memcpy(p.block, block, sizeof(p.block));
925
926 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
927 &p, sizeof(p), NULL, 0);
928 if (len < 0)
929 return -1;
930
931 return 0;
932 }
933
934 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
935 {
936 struct ec_params_ldo_set params;
937
938 params.index = index;
939 params.state = state;
940
941 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
942 &params, sizeof(params),
943 NULL, 0))
944 return -1;
945
946 return 0;
947 }
948
949 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
950 {
951 struct ec_params_ldo_get params;
952 struct ec_response_ldo_get *resp;
953
954 params.index = index;
955
956 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
957 &params, sizeof(params),
958 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
959 return -1;
960
961 *state = resp->state;
962
963 return 0;
964 }
965
966 int cros_ec_register(struct udevice *dev)
967 {
968 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
969 const void *blob = gd->fdt_blob;
970 int node = dev->of_offset;
971 char id[MSG_BYTES];
972
973 cdev->dev = dev;
974 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
975 GPIOD_IS_IN);
976 cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
977 "optimise-flash-write");
978
979 if (cros_ec_check_version(cdev)) {
980 debug("%s: Could not detect CROS-EC version\n", __func__);
981 return -CROS_EC_ERR_CHECK_VERSION;
982 }
983
984 if (cros_ec_read_id(cdev, id, sizeof(id))) {
985 debug("%s: Could not read KBC ID\n", __func__);
986 return -CROS_EC_ERR_READ_ID;
987 }
988
989 /* Remember this device for use by the cros_ec command */
990 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
991 cdev->protocol_version, id);
992
993 return 0;
994 }
995
996 int cros_ec_decode_region(int argc, char * const argv[])
997 {
998 if (argc > 0) {
999 if (0 == strcmp(*argv, "rw"))
1000 return EC_FLASH_REGION_RW;
1001 else if (0 == strcmp(*argv, "ro"))
1002 return EC_FLASH_REGION_RO;
1003
1004 debug("%s: Invalid region '%s'\n", __func__, *argv);
1005 } else {
1006 debug("%s: Missing region parameter\n", __func__);
1007 }
1008
1009 return -1;
1010 }
1011
1012 int cros_ec_decode_ec_flash(const void *blob, int node,
1013 struct fdt_cros_ec *config)
1014 {
1015 int flash_node;
1016
1017 flash_node = fdt_subnode_offset(blob, node, "flash");
1018 if (flash_node < 0) {
1019 debug("Failed to find flash node\n");
1020 return -1;
1021 }
1022
1023 if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
1024 &config->flash)) {
1025 debug("Failed to decode flash node in chrome-ec'\n");
1026 return -1;
1027 }
1028
1029 config->flash_erase_value = fdtdec_get_int(blob, flash_node,
1030 "erase-value", -1);
1031 for (node = fdt_first_subnode(blob, flash_node); node >= 0;
1032 node = fdt_next_subnode(blob, node)) {
1033 const char *name = fdt_get_name(blob, node, NULL);
1034 enum ec_flash_region region;
1035
1036 if (0 == strcmp(name, "ro")) {
1037 region = EC_FLASH_REGION_RO;
1038 } else if (0 == strcmp(name, "rw")) {
1039 region = EC_FLASH_REGION_RW;
1040 } else if (0 == strcmp(name, "wp-ro")) {
1041 region = EC_FLASH_REGION_WP_RO;
1042 } else {
1043 debug("Unknown EC flash region name '%s'\n", name);
1044 return -1;
1045 }
1046
1047 if (fdtdec_read_fmap_entry(blob, node, "reg",
1048 &config->region[region])) {
1049 debug("Failed to decode flash region in chrome-ec'\n");
1050 return -1;
1051 }
1052 }
1053
1054 return 0;
1055 }
1056
1057 int cros_ec_i2c_xfer_old(struct cros_ec_dev *dev, uchar chip, uint addr,
1058 int alen, uchar *buffer, int len, int is_read)
1059 {
1060 union {
1061 struct ec_params_i2c_passthru p;
1062 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1063 } params;
1064 union {
1065 struct ec_response_i2c_passthru r;
1066 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1067 } response;
1068 struct ec_params_i2c_passthru *p = &params.p;
1069 struct ec_response_i2c_passthru *r = &response.r;
1070 struct ec_params_i2c_passthru_msg *msg = p->msg;
1071 uint8_t *pdata;
