]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/mtdcore.c
Merge git://git.denx.de/u-boot-spi
[people/ms/u-boot.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 */
11
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
29 #else
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
32 #endif
33
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37
38 #include "mtdcore.h"
39
40 #ifndef __UBOOT__
41 /*
42 * backing device capabilities for non-mappable devices (such as NAND flash)
43 * - permits private mappings, copies are taken of the data
44 */
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 .capabilities = BDI_CAP_MAP_COPY,
47 };
48
49 /*
50 * backing device capabilities for R/O mappable devices (such as ROM)
51 * - permits private mappings, copies are taken of the data
52 * - permits non-writable shared mappings
53 */
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
57 };
58
59 /*
60 * backing device capabilities for writable mappable devices (such as RAM)
61 * - permits private mappings, copies are taken of the data
62 * - permits non-writable shared mappings
63 */
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
67 BDI_CAP_WRITE_MAP),
68 };
69
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
72
73 static struct class mtd_class = {
74 .name = "mtd",
75 .owner = THIS_MODULE,
76 .suspend = mtd_cls_suspend,
77 .resume = mtd_cls_resume,
78 };
79 #else
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
81
82 #define MAX_IDR_ID 64
83
84 struct idr_layer {
85 int used;
86 void *ptr;
87 };
88
89 struct idr {
90 struct idr_layer id[MAX_IDR_ID];
91 };
92
93 #define DEFINE_IDR(name) struct idr name;
94
95 void idr_remove(struct idr *idp, int id)
96 {
97 if (idp->id[id].used)
98 idp->id[id].used = 0;
99
100 return;
101 }
102 void *idr_find(struct idr *idp, int id)
103 {
104 if (idp->id[id].used)
105 return idp->id[id].ptr;
106
107 return NULL;
108 }
109
110 void *idr_get_next(struct idr *idp, int *next)
111 {
112 void *ret;
113 int id = *next;
114
115 ret = idr_find(idp, id);
116 if (ret) {
117 id ++;
118 if (!idp->id[id].used)
119 id = 0;
120 *next = id;
121 } else {
122 *next = 0;
123 }
124
125 return ret;
126 }
127
128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
129 {
130 struct idr_layer *idl;
131 int i = 0;
132
133 while (i < MAX_IDR_ID) {
134 idl = &idp->id[i];
135 if (idl->used == 0) {
136 idl->used = 1;
137 idl->ptr = ptr;
138 return i;
139 }
140 i++;
141 }
142 return -ENOSPC;
143 }
144 #endif
145
146 static DEFINE_IDR(mtd_idr);
147
148 /* These are exported solely for the purpose of mtd_blkdevs.c. You
149 should not use them for _anything_ else */
150 DEFINE_MUTEX(mtd_table_mutex);
151 EXPORT_SYMBOL_GPL(mtd_table_mutex);
152
153 struct mtd_info *__mtd_next_device(int i)
154 {
155 return idr_get_next(&mtd_idr, &i);
156 }
157 EXPORT_SYMBOL_GPL(__mtd_next_device);
158
159 #ifndef __UBOOT__
160 static LIST_HEAD(mtd_notifiers);
161
162
163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
164
165 /* REVISIT once MTD uses the driver model better, whoever allocates
166 * the mtd_info will probably want to use the release() hook...
167 */
168 static void mtd_release(struct device *dev)
169 {
170 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
171 dev_t index = MTD_DEVT(mtd->index);
172
173 /* remove /dev/mtdXro node if needed */
174 if (index)
175 device_destroy(&mtd_class, index + 1);
176 }
177
178 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
179 {
180 struct mtd_info *mtd = dev_get_drvdata(dev);
181
182 return mtd ? mtd_suspend(mtd) : 0;
183 }
184
185 static int mtd_cls_resume(struct device *dev)
186 {
187 struct mtd_info *mtd = dev_get_drvdata(dev);
188
189 if (mtd)
190 mtd_resume(mtd);
191 return 0;
192 }
193
194 static ssize_t mtd_type_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196 {
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198 char *type;
199
200 switch (mtd->type) {
201 case MTD_ABSENT:
202 type = "absent";
203 break;
204 case MTD_RAM:
205 type = "ram";
206 break;
207 case MTD_ROM:
208 type = "rom";
209 break;
210 case MTD_NORFLASH:
211 type = "nor";
212 break;
213 case MTD_NANDFLASH:
214 type = "nand";
215 break;
216 case MTD_DATAFLASH:
217 type = "dataflash";
218 break;
219 case MTD_UBIVOLUME:
220 type = "ubi";
221 break;
222 case MTD_MLCNANDFLASH:
223 type = "mlc-nand";
224 break;
225 default:
226 type = "unknown";
227 }
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", type);
230 }
231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
232
233 static ssize_t mtd_flags_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
239
240 }
241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
242
243 static ssize_t mtd_size_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%llu\n",
249 (unsigned long long)mtd->size);
250
251 }
252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
253
254 static ssize_t mtd_erasesize_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
256 {
257 struct mtd_info *mtd = dev_get_drvdata(dev);
258
259 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
260
261 }
262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
263
264 static ssize_t mtd_writesize_show(struct device *dev,
265 struct device_attribute *attr, char *buf)
266 {
267 struct mtd_info *mtd = dev_get_drvdata(dev);
268
269 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
270
271 }
272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
273
274 static ssize_t mtd_subpagesize_show(struct device *dev,
275 struct device_attribute *attr, char *buf)
276 {
277 struct mtd_info *mtd = dev_get_drvdata(dev);
278 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
279
280 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
281
282 }
283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
284
285 static ssize_t mtd_oobsize_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
287 {
288 struct mtd_info *mtd = dev_get_drvdata(dev);
289
290 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
291
292 }
