]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
Davinci: Configurable NAND chip selects
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 * ----------------------------------------------------------------------------
33 *
34 * Overview:
35 * This is a device driver for the NAND flash device found on the
36 * DaVinci board which utilizes the Samsung k9k2g08 part.
37 *
38 Modifications:
39 ver. 1.0: Feb 2005, Vinod/Sudhakar
40 -
41 *
42 */
43
44 #include <common.h>
45 #include <asm/io.h>
46 #include <nand.h>
47 #include <asm/arch/nand_defs.h>
48 #include <asm/arch/emif_defs.h>
49
50 /* Definitions for 4-bit hardware ECC */
51 #define NAND_TIMEOUT 10240
52 #define NAND_ECC_BUSY 0xC
53 #define NAND_4BITECC_MASK 0x03FF03FF
54 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
55 #define ECC_STATE_NO_ERR 0x0
56 #define ECC_STATE_TOO_MANY_ERRS 0x1
57 #define ECC_STATE_ERR_CORR_COMP_P 0x2
58 #define ECC_STATE_ERR_CORR_COMP_N 0x3
59
60 static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
61
62 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
63 {
64 struct nand_chip *this = mtd->priv;
65 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
66
67 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
68
69 if (ctrl & NAND_CTRL_CHANGE) {
70 if ( ctrl & NAND_CLE )
71 IO_ADDR_W |= MASK_CLE;
72 if ( ctrl & NAND_ALE )
73 IO_ADDR_W |= MASK_ALE;
74 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
75 }
76
77 if (cmd != NAND_CMD_NONE)
78 writeb(cmd, this->IO_ADDR_W);
79 }
80
81 #ifdef CONFIG_SYS_NAND_HW_ECC
82
83 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
84 {
85 u_int32_t val;
86
87 (void)readl(&(emif_regs->NANDFECC[CONFIG_SYS_NAND_CS - 2]));
88
89 val = readl(&emif_regs->NANDFCR);
90 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
91 writel(val, &emif_regs->NANDFCR);
92 }
93
94 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
95 {
96 u_int32_t ecc = 0;
97
98 ecc = readl(&(emif_regs->NANDFECC[region - 1]));
99
100 return(ecc);
101 }
102
103 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
104 {
105 u_int32_t tmp;
106 const int region = 1;
107
108 tmp = nand_davinci_readecc(mtd, region);
109
110 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
111 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
112 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
113
114 /* Invert so that erased block ECC is correct */
115 tmp = ~tmp;
116
117 *ecc_code++ = tmp;
118 *ecc_code++ = tmp >> 8;
119 *ecc_code++ = tmp >> 16;
120
121 /* NOTE: the above code matches mainline Linux:
122 * .PQR.stu ==> ~PQRstu
123 *
124 * MontaVista/TI kernels encode those bytes differently, use
125 * complicated (and allegedly sometimes-wrong) correction code,
126 * and usually shipped with U-Boot that uses software ECC:
127 * .PQR.stu ==> PsQRtu
128 *
129 * If you need MV/TI compatible NAND I/O in U-Boot, it should
130 * be possible to (a) change the mangling above, (b) reverse
131 * that mangling in nand_davinci_correct_data() below.
132 */
133
134 return 0;
135 }
136
137 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
138 {
139 struct nand_chip *this = mtd->priv;
140 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
141 (read_ecc[2] << 16);
142 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
143 (calc_ecc[2] << 16);
144 u_int32_t diff = ecc_calc ^ ecc_nand;
145
146 if (diff) {
147 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
148 /* Correctable error */
149 if ((diff >> (12 + 3)) < this->ecc.size) {
150 uint8_t find_bit = 1 << ((diff >> 12) & 7);
151 uint32_t find_byte = diff >> (12 + 3);
152
153 dat[find_byte] ^= find_bit;
154 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
155 "bit ECC error at offset: %d, bit: "
156 "%d\n", find_byte, find_bit);
157 return 1;
158 } else {
159 return -1;
160 }
161 } else if (!(diff & (diff - 1))) {
162 /* Single bit ECC error in the ECC itself,
163 nothing to fix */
164 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
165 "ECC.\n");
166 return 1;
167 } else {
168 /* Uncorrectable error */
169 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
170 return -1;
171 }
172 }
173 return(0);
174 }
175 #endif /* CONFIG_SYS_NAND_HW_ECC */
176
177 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
178 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
179 #if defined(CONFIG_SYS_NAND_PAGE_2K)
180 .eccbytes = 40,
181 .eccpos = {
182 24, 25, 26, 27, 28,
183 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
184 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
185 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
186 59, 60, 61, 62, 63,
187 },
188 .oobfree = {
189 {.offset = 2, .length = 22, },
190 },
191 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
192 .eccbytes = 80,
193 .eccpos = {
194 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
195 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
196 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
197 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
198 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
199 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
200 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
201 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
202 },
203 .oobfree = {
204 {.offset = 2, .length = 46, },
205 },
206 #endif
207 };
208
209 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
210 {
211 u32 val;
212
213 switch (mode) {
214 case NAND_ECC_WRITE:
215 case NAND_ECC_READ:
216 /*
217 * Start a new ECC calculation for reading or writing 512 bytes
218 * of data.