1072 int read_len, write_len;
1073 int size;
1074 int rv;
1075
1076 p->port = 0;
1077
1078 if (alen != 1) {
1079 printf("Unsupported address length %d\n", alen);
1080 return -1;
1081 }
1082 if (is_read) {
1083 read_len = len;
1084 write_len = alen;
1085 p->num_msgs = 2;
1086 } else {
1087 read_len = 0;
1088 write_len = alen + len;
1089 p->num_msgs = 1;
1090 }
1091
1092 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1093 if (size + write_len > sizeof(params)) {
1094 puts("Params too large for buffer\n");
1095 return -1;
1096 }
1097 if (sizeof(*r) + read_len > sizeof(response)) {
1098 puts("Read length too big for buffer\n");
1099 return -1;
1100 }
1101
1102 /* Create a message to write the register address and optional data */
1103 pdata = (uint8_t *)p + size;
1104 msg->addr_flags = chip;
1105 msg->len = write_len;
1106 pdata[0] = addr;
1107 if (!is_read)
1108 memcpy(pdata + 1, buffer, len);
1109 msg++;
1110
1111 if (read_len) {
1112 msg->addr_flags = chip | EC_I2C_FLAG_READ;
1113 msg->len = read_len;
1114 }
1115
1116 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
1117 r, sizeof(*r) + read_len);
1118 if (rv < 0)
1119 return rv;
1120
1121 /* Parse response */
1122 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1123 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1124 return -1;
1125 }
1126
1127 if (rv < sizeof(*r) + read_len) {
1128 puts("Truncated read response\n");
1129 return -1;
1130 }
1131
1132 if (read_len)
1133 memcpy(buffer, r->data, read_len);
1134
1135 return 0;
1136 }
1137
1138 int cros_ec_i2c_tunnel(struct udevice *dev, struct i2c_msg *in, int nmsgs)
1139 {
1140 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1141 union {
1142 struct ec_params_i2c_passthru p;
1143 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1144 } params;
1145 union {
1146 struct ec_response_i2c_passthru r;
1147 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1148 } response;
1149 struct ec_params_i2c_passthru *p = &params.p;
1150 struct ec_response_i2c_passthru *r = &response.r;
1151 struct ec_params_i2c_passthru_msg *msg;
1152 uint8_t *pdata, *read_ptr = NULL;
1153 int read_len;
1154 int size;
1155 int rv;
1156 int i;
1157
1158 p->port = 0;
1159
1160 p->num_msgs = nmsgs;
1161 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1162
1163 /* Create a message to write the register address and optional data */
1164 pdata = (uint8_t *)p + size;
1165
1166 read_len = 0;
1167 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1168 bool is_read = in->flags & I2C_M_RD;
1169
1170 msg->addr_flags = in->addr;
1171 msg->len = in->len;
1172 if (is_read) {
1173 msg->addr_flags |= EC_I2C_FLAG_READ;
1174 read_len += in->len;
1175 read_ptr = in->buf;
1176 if (sizeof(*r) + read_len > sizeof(response)) {
1177 puts("Read length too big for buffer\n");
1178 return -1;
1179 }
1180 } else {
1181 if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1182 puts("Params too large for buffer\n");
1183 return -1;
1184 }
1185 memcpy(pdata, in->buf, in->len);
1186 pdata += in->len;
1187 }
1188 }
1189
1190 rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1191 r, sizeof(*r) + read_len);
1192 if (rv < 0)
1193 return rv;
1194
1195 /* Parse response */
1196 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1197 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1198 return -1;
1199 }
1200
1201 if (rv < sizeof(*r) + read_len) {
1202 puts("Truncated read response\n");
1203 return -1;
1204 }
1205
1206 /* We only support a single read message for each transfer */
1207 if (read_len)
1208 memcpy(read_ptr, r->data, read_len);
1209
1210 return 0;
1211 }
1212
1213 #ifdef CONFIG_CMD_CROS_EC
1214
1215 /**
1216 * Perform a flash read or write command
1217 *
1218 * @param dev CROS-EC device to read/write
1219 * @param is_write 1 do to a write, 0 to do a read
1220 * @param argc Number of arguments
1221 * @param argv Arguments (2 is region, 3 is address)
1222 * @return 0 for ok, 1 for a usage error or -ve for ec command error
1223 * (negative EC_RES_...)