293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
294
295 static ssize_t mtd_numeraseregions_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
297 {
298 struct mtd_info *mtd = dev_get_drvdata(dev);
299
300 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
301
302 }
303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
304 NULL);
305
306 static ssize_t mtd_name_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct mtd_info *mtd = dev_get_drvdata(dev);
310
311 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
312
313 }
314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
315
316 static ssize_t mtd_ecc_strength_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 struct mtd_info *mtd = dev_get_drvdata(dev);
320
321 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
322 }
323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
324
325 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
326 struct device_attribute *attr,
327 char *buf)
328 {
329 struct mtd_info *mtd = dev_get_drvdata(dev);
330
331 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
332 }
333
334 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
335 struct device_attribute *attr,
336 const char *buf, size_t count)
337 {
338 struct mtd_info *mtd = dev_get_drvdata(dev);
339 unsigned int bitflip_threshold;
340 int retval;
341
342 retval = kstrtouint(buf, 0, &bitflip_threshold);
343 if (retval)
344 return retval;
345
346 mtd->bitflip_threshold = bitflip_threshold;
347 return count;
348 }
349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
350 mtd_bitflip_threshold_show,
351 mtd_bitflip_threshold_store);
352
353 static ssize_t mtd_ecc_step_size_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
355 {
356 struct mtd_info *mtd = dev_get_drvdata(dev);
357
358 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
359
360 }
361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
362
363 static struct attribute *mtd_attrs[] = {
364 &dev_attr_type.attr,
365 &dev_attr_flags.attr,
366 &dev_attr_size.attr,
367 &dev_attr_erasesize.attr,
368 &dev_attr_writesize.attr,
369 &dev_attr_subpagesize.attr,
370 &dev_attr_oobsize.attr,
371 &dev_attr_numeraseregions.attr,
372 &dev_attr_name.attr,
373 &dev_attr_ecc_strength.attr,
374 &dev_attr_ecc_step_size.attr,
375 &dev_attr_bitflip_threshold.attr,
376 NULL,
377 };
378 ATTRIBUTE_GROUPS(mtd);
379
380 static struct device_type mtd_devtype = {
381 .name = "mtd",
382 .groups = mtd_groups,
383 .release = mtd_release,
384 };
385 #endif
386
387 /**
388 * add_mtd_device - register an MTD device
389 * @mtd: pointer to new MTD device info structure
390 *
391 * Add a device to the list of MTD devices present in the system, and
392 * notify each currently active MTD 'user' of its arrival. Returns
393 * zero on success or 1 on failure, which currently will only happen
394 * if there is insufficient memory or a sysfs error.
395 */
396
397 int add_mtd_device(struct mtd_info *mtd)
398 {
399 #ifndef __UBOOT__
400 struct mtd_notifier *not;
401 #endif
402 int i, error;
403
404 #ifndef __UBOOT__
405 if (!mtd->backing_dev_info) {
406 switch (mtd->type) {
407 case MTD_RAM:
408 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
409 break;
410 case MTD_ROM:
411 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
412 break;
413 default:
414 mtd->backing_dev_info = &mtd_bdi_unmappable;
415 break;
416 }
417 }
418 #endif
419
420 BUG_ON(mtd->writesize == 0);
421 mutex_lock(&mtd_table_mutex);
422
423 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
424 if (i < 0)
425 goto fail_locked;
426
427 mtd->index = i;
428 mtd->usecount = 0;
429
430 /* default value if not set by driver */
431 if (mtd->bitflip_threshold == 0)
432 mtd->bitflip_threshold = mtd->ecc_strength;
433
434 if (is_power_of_2(mtd->erasesize))
435 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
436 else
437 mtd->erasesize_shift = 0;
438
439 if (is_power_of_2(mtd->writesize))
440 mtd->writesize_shift = ffs(mtd->writesize) - 1;
441 else
442 mtd->writesize_shift = 0;
443
444 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
445 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
446
447 /* Some chips always power up locked. Unlock them now */
448 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
449 error = mtd_unlock(mtd, 0, mtd->size);
450 if (error && error != -EOPNOTSUPP)
451 printk(KERN_WARNING
452 "%s: unlock failed, writes may not work\n",
453 mtd->name);
454 }
455
456 #ifndef __UBOOT__
457 /* Caller should have set dev.parent to match the
458 * physical device.
459 */
460 mtd->dev.type = &mtd_devtype;
461 mtd->dev.class = &mtd_class;
462 mtd->dev.devt = MTD_DEVT(i);
463 dev_set_name(&mtd->dev, "mtd%d", i);
464 dev_set_drvdata(&mtd->dev, mtd);
465 if (device_register(&mtd->dev) != 0)
466 goto fail_added;
467
468 if (MTD_DEVT(i))
469 device_create(&mtd_class, mtd->dev.parent,
470 MTD_DEVT(i) + 1,
471 NULL, "mtd%dro", i);
472
473 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
474 /* No need to get a refcount on the module containing
475 the notifier, since we hold the mtd_table_mutex */
476 list_for_each_entry(not, &mtd_notifiers, list)
477 not->add(mtd);
478 #else
479 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
480 #endif
481
482 mutex_unlock(&mtd_table_mutex);
483 /* We _know_ we aren't being removed, because
484 our caller is still holding us here. So none
485 of this try_ nonsense, and no bitching about it
486 either. :) */
487 __module_get(THIS_MODULE);
488 return 0;
489
490 #ifndef __UBOOT__
491 fail_added:
492 idr_remove(&mtd_idr, i);
493 #endif
494 fail_locked:
495 mutex_unlock(&mtd_table_mutex);
496 return 1;
497 }
498
499 /**
500 * del_mtd_device - unregister an MTD device
501 * @mtd: pointer to MTD device info structure
502 *
503 * Remove a device from the list of MTD devices present in the system,
504 * and notify each currently active MTD 'user' of its departure.
505 * Returns zero on success or 1 on failure, which currently will happen
506 * if the requested device does not appear to be present in the list.