219 */
220 val = readl(&emif_regs->NANDFCR);
221 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
222 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
223 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
224 writel(val, &emif_regs->NANDFCR);
225 break;
226 case NAND_ECC_READSYN:
227 val = emif_regs->NAND4BITECC1;
228 break;
229 default:
230 break;
231 }
232 }
233
234 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
235 {
236 ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
237 ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
238 ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
239 ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
240
241 return 0;
242 }
243
244 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
245 const uint8_t *dat,
246 uint8_t *ecc_code)
247 {
248 unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
249 unsigned int const1 = 0, const2 = 0;
250 unsigned char count1 = 0;
251
252 nand_davinci_4bit_readecc(mtd, hw_4ecc);
253
254 /*Convert 10 bit ecc value to 8 bit */
255 for (count1 = 0; count1 < 2; count1++) {
256 const2 = count1 * 5;
257 const1 = count1 * 2;
258
259 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
260 ecc_code[const2] = hw_4ecc[const1] & 0xFF;
261
262 /*
263 * Take 2 bits as LSB bits from val1 (count1=0) or val5
264 * (count1=1) and 6 bits from val2 (count1=0) or
265 * val5 (count1=1)
266 */
267 ecc_code[const2 + 1] =
268 ((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
269 0xFC);
270
271 /*
272 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
273 * 4 bits from val3 (count1=0) or val6 (count1=1)
274 */
275 ecc_code[const2 + 2] =
276 ((hw_4ecc[const1] >> 22) & 0xF) |
277 ((hw_4ecc[const1 + 1] << 4) & 0xF0);
278
279 /*
280 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
281 * 2 bits from val4 (count1=0) or val7 (count1=1)
282 */
283 ecc_code[const2 + 3] =
284 ((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
285 ((hw_4ecc[const1 + 1] >> 10) & 0xC0);
286
287 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
288 ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
289 }
290 return 0;
291 }
292
293
294 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
295 uint8_t *read_ecc, uint8_t *calc_ecc)
296 {
297 unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
298 int i;
299 unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
300 unsigned short *pspare = NULL, *pspare1 = NULL;
301 unsigned int numerrors, erroraddress, errorvalue;
302 u32 val;
303
304 /*
305 * Check for an ECC where all bytes are 0xFF. If this is the case, we
306 * will assume we are looking at an erased page and we should ignore
307 * the ECC.
308 */
309 for (i = 0; i < 10; i++) {
310 if (read_ecc[i] != 0xFF)
311 break;
312 }
313 if (i == 10)
314 return 0;
315
316 /* Convert 8 bit in to 10 bit */
317 pspare = (unsigned short *)&read_ecc[2];
318 pspare1 = (unsigned short *)&read_ecc[0];
319
320 /* Take 10 bits from 0th and 1st bytes */
321 ecc_10bit[0] = (*pspare1) & 0x3FF;
322
323 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
324 ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
325 | (((pspare[0]) << 6) & 0x3C0);
326
327 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
328 ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;
329
330 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
331 ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
332 | ((((pspare[1])) << 2) & 0x3FC);
333
334 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
335 ecc_10bit[4] = ((pspare[1]) >> 8)
336 | ((((pspare[2])) << 8) & 0x300);
337
338 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
339 ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;
340
341 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
342 ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
343 | ((((pspare[3])) << 4) & 0x3F0);
344
345 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
346 ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;
347
348 /*
349 * Write the parity values in the NAND Flash 4-bit ECC Load register.
350 * Write each parity value one at a time starting from 4bit_ecc_val8
351 * to 4bit_ecc_val1.
352 */
353 for (i = 7; i >= 0; i--)
354 emif_regs->NAND4BITECCLOAD = ecc_10bit[i];
355
356 /*
357 * Perform a dummy read to the EMIF Revision Code and Status register.
358 * This is required to ensure time for syndrome calculation after
359 * writing the ECC values in previous step.
360 */
361
362 val = emif_regs->NANDFSR;
363
364 /*
365 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
366 * A syndrome value of 0 means no bit errors. If the syndrome is
367 * non-zero then go further otherwise return.
368 */
369 nand_davinci_4bit_readecc(mtd, hw_4ecc);
370
371 if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
372 hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
373 return 0;
374
375 /*
376 * Clear any previous address calculation by doing a dummy read of an
377 * error address register.
378 */
379 val = emif_regs->NANDERRADD1;
380
381 /*
382 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
383 * register to 1.