1224 */
1225 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
1226 char * const argv[])
1227 {
1228 uint32_t offset, size = -1U, region_size;
1229 unsigned long addr;
1230 char *endp;
1231 int region;
1232 int ret;
1233
1234 region = cros_ec_decode_region(argc - 2, argv + 2);
1235 if (region == -1)
1236 return 1;
1237 if (argc < 4)
1238 return 1;
1239 addr = simple_strtoul(argv[3], &endp, 16);
1240 if (*argv[3] == 0 || *endp != 0)
1241 return 1;
1242 if (argc > 4) {
1243 size = simple_strtoul(argv[4], &endp, 16);
1244 if (*argv[4] == 0 || *endp != 0)
1245 return 1;
1246 }
1247
1248 ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
1249 if (ret) {
1250 debug("%s: Could not read region info\n", __func__);
1251 return ret;
1252 }
1253 if (size == -1U)
1254 size = region_size;
1255
1256 ret = is_write ?
1257 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1258 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1259 if (ret) {
1260 debug("%s: Could not %s region\n", __func__,
1261 is_write ? "write" : "read");
1262 return ret;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * get_alen() - Small parser helper function to get address length
1270 *
1271 * Returns the address length.
1272 */
1273 static uint get_alen(char *arg)
1274 {
1275 int j;
1276 int alen;
1277
1278 alen = 1;
1279 for (j = 0; j < 8; j++) {
1280 if (arg[j] == '.') {
1281 alen = arg[j+1] - '0';
1282 break;
1283 } else if (arg[j] == '\0') {
1284 break;
1285 }
1286 }
1287 return alen;
1288 }
1289
1290 #define DISP_LINE_LEN 16
1291
1292 /*
1293 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
1294 * so we can remove it later.
1295 */
1296 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
1297 char * const argv[])
1298 {
1299 u_char chip;
1300 uint addr, alen, length = 0x10;
1301 int j, nbytes, linebytes;
1302
1303 if (argc < 2)
1304 return CMD_RET_USAGE;
1305
1306 if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
1307 /*
1308 * New command specified.
1309 */
1310
1311 /*
1312 * I2C chip address
1313 */
1314 chip = simple_strtoul(argv[0], NULL, 16);
1315
1316 /*
1317 * I2C data address within the chip. This can be 1 or
1318 * 2 bytes long. Some day it might be 3 bytes long :-).
1319 */
1320 addr = simple_strtoul(argv[1], NULL, 16);
1321 alen = get_alen(argv[1]);
1322 if (alen > 3)
1323 return CMD_RET_USAGE;
1324
1325 /*
1326 * If another parameter, it is the length to display.
1327 * Length is the number of objects, not number of bytes.
1328 */
1329 if (argc > 2)
1330 length = simple_strtoul(argv[2], NULL, 16);
1331 }
1332
1333 /*
1334 * Print the lines.
1335 *
1336 * We buffer all read data, so we can make sure data is read only
1337 * once.
1338 */
1339 nbytes = length;
1340 do {
1341 unsigned char linebuf[DISP_LINE_LEN];
1342 unsigned char *cp;
1343
1344 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
1345
1346 if (cros_ec_i2c_xfer_old(dev, chip, addr, alen, linebuf,
1347 linebytes, 1))
1348 puts("Error reading the chip.\n");
1349 else {
1350 printf("%04x:", addr);
1351 cp = linebuf;
1352 for (j = 0; j < linebytes; j++) {
1353 printf(" %02x", *cp++);
1354 addr++;
1355 }
1356 puts(" ");
1357 cp = linebuf;
1358 for (j = 0; j < linebytes; j++) {
1359 if ((*cp < 0x20) || (*cp > 0x7e))
1360 puts(".");
1361 else
1362 printf("%c", *cp);
1363 cp++;
1364 }
1365 putc('\n');
1366 }
1367 nbytes -= linebytes;
1368 } while (nbytes > 0);
1369
1370 return 0;
1371 }
1372
1373 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
1374 char * const argv[])
1375 {
1376 uchar chip;
1377 ulong addr;
1378 uint alen;
1379 uchar byte;
1380 int count;
1381
1382 if ((argc < 3) || (argc > 4))
1383 return CMD_RET_USAGE;
1384
1385 /*
1386 * Chip is always specified.