507 */
508
509 int del_mtd_device(struct mtd_info *mtd)
510 {
511 int ret;
512 #ifndef __UBOOT__
513 struct mtd_notifier *not;
514 #endif
515
516 mutex_lock(&mtd_table_mutex);
517
518 if (idr_find(&mtd_idr, mtd->index) != mtd) {
519 ret = -ENODEV;
520 goto out_error;
521 }
522
523 #ifndef __UBOOT__
524 /* No need to get a refcount on the module containing
525 the notifier, since we hold the mtd_table_mutex */
526 list_for_each_entry(not, &mtd_notifiers, list)
527 not->remove(mtd);
528 #endif
529
530 if (mtd->usecount) {
531 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
532 mtd->index, mtd->name, mtd->usecount);
533 ret = -EBUSY;
534 } else {
535 #ifndef __UBOOT__
536 device_unregister(&mtd->dev);
537 #endif
538
539 idr_remove(&mtd_idr, mtd->index);
540
541 module_put(THIS_MODULE);
542 ret = 0;
543 }
544
545 out_error:
546 mutex_unlock(&mtd_table_mutex);
547 return ret;
548 }
549
550 #ifndef __UBOOT__
551 /**
552 * mtd_device_parse_register - parse partitions and register an MTD device.
553 *
554 * @mtd: the MTD device to register
555 * @types: the list of MTD partition probes to try, see
556 * 'parse_mtd_partitions()' for more information
557 * @parser_data: MTD partition parser-specific data
558 * @parts: fallback partition information to register, if parsing fails;
559 * only valid if %nr_parts > %0
560 * @nr_parts: the number of partitions in parts, if zero then the full
561 * MTD device is registered if no partition info is found
562 *
563 * This function aggregates MTD partitions parsing (done by
564 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
565 * basically follows the most common pattern found in many MTD drivers:
566 *
567 * * It first tries to probe partitions on MTD device @mtd using parsers
568 * specified in @types (if @types is %NULL, then the default list of parsers
569 * is used, see 'parse_mtd_partitions()' for more information). If none are
570 * found this functions tries to fallback to information specified in
571 * @parts/@nr_parts.
572 * * If any partitioning info was found, this function registers the found
573 * partitions.
574 * * If no partitions were found this function just registers the MTD device
575 * @mtd and exits.
576 *
577 * Returns zero in case of success and a negative error code in case of failure.
578 */
579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
580 struct mtd_part_parser_data *parser_data,
581 const struct mtd_partition *parts,
582 int nr_parts)
583 {
584 int err;
585 struct mtd_partition *real_parts;
586
587 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
588 if (err <= 0 && nr_parts && parts) {
589 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
590 GFP_KERNEL);
591 if (!real_parts)
592 err = -ENOMEM;
593 else
594 err = nr_parts;
595 }
596
597 if (err > 0) {
598 err = add_mtd_partitions(mtd, real_parts, err);
599 kfree(real_parts);
600 } else if (err == 0) {
601 err = add_mtd_device(mtd);
602 if (err == 1)
603 err = -ENODEV;
604 }
605
606 return err;
607 }
608 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
609
610 /**
611 * mtd_device_unregister - unregister an existing MTD device.
612 *
613 * @master: the MTD device to unregister. This will unregister both the master
614 * and any partitions if registered.
615 */
616 int mtd_device_unregister(struct mtd_info *master)
617 {
618 int err;
619
620 err = del_mtd_partitions(master);
621 if (err)
622 return err;
623
624 if (!device_is_registered(&master->dev))
625 return 0;
626
627 return del_mtd_device(master);
628 }
629 EXPORT_SYMBOL_GPL(mtd_device_unregister);
630
631 /**
632 * register_mtd_user - register a 'user' of MTD devices.
633 * @new: pointer to notifier info structure
634 *
635 * Registers a pair of callbacks function to be called upon addition
636 * or removal of MTD devices. Causes the 'add' callback to be immediately
637 * invoked for each MTD device currently present in the system.
638 */
639 void register_mtd_user (struct mtd_notifier *new)
640 {
641 struct mtd_info *mtd;
642
643 mutex_lock(&mtd_table_mutex);
644
645 list_add(&new->list, &mtd_notifiers);
646
647 __module_get(THIS_MODULE);
648
649 mtd_for_each_device(mtd)
650 new->add(mtd);
651
652 mutex_unlock(&mtd_table_mutex);
653 }
654 EXPORT_SYMBOL_GPL(register_mtd_user);
655
656 /**
657 * unregister_mtd_user - unregister a 'user' of MTD devices.
658 * @old: pointer to notifier info structure
659 *
660 * Removes a callback function pair from the list of 'users' to be
661 * notified upon addition or removal of MTD devices. Causes the
662 * 'remove' callback to be immediately invoked for each MTD device
663 * currently present in the system.
664 */
665 int unregister_mtd_user (struct mtd_notifier *old)
666 {
667 struct mtd_info *mtd;
668
669 mutex_lock(&mtd_table_mutex);
670
671 module_put(THIS_MODULE);
672
673 mtd_for_each_device(mtd)
674 old->remove(mtd);
675
676 list_del(&old->list);
677 mutex_unlock(&mtd_table_mutex);
678 return 0;
679 }
680 EXPORT_SYMBOL_GPL(unregister_mtd_user);
681 #endif
682
683 /**
684 * get_mtd_device - obtain a validated handle for an MTD device
685 * @mtd: last known address of the required MTD device
686 * @num: internal device number of the required MTD device
687 *
688 * Given a number and NULL address, return the num'th entry in the device
689 * table, if any. Given an address and num == -1, search the device table
690 * for a device with that address and return if it's still present. Given
691 * both, return the num'th driver only if its address matches. Return
692 * error code if not.