384 */
385 emif_regs->NANDFCR |= 1 << 13;
386
387 /*
388 * Wait for the corr_state field (bits 8 to 11)in the
389 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
390 */
391 i = NAND_TIMEOUT;
392 do {
393 val = emif_regs->NANDFSR;
394 val &= 0xc00;
395 i--;
396 } while ((i > 0) && val);
397
398 iserror = emif_regs->NANDFSR;
399 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
400 iserror = iserror >> 8;
401
402 /*
403 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
404 * corrected (five or more errors). The number of errors
405 * calculated (err_num field) differs from the number of errors
406 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
407 * correction complete (errors on bit 8 or 9).
408 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
409 * complete (error exists).
410 */
411
412 if (iserror == ECC_STATE_NO_ERR) {
413 val = emif_regs->NANDERRVAL1;
414 return 0;
415 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
416 val = emif_regs->NANDERRVAL1;
417 return -1;
418 }
419
420 numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
421
422 /* Read the error address, error value and correct */
423 for (i = 0; i < numerrors; i++) {
424 if (i > 1) {
425 erroraddress =
426 ((emif_regs->NANDERRADD2 >>
427 (16 * (i & 1))) & 0x3FF);
428 erroraddress = ((512 + 7) - erroraddress);
429 errorvalue =
430 ((emif_regs->NANDERRVAL2 >>
431 (16 * (i & 1))) & 0xFF);
432 } else {
433 erroraddress =
434 ((emif_regs->NANDERRADD1 >>
435 (16 * (i & 1))) & 0x3FF);
436 erroraddress = ((512 + 7) - erroraddress);
437 errorvalue =
438 ((emif_regs->NANDERRVAL1 >>
439 (16 * (i & 1))) & 0xFF);
440 }
441 /* xor the corrupt data with error value */
442 if (erroraddress < 512)
443 dat[erroraddress] ^= errorvalue;
444 }
445
446 return numerrors;
447 }
448 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
449
450 static int nand_davinci_dev_ready(struct mtd_info *mtd)
451 {
452 return emif_regs->NANDFSR & 0x1;
453 }
454
455 static void nand_flash_init(void)
456 {
457 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
458 * Instead, have your board_init() set EMIF timings, based on its
459 * knowledge of the clocks and what devices are hooked up ... and
460 * don't even do that unless no UBL handled it.
461 */
462 #ifdef CONFIG_SOC_DM644X
463 u_int32_t acfg1 = 0x3ffffffc;
464
465 /*------------------------------------------------------------------*
466 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
467 * *
468 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
469 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
470 * *
471 *------------------------------------------------------------------*/
472 acfg1 = 0
473 | (0 << 31 ) /* selectStrobe */
474 | (0 << 30 ) /* extWait */
475 | (1 << 26 ) /* writeSetup 10 ns */
476 | (3 << 20 ) /* writeStrobe 40 ns */
477 | (1 << 17 ) /* writeHold 10 ns */
478 | (1 << 13 ) /* readSetup 10 ns */
479 | (5 << 7 ) /* readStrobe 60 ns */
480 | (1 << 4 ) /* readHold 10 ns */
481 | (3 << 2 ) /* turnAround ?? ns */
482 | (0 << 0 ) /* asyncSize 8-bit bus */
483 ;
484
485 emif_regs->AB1CR = acfg1; /* CS2 */
486
487 emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */
488 #endif
489 }
490
491 void davinci_nand_init(struct nand_chip *nand)
492 {
493 nand->chip_delay = 0;
494 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
495 nand->options |= NAND_USE_FLASH_BBT;
496 #endif
497 #ifdef CONFIG_SYS_NAND_HW_ECC
498 nand->ecc.mode = NAND_ECC_HW;
499 nand->ecc.size = 512;
500 nand->ecc.bytes = 3;
501 nand->ecc.calculate = nand_davinci_calculate_ecc;
502 nand->ecc.correct = nand_davinci_correct_data;
503 nand->ecc.hwctl = nand_davinci_enable_hwecc;
504 #else
505 nand->ecc.mode = NAND_ECC_SOFT;
506 #endif /* CONFIG_SYS_NAND_HW_ECC */
507 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
508 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
509 nand->ecc.size = 512;
510 nand->ecc.bytes = 10;
511 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
512 nand->ecc.correct = nand_davinci_4bit_correct_data;
513 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
514 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
515 #endif
516 /* Set address of hardware control function */
517 nand->cmd_ctrl = nand_davinci_hwcontrol;
518
519 nand->dev_ready = nand_davinci_dev_ready;
520
521 nand_flash_init();
522 }
523
524 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
525
526 int board_nand_init(struct nand_chip *chip)
527 {
528 davinci_nand_init(chip);
529 return 0;
530 }