1387 */
1388 chip = simple_strtoul(argv[0], NULL, 16);
1389
1390 /*
1391 * Address is always specified.
1392 */
1393 addr = simple_strtoul(argv[1], NULL, 16);
1394 alen = get_alen(argv[1]);
1395 if (alen > 3)
1396 return CMD_RET_USAGE;
1397
1398 /*
1399 * Value to write is always specified.
1400 */
1401 byte = simple_strtoul(argv[2], NULL, 16);
1402
1403 /*
1404 * Optional count
1405 */
1406 if (argc == 4)
1407 count = simple_strtoul(argv[3], NULL, 16);
1408 else
1409 count = 1;
1410
1411 while (count-- > 0) {
1412 if (cros_ec_i2c_xfer_old(dev, chip, addr++, alen, &byte, 1, 0))
1413 puts("Error writing the chip.\n");
1414 /*
1415 * Wait for the write to complete. The write can take
1416 * up to 10mSec (we allow a little more time).
1417 */
1418 /*
1419 * No write delay with FRAM devices.
1420 */
1421 #if !defined(CONFIG_SYS_I2C_FRAM)
1422 udelay(11000);
1423 #endif
1424 }
1425
1426 return 0;
1427 }
1428
1429 /* Temporary code until we have driver model and can use the i2c command */
1430 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
1431 int argc, char * const argv[])
1432 {
1433 const char *cmd;
1434
1435 if (argc < 1)
1436 return CMD_RET_USAGE;
1437 cmd = *argv++;
1438 argc--;
1439 if (0 == strcmp("md", cmd))
1440 cros_ec_i2c_md(dev, flag, argc, argv);
1441 else if (0 == strcmp("mw", cmd))
1442 cros_ec_i2c_mw(dev, flag, argc, argv);
1443 else
1444 return CMD_RET_USAGE;
1445
1446 return 0;
1447 }
1448
1449 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1450 {
1451 struct cros_ec_dev *dev;
1452 struct udevice *udev;
1453 const char *cmd;
1454 int ret = 0;
1455
1456 if (argc < 2)
1457 return CMD_RET_USAGE;
1458
1459 cmd = argv[1];
1460 if (0 == strcmp("init", cmd)) {
1461 /* Remove any existing device */
1462 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
1463 if (!ret)
1464 device_remove(udev);
1465 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1466 if (ret) {
1467 printf("Could not init cros_ec device (err %d)\n", ret);
1468 return 1;
1469 }
1470 return 0;
1471 }
1472
1473 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1474 if (ret) {
1475 printf("Cannot get cros-ec device (err=%d)\n", ret);
1476 return 1;
1477 }
1478 dev = dev_get_uclass_priv(udev);
1479 if (0 == strcmp("id", cmd)) {
1480 char id[MSG_BYTES];
1481
1482 if (cros_ec_read_id(dev, id, sizeof(id))) {
1483 debug("%s: Could not read KBC ID\n", __func__);
1484 return 1;
1485 }
1486 printf("%s\n", id);
1487 } else if (0 == strcmp("info", cmd)) {
1488 struct ec_response_mkbp_info info;
1489
1490 if (cros_ec_info(dev, &info)) {
1491 debug("%s: Could not read KBC info\n", __func__);
1492 return 1;
1493 }
1494 printf("rows = %u\n", info.rows);
1495 printf("cols = %u\n", info.cols);
1496 printf("switches = %#x\n", info.switches);
1497 } else if (0 == strcmp("curimage", cmd)) {
1498 enum ec_current_image image;
1499
1500 if (cros_ec_read_current_image(dev, &image)) {
1501 debug("%s: Could not read KBC image\n", __func__);
1502 return 1;
1503 }
1504 printf("%d\n", image);
1505 } else if (0 == strcmp("hash", cmd)) {
1506 struct ec_response_vboot_hash hash;
1507 int i;
1508
1509 if (cros_ec_read_hash(dev, &hash)) {
1510 debug("%s: Could not read KBC hash\n", __func__);
1511 return 1;