693 */
694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
695 {
696 struct mtd_info *ret = NULL, *other;
697 int err = -ENODEV;
698
699 mutex_lock(&mtd_table_mutex);
700
701 if (num == -1) {
702 mtd_for_each_device(other) {
703 if (other == mtd) {
704 ret = mtd;
705 break;
706 }
707 }
708 } else if (num >= 0) {
709 ret = idr_find(&mtd_idr, num);
710 if (mtd && mtd != ret)
711 ret = NULL;
712 }
713
714 if (!ret) {
715 ret = ERR_PTR(err);
716 goto out;
717 }
718
719 err = __get_mtd_device(ret);
720 if (err)
721 ret = ERR_PTR(err);
722 out:
723 mutex_unlock(&mtd_table_mutex);
724 return ret;
725 }
726 EXPORT_SYMBOL_GPL(get_mtd_device);
727
728
729 int __get_mtd_device(struct mtd_info *mtd)
730 {
731 int err;
732
733 if (!try_module_get(mtd->owner))
734 return -ENODEV;
735
736 if (mtd->_get_device) {
737 err = mtd->_get_device(mtd);
738
739 if (err) {
740 module_put(mtd->owner);
741 return err;
742 }
743 }
744 mtd->usecount++;
745 return 0;
746 }
747 EXPORT_SYMBOL_GPL(__get_mtd_device);
748
749 /**
750 * get_mtd_device_nm - obtain a validated handle for an MTD device by
751 * device name
752 * @name: MTD device name to open
753 *
754 * This function returns MTD device description structure in case of
755 * success and an error code in case of failure.
756 */
757 struct mtd_info *get_mtd_device_nm(const char *name)
758 {
759 int err = -ENODEV;
760 struct mtd_info *mtd = NULL, *other;
761
762 mutex_lock(&mtd_table_mutex);
763
764 mtd_for_each_device(other) {
765 if (!strcmp(name, other->name)) {
766 mtd = other;
767 break;
768 }
769 }
770
771 if (!mtd)
772 goto out_unlock;
773
774 err = __get_mtd_device(mtd);
775 if (err)
776 goto out_unlock;
777
778 mutex_unlock(&mtd_table_mutex);
779 return mtd;
780
781 out_unlock:
782 mutex_unlock(&mtd_table_mutex);
783 return ERR_PTR(err);
784 }
785 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
786
787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
788 /**
789 * mtd_get_len_incl_bad
790 *
791 * Check if length including bad blocks fits into device.
792 *
793 * @param mtd an MTD device
794 * @param offset offset in flash
795 * @param length image length
796 * @return image length including bad blocks in *len_incl_bad and whether or not
797 * the length returned was truncated in *truncated
798 */
799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
800 const uint64_t length, uint64_t *len_incl_bad,
801 int *truncated)
802 {
803 *truncated = 0;
804 *len_incl_bad = 0;
805
806 if (!mtd->_block_isbad) {
807 *len_incl_bad = length;
808 return;
809 }
810
811 uint64_t len_excl_bad = 0;
812 uint64_t block_len;
813
814 while (len_excl_bad < length) {
815 if (offset >= mtd->size) {
816 *truncated = 1;
817 return;
818 }
819
820 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
821
822 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
823 len_excl_bad += block_len;
824
825 *len_incl_bad += block_len;
826 offset += block_len;
827 }
828 }
829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
830
831 void put_mtd_device(struct mtd_info *mtd)
832 {
833 mutex_lock(&mtd_table_mutex);
834 __put_mtd_device(mtd);
835 mutex_unlock(&mtd_table_mutex);
836
837 }
838 EXPORT_SYMBOL_GPL(put_mtd_device);
839
840 void __put_mtd_device(struct mtd_info *mtd)
841 {
842 --mtd->usecount;
843 BUG_ON(mtd->usecount < 0);
844
845 if (mtd->_put_device)
846 mtd->_put_device(mtd);
847
848 module_put(mtd->owner);
849 }
850 EXPORT_SYMBOL_GPL(__put_mtd_device);
851
852 /*
853 * Erase is an asynchronous operation. Device drivers are supposed
854 * to call instr->callback() whenever the operation completes, even
855 * if it completes with a failure.
856 * Callers are supposed to pass a callback function and wait for it
857 * to be called before writing to the block.
858 */
859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
860 {
861 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
862 return -EINVAL;
863 if (!(mtd->flags & MTD_WRITEABLE))
864 return -EROFS;
865 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
866 if (!instr->len) {
867 instr->state = MTD_ERASE_DONE;
868 mtd_erase_callback(instr);
869 return 0;
870 }
871 return mtd->_erase(mtd, instr);
872 }
873 EXPORT_SYMBOL_GPL(mtd_erase);
874
875 #ifndef __UBOOT__
876 /*
877 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
878 */
879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
880 void **virt, resource_size_t *phys)
881 {
882 *retlen = 0;
883 *virt = NULL;
884 if (phys)
885 *phys = 0;
886 if (!mtd->_point)
887 return -EOPNOTSUPP;
888 if (from < 0 || from > mtd->size || len > mtd->size - from)
889 return -EINVAL;
890 if (!len)
891 return 0;
892 return mtd->_point(mtd, from, len, retlen, virt, phys);
893 }
894 EXPORT_SYMBOL_GPL(mtd_point);
895
896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
898 {
899 if (!mtd->_point)
900 return -EOPNOTSUPP;
901 if (from < 0 || from > mtd->size || len > mtd->size - from)
902 return -EINVAL;
903 if (!len)
904 return 0;
905 return mtd->_unpoint(mtd, from, len);
906 }
907 EXPORT_SYMBOL_GPL(mtd_unpoint);
908 #endif
909
910 /*
911 * Allow NOMMU mmap() to directly map the device (if not NULL)
912 * - return the address to which the offset maps
913 * - return -ENOSYS to indicate refusal to do the mapping
914 */
915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
916 unsigned long offset, unsigned long flags)
917 {
918 if (!mtd->_get_unmapped_area)
919 return -EOPNOTSUPP;
920 if (offset > mtd->size || len > mtd->size - offset)
921 return -EINVAL;
922 return mtd->_get_unmapped_area(mtd, len, offset, flags);
923 }
924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
925
926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
927 u_char *buf)
928 {
929 int ret_code;
930 *retlen = 0;
931 if (from < 0 || from > mtd->size || len > mtd->size - from)
932 return -EINVAL;
933 if (!len)
934 return 0;
935
936 /*
937 * In the absence of an error, drivers return a non-negative integer
938 * representing the maximum number of bitflips that were corrected on
939 * any one ecc region (if applicable; zero otherwise).