1512 }
1513
1514 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1515 printf("type: SHA-256\n");
1516 else
1517 printf("type: %d\n", hash.hash_type);
1518
1519 printf("offset: 0x%08x\n", hash.offset);
1520 printf("size: 0x%08x\n", hash.size);
1521
1522 printf("digest: ");
1523 for (i = 0; i < hash.digest_size; i++)
1524 printf("%02x", hash.hash_digest[i]);
1525 printf("\n");
1526 } else if (0 == strcmp("reboot", cmd)) {
1527 int region;
1528 enum ec_reboot_cmd cmd;
1529
1530 if (argc >= 3 && !strcmp(argv[2], "cold"))
1531 cmd = EC_REBOOT_COLD;
1532 else {
1533 region = cros_ec_decode_region(argc - 2, argv + 2);
1534 if (region == EC_FLASH_REGION_RO)
1535 cmd = EC_REBOOT_JUMP_RO;
1536 else if (region == EC_FLASH_REGION_RW)
1537 cmd = EC_REBOOT_JUMP_RW;
1538 else
1539 return CMD_RET_USAGE;
1540 }
1541
1542 if (cros_ec_reboot(dev, cmd, 0)) {
1543 debug("%s: Could not reboot KBC\n", __func__);
1544 return 1;
1545 }
1546 } else if (0 == strcmp("events", cmd)) {
1547 uint32_t events;
1548
1549 if (cros_ec_get_host_events(dev, &events)) {
1550 debug("%s: Could not read host events\n", __func__);
1551 return 1;
1552 }
1553 printf("0x%08x\n", events);
1554 } else if (0 == strcmp("clrevents", cmd)) {
1555 uint32_t events = 0x7fffffff;
1556
1557 if (argc >= 3)
1558 events = simple_strtol(argv[2], NULL, 0);
1559
1560 if (cros_ec_clear_host_events(dev, events)) {
1561 debug("%s: Could not clear host events\n", __func__);
1562 return 1;
1563 }
1564 } else if (0 == strcmp("read", cmd)) {
1565 ret = do_read_write(dev, 0, argc, argv);
1566 if (ret > 0)
1567 return CMD_RET_USAGE;
1568 } else if (0 == strcmp("write", cmd)) {
1569 ret = do_read_write(dev, 1, argc, argv);
1570 if (ret > 0)
1571 return CMD_RET_USAGE;
1572 } else if (0 == strcmp("erase", cmd)) {
1573 int region = cros_ec_decode_region(argc - 2, argv + 2);
1574 uint32_t offset, size;
1575
1576 if (region == -1)
1577 return CMD_RET_USAGE;
1578 if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1579 debug("%s: Could not read region info\n", __func__);
1580 ret = -1;
1581 } else {
1582 ret = cros_ec_flash_erase(dev, offset, size);
1583 if (ret) {
1584 debug("%s: Could not erase region\n",
1585 __func__);
1586 }
1587 }
1588 } else if (0 == strcmp("regioninfo", cmd)) {
1589 int region = cros_ec_decode_region(argc - 2, argv + 2);
1590 uint32_t offset, size;
1591
1592 if (region == -1)
1593 return CMD_RET_USAGE;
1594 ret = cros_ec_flash_offset(dev, region, &offset, &size);
1595 if (ret) {
1596 debug("%s: Could not read region info\n", __func__);
1597 } else {
1598 printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1599 "RO" : "RW");
1600 printf("Offset: %x\n", offset);
1601 printf("Size: %x\n", size);
1602 }
1603 } else if (0 == strcmp("vbnvcontext", cmd)) {
1604 uint8_t block[EC_VBNV_BLOCK_SIZE];
1605 char buf[3];
1606 int i, len;
1607 unsigned long result;
1608
1609 if (argc <= 2) {
1610 ret = cros_ec_read_vbnvcontext(dev, block);
1611 if (!ret) {
1612 printf("vbnv_block: ");
1613 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1614 printf("%02x", block[i]);
1615 putc('\n');
1616 }
1617 } else {
1618 /*
1619 * TODO(clchiou): Move this to a utility function as
1620 * cmd_spi might want to call it.