940 */
941 ret_code = mtd->_read(mtd, from, len, retlen, buf);
942 if (unlikely(ret_code < 0))
943 return ret_code;
944 if (mtd->ecc_strength == 0)
945 return 0; /* device lacks ecc */
946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
947 }
948 EXPORT_SYMBOL_GPL(mtd_read);
949
950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
951 const u_char *buf)
952 {
953 *retlen = 0;
954 if (to < 0 || to > mtd->size || len > mtd->size - to)
955 return -EINVAL;
956 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
957 return -EROFS;
958 if (!len)
959 return 0;
960 return mtd->_write(mtd, to, len, retlen, buf);
961 }
962 EXPORT_SYMBOL_GPL(mtd_write);
963
964 /*
965 * In blackbox flight recorder like scenarios we want to make successful writes
966 * in interrupt context. panic_write() is only intended to be called when its
967 * known the kernel is about to panic and we need the write to succeed. Since
968 * the kernel is not going to be running for much longer, this function can
969 * break locks and delay to ensure the write succeeds (but not sleep).
970 */
971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
972 const u_char *buf)
973 {
974 *retlen = 0;
975 if (!mtd->_panic_write)
976 return -EOPNOTSUPP;
977 if (to < 0 || to > mtd->size || len > mtd->size - to)
978 return -EINVAL;
979 if (!(mtd->flags & MTD_WRITEABLE))
980 return -EROFS;
981 if (!len)
982 return 0;
983 return mtd->_panic_write(mtd, to, len, retlen, buf);
984 }
985 EXPORT_SYMBOL_GPL(mtd_panic_write);
986
987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
988 {
989 int ret_code;
990 ops->retlen = ops->oobretlen = 0;
991 if (!mtd->_read_oob)
992 return -EOPNOTSUPP;
993 /*
994 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
995 * similar to mtd->_read(), returning a non-negative integer
996 * representing max bitflips. In other cases, mtd->_read_oob() may
997 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
998 */
999 ret_code = mtd->_read_oob(mtd, from, ops);
1000 if (unlikely(ret_code < 0))
1001 return ret_code;
1002 if (mtd->ecc_strength == 0)
1003 return 0; /* device lacks ecc */
1004 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1005 }
1006 EXPORT_SYMBOL_GPL(mtd_read_oob);
1007
1008 /**
1009 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1010 * @mtd: MTD device structure
1011 * @section: ECC section. Depending on the layout you may have all the ECC
1012 * bytes stored in a single contiguous section, or one section
1013 * per ECC chunk (and sometime several sections for a single ECC
1014 * ECC chunk)
1015 * @oobecc: OOB region struct filled with the appropriate ECC position
1016 * information
1017 *
1018 * This function returns ECC section information in the OOB area. If you want
1019 * to get all the ECC bytes information, then you should call
1020 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1021 *
1022 * Returns zero on success, a negative error code otherwise.
1023 */
1024 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1025 struct mtd_oob_region *oobecc)
1026 {
1027 memset(oobecc, 0, sizeof(*oobecc));
1028
1029 if (!mtd || section < 0)
1030 return -EINVAL;
1031
1032 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1033 return -ENOTSUPP;
1034
1035 return mtd->ooblayout->ecc(mtd, section, oobecc);
1036 }
1037 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1038
1039 /**
1040 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1041 * section
1042 * @mtd: MTD device structure
1043 * @section: Free section you are interested in. Depending on the layout
1044 * you may have all the free bytes stored in a single contiguous
1045 * section, or one section per ECC chunk plus an extra section
1046 * for the remaining bytes (or other funky layout).
1047 * @oobfree: OOB region struct filled with the appropriate free position
1048 * information
1049 *
1050 * This function returns free bytes position in the OOB area. If you want
1051 * to get all the free bytes information, then you should call
1052 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1053 *
1054 * Returns zero on success, a negative error code otherwise.
1055 */
1056 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1057 struct mtd_oob_region *oobfree)
1058 {
1059 memset(oobfree, 0, sizeof(*oobfree));
1060
1061 if (!mtd || section < 0)
1062 return -EINVAL;
1063
1064 if (!mtd->ooblayout || !mtd->ooblayout->free)
1065 return -ENOTSUPP;
1066
1067 return mtd->ooblayout->free(mtd, section, oobfree);
1068 }
1069 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1070
1071 /**
1072 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1073 * @mtd: mtd info structure
1074 * @byte: the byte we are searching for
1075 * @sectionp: pointer where the section id will be stored
1076 * @oobregion: used to retrieve the ECC position
1077 * @iter: iterator function. Should be either mtd_ooblayout_free or
1078 * mtd_ooblayout_ecc depending on the region type you're searching for
1079 *
1080 * This function returns the section id and oobregion information of a
1081 * specific byte. For example, say you want to know where the 4th ECC byte is
1082 * stored, you'll use:
1083 *
1084 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1085 *
1086 * Returns zero on success, a negative error code otherwise.
1087 */
1088 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1089 int *sectionp, struct mtd_oob_region *oobregion,
1090 int (*iter)(struct mtd_info *,
1091 int section,
1092 struct mtd_oob_region *oobregion))
1093 {
1094 int pos = 0, ret, section = 0;
1095
1096 memset(oobregion, 0, sizeof(*oobregion));
1097
1098 while (1) {
1099 ret = iter(mtd, section, oobregion);
1100 if (ret)
1101 return ret;
1102
1103 if (pos + oobregion->length > byte)
1104 break;
1105
1106 pos += oobregion->length;
1107 section++;
1108 }
1109
1110 /*
1111 * Adjust region info to make it start at the beginning at the
1112 * 'start' ECC byte.