1621 */
1622 memset(block, 0, EC_VBNV_BLOCK_SIZE);
1623 len = strlen(argv[2]);
1624 buf[2] = '\0';
1625 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1626 if (i * 2 >= len)
1627 break;
1628 buf[0] = argv[2][i * 2];
1629 if (i * 2 + 1 >= len)
1630 buf[1] = '0';
1631 else
1632 buf[1] = argv[2][i * 2 + 1];
1633 strict_strtoul(buf, 16, &result);
1634 block[i] = result;
1635 }
1636 ret = cros_ec_write_vbnvcontext(dev, block);
1637 }
1638 if (ret) {
1639 debug("%s: Could not %s VbNvContext\n", __func__,
1640 argc <= 2 ? "read" : "write");
1641 }
1642 } else if (0 == strcmp("test", cmd)) {
1643 int result = cros_ec_test(dev);
1644
1645 if (result)
1646 printf("Test failed with error %d\n", result);
1647 else
1648 puts("Test passed\n");
1649 } else if (0 == strcmp("version", cmd)) {
1650 struct ec_response_get_version *p;
1651 char *build_string;
1652
1653 ret = cros_ec_read_version(dev, &p);
1654 if (!ret) {
1655 /* Print versions */
1656 printf("RO version: %1.*s\n",
1657 (int)sizeof(p->version_string_ro),
1658 p->version_string_ro);
1659 printf("RW version: %1.*s\n",
1660 (int)sizeof(p->version_string_rw),
1661 p->version_string_rw);
1662 printf("Firmware copy: %s\n",
1663 (p->current_image <
1664 ARRAY_SIZE(ec_current_image_name) ?
1665 ec_current_image_name[p->current_image] :
1666 "?"));
1667 ret = cros_ec_read_build_info(dev, &build_string);
1668 if (!ret)
1669 printf("Build info: %s\n", build_string);
1670 }
1671 } else if (0 == strcmp("ldo", cmd)) {
1672 uint8_t index, state;
1673 char *endp;
1674
1675 if (argc < 3)
1676 return CMD_RET_USAGE;
1677 index = simple_strtoul(argv[2], &endp, 10);
1678 if (*argv[2] == 0 || *endp != 0)
1679 return CMD_RET_USAGE;
1680 if (argc > 3) {
1681 state = simple_strtoul(argv[3], &endp, 10);
1682 if (*argv[3] == 0 || *endp != 0)
1683 return CMD_RET_USAGE;
1684 ret = cros_ec_set_ldo(dev, index, state);
1685 } else {
1686 ret = cros_ec_get_ldo(dev, index, &state);
1687 if (!ret) {
1688 printf("LDO%d: %s\n", index,
1689 state == EC_LDO_STATE_ON ?
1690 "on" : "off");
1691 }
1692 }
1693
1694 if (ret) {
1695 debug("%s: Could not access LDO%d\n", __func__, index);
1696 return ret;
1697 }
1698 } else if (0 == strcmp("i2c", cmd)) {
1699 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
1700 } else {
1701 return CMD_RET_USAGE;
1702 }
1703
1704 if (ret < 0) {
1705 printf("Error: CROS-EC command failed (error %d)\n", ret);
1706 ret = 1;
1707 }
1708
1709 return ret;
1710 }
1711
1712 int cros_ec_post_bind(struct udevice *dev)
1713 {
1714 /* Scan for available EC devices (e.g. I2C tunnel) */
1715 return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false);
1716 }
1717
1718 U_BOOT_CMD(
1719 crosec, 6, 1, do_cros_ec,
1720 "CROS-EC utility command",
1721 "init Re-init CROS-EC (done on startup automatically)\n"
1722 "crosec id Read CROS-EC ID\n"
1723 "crosec info Read CROS-EC info\n"
1724 "crosec curimage Read CROS-EC current image\n"
1725 "crosec hash Read CROS-EC hash\n"
1726 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
1727 "crosec events Read CROS-EC host events\n"
1728 "crosec clrevents [mask] Clear CROS-EC host events\n"
1729 "crosec regioninfo <ro|rw> Read image info\n"
1730 "crosec erase <ro|rw> Erase EC image\n"
1731 "crosec read <ro|rw> <addr> [<size>] Read EC image\n"
1732 "crosec write <ro|rw> <addr> [<size>] Write EC image\n"
1733 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
1734 "crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1735 "crosec test run tests on cros_ec\n"
1736 "crosec version Read CROS-EC version\n"
1737 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
1738 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
1739 );
1740 #endif
1741
1742 UCLASS_DRIVER(cros_ec) = {
1743 .id = UCLASS_CROS_EC,
1744 .name = "cros_ec",
1745 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
1746 .post_bind = cros_ec_post_bind,
1747 };