1113 */
1114 oobregion->offset += byte - pos;
1115 oobregion->length -= byte - pos;
1116 *sectionp = section;
1117
1118 return 0;
1119 }
1120
1121 /**
1122 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1123 * ECC byte
1124 * @mtd: mtd info structure
1125 * @eccbyte: the byte we are searching for
1126 * @sectionp: pointer where the section id will be stored
1127 * @oobregion: OOB region information
1128 *
1129 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1130 * byte.
1131 *
1132 * Returns zero on success, a negative error code otherwise.
1133 */
1134 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1135 int *section,
1136 struct mtd_oob_region *oobregion)
1137 {
1138 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1139 mtd_ooblayout_ecc);
1140 }
1141 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1142
1143 /**
1144 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1145 * @mtd: mtd info structure
1146 * @buf: destination buffer to store OOB bytes
1147 * @oobbuf: OOB buffer
1148 * @start: first byte to retrieve
1149 * @nbytes: number of bytes to retrieve
1150 * @iter: section iterator
1151 *
1152 * Extract bytes attached to a specific category (ECC or free)
1153 * from the OOB buffer and copy them into buf.
1154 *
1155 * Returns zero on success, a negative error code otherwise.
1156 */
1157 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1158 const u8 *oobbuf, int start, int nbytes,
1159 int (*iter)(struct mtd_info *,
1160 int section,
1161 struct mtd_oob_region *oobregion))
1162 {
1163 struct mtd_oob_region oobregion;
1164 int section, ret;
1165
1166 ret = mtd_ooblayout_find_region(mtd, start, &section,
1167 &oobregion, iter);
1168
1169 while (!ret) {
1170 int cnt;
1171
1172 cnt = min_t(int, nbytes, oobregion.length);
1173 memcpy(buf, oobbuf + oobregion.offset, cnt);
1174 buf += cnt;
1175 nbytes -= cnt;
1176
1177 if (!nbytes)
1178 break;
1179
1180 ret = iter(mtd, ++section, &oobregion);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1188 * @mtd: mtd info structure
1189 * @buf: source buffer to get OOB bytes from
1190 * @oobbuf: OOB buffer
1191 * @start: first OOB byte to set
1192 * @nbytes: number of OOB bytes to set
1193 * @iter: section iterator
1194 *
1195 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1196 * is selected by passing the appropriate iterator.
1197 *
1198 * Returns zero on success, a negative error code otherwise.
1199 */
1200 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1201 u8 *oobbuf, int start, int nbytes,
1202 int (*iter)(struct mtd_info *,
1203 int section,
1204 struct mtd_oob_region *oobregion))
1205 {
1206 struct mtd_oob_region oobregion;
1207 int section, ret;
1208
1209 ret = mtd_ooblayout_find_region(mtd, start, &section,
1210 &oobregion, iter);
1211
1212 while (!ret) {
1213 int cnt;
1214
1215 cnt = min_t(int, nbytes, oobregion.length);
1216 memcpy(oobbuf + oobregion.offset, buf, cnt);
1217 buf += cnt;
1218 nbytes -= cnt;
1219
1220 if (!nbytes)
1221 break;
1222
1223 ret = iter(mtd, ++section, &oobregion);
1224 }
1225
1226 return ret;
1227 }
1228
1229 /**
1230 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1231 * @mtd: mtd info structure
1232 * @iter: category iterator
1233 *
1234 * Count the number of bytes in a given category.
1235 *
1236 * Returns a positive value on success, a negative error code otherwise.
1237 */
1238 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1239 int (*iter)(struct mtd_info *,
1240 int section,
1241 struct mtd_oob_region *oobregion))
1242 {
1243 struct mtd_oob_region oobregion;
1244 int section = 0, ret, nbytes = 0;
1245
1246 while (1) {
1247 ret = iter(mtd, section++, &oobregion);
1248 if (ret) {
1249 if (ret == -ERANGE)
1250 ret = nbytes;
1251 break;
1252 }
1253
1254 nbytes += oobregion.length;
1255 }
1256
1257 return ret;
1258 }
1259
1260 /**
1261 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1262 * @mtd: mtd info structure
1263 * @eccbuf: destination buffer to store ECC bytes
1264 * @oobbuf: OOB buffer
1265 * @start: first ECC byte to retrieve
1266 * @nbytes: number of ECC bytes to retrieve
1267 *
1268 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1269 *
1270 * Returns zero on success, a negative error code otherwise.
1271 */
1272 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1273 const u8 *oobbuf, int start, int nbytes)
1274 {
1275 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1276 mtd_ooblayout_ecc);
1277 }
1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1279
1280 /**
1281 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1282 * @mtd: mtd info structure
1283 * @eccbuf: source buffer to get ECC bytes from
1284 * @oobbuf: OOB buffer
1285 * @start: first ECC byte to set
1286 * @nbytes: number of ECC bytes to set
1287 *
1288 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1289 *
1290 * Returns zero on success, a negative error code otherwise.
1291 */
1292 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1293 u8 *oobbuf, int start, int nbytes)
1294 {
1295 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1296 mtd_ooblayout_ecc);
1297 }
1298 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1299
1300 /**
1301 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1302 * @mtd: mtd info structure
1303 * @databuf: destination buffer to store ECC bytes
1304 * @oobbuf: OOB buffer
1305 * @start: first ECC byte to retrieve
1306 * @nbytes: number of ECC bytes to retrieve
1307 *
1308 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1309 *
1310 * Returns zero on success, a negative error code otherwise.
1311 */
1312 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1313 const u8 *oobbuf, int start, int nbytes)
1314 {
1315 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1316 mtd_ooblayout_free);
1317 }
1318 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1319
1320 /**
1321 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1322 * @mtd: mtd info structure
1323 * @eccbuf: source buffer to get data bytes from
1324 * @oobbuf: OOB buffer
1325 * @start: first ECC byte to set
1326 * @nbytes: number of ECC bytes to set
1327 *
1328 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1329 *
1330 * Returns zero on success, a negative error code otherwise.
1331 */
1332 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1333 u8 *oobbuf, int start, int nbytes)
1334 {
1335 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1336 mtd_ooblayout_free);
1337 }
1338 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1339
1340 /**
1341 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1342 * @mtd: mtd info structure
1343 *
1344 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1345 *
1346 * Returns zero on success, a negative error code otherwise.
1347 */
1348 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1349 {
1350 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1351 }
1352 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1353
1354 /**
1355 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1356 * @mtd: mtd info structure
1357 *
1358 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1359 *
1360 * Returns zero on success, a negative error code otherwise.
1361 */
1362 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1363 {
1364 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1365 }
1366 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1367
1368 /*
1369 * Method to access the protection register area, present in some flash
1370 * devices. The user data is one time programmable but the factory data is read
1371 * only.
1372 */
1373 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1374 struct otp_info *buf)
1375 {
1376 if (!mtd->_get_fact_prot_info)
1377 return -EOPNOTSUPP;
1378 if (!len)
1379 return 0;
1380 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1381 }
1382 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1383
1384 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1385 size_t *retlen, u_char *buf)
1386 {
1387 *retlen = 0;
1388 if (!mtd->_read_fact_prot_reg)
1389 return -EOPNOTSUPP;
1390 if (!len)
1391 return 0;
1392 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1393 }
1394 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1395
1396 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1397 struct otp_info *buf)
1398 {
1399 if (!mtd->_get_user_prot_info)
1400 return -EOPNOTSUPP;
1401 if (!len)
1402 return 0;
1403 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1404 }
1405 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1406
1407 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1408 size_t *retlen, u_char *buf)
1409 {
1410 *retlen = 0;
1411 if (!mtd->_read_user_prot_reg)
1412 return -EOPNOTSUPP;
1413 if (!len)
1414 return 0;
1415 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1416 }
1417 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1418
1419 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1420 size_t *retlen, u_char *buf)
1421 {
1422 int ret;
1423
1424 *retlen = 0;
1425 if (!mtd->_write_user_prot_reg)
1426 return -EOPNOTSUPP;
1427 if (!len)
1428 return 0;
1429 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1430 if (ret)
1431 return ret;
1432
1433 /*
1434 * If no data could be written at all, we are out of memory and
1435 * must return -ENOSPC.
1436 */
1437 return (*retlen) ? 0 : -ENOSPC;
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1440
1441 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1442 {
1443 if (!mtd->_lock_user_prot_reg)
1444 return -EOPNOTSUPP;
1445 if (!len)
1446 return 0;
1447 return mtd->_lock_user_prot_reg(mtd, from, len);
1448 }
1449 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1450
1451 /* Chip-supported device locking */
1452 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1453 {
1454 if (!mtd->_lock)
1455 return -EOPNOTSUPP;
1456 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1457 return -EINVAL;
1458 if (!len)
1459 return 0;
1460 return mtd->_lock(mtd, ofs, len);
1461 }
1462 EXPORT_SYMBOL_GPL(mtd_lock);
1463
1464 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1465 {
1466 if (!mtd->_unlock)
1467 return -EOPNOTSUPP;
1468 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1469 return -EINVAL;
1470 if (!len)
1471 return 0;
1472 return mtd->_unlock(mtd, ofs, len);
1473 }
1474 EXPORT_SYMBOL_GPL(mtd_unlock);
1475
1476 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1477 {
1478 if (!mtd->_is_locked)
1479 return -EOPNOTSUPP;
1480 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1481 return -EINVAL;
1482 if (!len)
1483 return 0;
1484 return mtd->_is_locked(mtd, ofs, len);
1485 }
1486 EXPORT_SYMBOL_GPL(mtd_is_locked);
1487
1488 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1489 {
1490 if (ofs < 0 || ofs > mtd->size)
1491 return -EINVAL;
1492 if (!mtd->_block_isreserved)
1493 return 0;
1494 return mtd->_block_isreserved(mtd, ofs);
1495 }
1496 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1497
1498 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1499 {
1500 if (ofs < 0 || ofs > mtd->size)
1501 return -EINVAL;
1502 if (!mtd->_block_isbad)
1503 return 0;
1504 return mtd->_block_isbad(mtd, ofs);
1505 }
1506 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1507
1508 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1509 {
1510 if (!mtd->_block_markbad)
1511 return -EOPNOTSUPP;
1512 if (ofs < 0 || ofs > mtd->size)
1513 return -EINVAL;
1514 if (!(mtd->flags & MTD_WRITEABLE))
1515 return -EROFS;
1516 return mtd->_block_markbad(mtd, ofs);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1519
1520 #ifndef __UBOOT__
1521 /*
1522 * default_mtd_writev - the default writev method
1523 * @mtd: mtd device description object pointer
1524 * @vecs: the vectors to write
1525 * @count: count of vectors in @vecs
1526 * @to: the MTD device offset to write to
1527 * @retlen: on exit contains the count of bytes written to the MTD device.
1528 *
1529 * This function returns zero in case of success and a negative error code in
1530 * case of failure.
1531 */
1532 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1533 unsigned long count, loff_t to, size_t *retlen)
1534 {
1535 unsigned long i;
1536 size_t totlen = 0, thislen;
1537 int ret = 0;
1538
1539 for (i = 0; i < count; i++) {
1540 if (!vecs[i].iov_len)
1541 continue;
1542 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1543 vecs[i].iov_base);
1544 totlen += thislen;
1545 if (ret || thislen != vecs[i].iov_len)
1546 break;
1547 to += vecs[i].iov_len;
1548 }
1549 *retlen = totlen;
1550 return ret;
1551 }
1552
1553 /*
1554 * mtd_writev - the vector-based MTD write method
1555 * @mtd: mtd device description object pointer
1556 * @vecs: the vectors to write
1557 * @count: count of vectors in @vecs
1558 * @to: the MTD device offset to write to
1559 * @retlen: on exit contains the count of bytes written to the MTD device.
1560 *
1561 * This function returns zero in case of success and a negative error code in
1562 * case of failure.
1563 */
1564 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1565 unsigned long count, loff_t to, size_t *retlen)
1566 {
1567 *retlen = 0;
1568 if (!(mtd->flags & MTD_WRITEABLE))
1569 return -EROFS;
1570 if (!mtd->_writev)
1571 return default_mtd_writev(mtd, vecs, count, to, retlen);
1572 return mtd->_writev(mtd, vecs, count, to, retlen);
1573 }
1574 EXPORT_SYMBOL_GPL(mtd_writev);
1575
1576 /**
1577 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1578 * @mtd: mtd device description object pointer
1579 * @size: a pointer to the ideal or maximum size of the allocation, points
1580 * to the actual allocation size on success.
1581 *
1582 * This routine attempts to allocate a contiguous kernel buffer up to
1583 * the specified size, backing off the size of the request exponentially
1584 * until the request succeeds or until the allocation size falls below
1585 * the system page size. This attempts to make sure it does not adversely
1586 * impact system performance, so when allocating more than one page, we
1587 * ask the memory allocator to avoid re-trying, swapping, writing back
1588 * or performing I/O.
1589 *
1590 * Note, this function also makes sure that the allocated buffer is aligned to
1591 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1592 *
1593 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1594 * to handle smaller (i.e. degraded) buffer allocations under low- or
1595 * fragmented-memory situations where such reduced allocations, from a
1596 * requested ideal, are allowed.
1597 *
1598 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1599 */
1600 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1601 {
1602 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1603 __GFP_NORETRY | __GFP_NO_KSWAPD;
1604 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1605 void *kbuf;
1606
1607 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1608
1609 while (*size > min_alloc) {
1610 kbuf = kmalloc(*size, flags);
1611 if (kbuf)
1612 return kbuf;
1613
1614 *size >>= 1;
1615 *size = ALIGN(*size, mtd->writesize);
1616 }
1617
1618 /*
1619 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1620 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1621 */
1622 return kmalloc(*size, GFP_KERNEL);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1625 #endif
1626
1627 #ifdef CONFIG_PROC_FS
1628
1629 /*====================================================================*/
1630 /* Support for /proc/mtd */
1631
1632 static int mtd_proc_show(struct seq_file *m, void *v)
1633 {
1634 struct mtd_info *mtd;
1635
1636 seq_puts(m, "dev: size erasesize name\n");
1637 mutex_lock(&mtd_table_mutex);
1638 mtd_for_each_device(mtd) {
1639 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1640 mtd->index, (unsigned long long)mtd->size,
1641 mtd->erasesize, mtd->name);
1642 }
1643 mutex_unlock(&mtd_table_mutex);
1644 return 0;
1645 }
1646
1647 static int mtd_proc_open(struct inode *inode, struct file *file)
1648 {
1649 return single_open(file, mtd_proc_show, NULL);
1650 }
1651
1652 static const struct file_operations mtd_proc_ops = {
1653 .open = mtd_proc_open,
1654 .read = seq_read,
1655 .llseek = seq_lseek,
1656 .release = single_release,
1657 };
1658 #endif /* CONFIG_PROC_FS */
1659
1660 /*====================================================================*/
1661 /* Init code */
1662
1663 #ifndef __UBOOT__
1664 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1665 {
1666 int ret;
1667
1668 ret = bdi_init(bdi);
1669 if (!ret)
1670 ret = bdi_register(bdi, NULL, "%s", name);
1671
1672 if (ret)
1673 bdi_destroy(bdi);
1674
1675 return ret;
1676 }
1677
1678 static struct proc_dir_entry *proc_mtd;
1679
1680 static int __init init_mtd(void)
1681 {
1682 int ret;
1683
1684 ret = class_register(&mtd_class);
1685 if (ret)
1686 goto err_reg;
1687
1688 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1689 if (ret)
1690 goto err_bdi1;
1691
1692 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1693 if (ret)
1694 goto err_bdi2;
1695
1696 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1697 if (ret)
1698 goto err_bdi3;
1699
1700 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1701
1702 ret = init_mtdchar();
1703 if (ret)
1704 goto out_procfs;
1705
1706 return 0;
1707
1708 out_procfs:
1709 if (proc_mtd)
1710 remove_proc_entry("mtd", NULL);
1711 err_bdi3:
1712 bdi_destroy(&mtd_bdi_ro_mappable);
1713 err_bdi2:
1714 bdi_destroy(&mtd_bdi_unmappable);
1715 err_bdi1:
1716 class_unregister(&mtd_class);
1717 err_reg:
1718 pr_err("Error registering mtd class or bdi: %d\n", ret);
1719 return ret;
1720 }
1721
1722 static void __exit cleanup_mtd(void)
1723 {
1724 cleanup_mtdchar();
1725 if (proc_mtd)
1726 remove_proc_entry("mtd", NULL);
1727 class_unregister(&mtd_class);
1728 bdi_destroy(&mtd_bdi_unmappable);
1729 bdi_destroy(&mtd_bdi_ro_mappable);
1730 bdi_destroy(&mtd_bdi_rw_mappable);
1731 }
1732
1733 module_init(init_mtd);
1734 module_exit(cleanup_mtd);
1735 #endif
1736
1737 MODULE_LICENSE("GPL");
1738 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1739 MODULE_DESCRIPTION("Core MTD registration and access routines");