]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/davinci_nand.c
mtd/spi: fix block count for is25lq040b
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9 /*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * SPDX-License-Identifier: GPL-2.0+
20 *
21 * ----------------------------------------------------------------------------
22 *
23 * Overview:
24 * This is a device driver for the NAND flash device found on the
25 * DaVinci board which utilizes the Samsung k9k2g08 part.
26 *
27 Modifications:
28 ver. 1.0: Feb 2005, Vinod/Sudhakar
29 -
30 */
31
32 #include <common.h>
33 #include <asm/io.h>
34 #include <nand.h>
35 #include <asm/ti-common/davinci_nand.h>
36
37 /* Definitions for 4-bit hardware ECC */
38 #define NAND_TIMEOUT 10240
39 #define NAND_ECC_BUSY 0xC
40 #define NAND_4BITECC_MASK 0x03FF03FF
41 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
42 #define ECC_STATE_NO_ERR 0x0
43 #define ECC_STATE_TOO_MANY_ERRS 0x1
44 #define ECC_STATE_ERR_CORR_COMP_P 0x2
45 #define ECC_STATE_ERR_CORR_COMP_N 0x3
46
47 /*
48 * Exploit the little endianness of the ARM to do multi-byte transfers
49 * per device read. This can perform over twice as quickly as individual
50 * byte transfers when buffer alignment is conducive.
51 *
52 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
53 * the address bus. On Davinci EVM platforms this has always been true.
54 */
55 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
56 {
57 struct nand_chip *chip = mtd_to_nand(mtd);
58 const u32 *nand = chip->IO_ADDR_R;
59
60 /* Make sure that buf is 32 bit aligned */
61 if (((int)buf & 0x3) != 0) {
62 if (((int)buf & 0x1) != 0) {
63 if (len) {
64 *buf = readb(nand);
65 buf += 1;
66 len--;
67 }
68 }
69
70 if (((int)buf & 0x3) != 0) {
71 if (len >= 2) {
72 *(u16 *)buf = readw(nand);
73 buf += 2;
74 len -= 2;
75 }
76 }
77 }
78
79 /* copy aligned data */
80 while (len >= 4) {
81 *(u32 *)buf = __raw_readl(nand);
82 buf += 4;
83 len -= 4;
84 }
85
86 /* mop up any remaining bytes */
87 if (len) {
88 if (len >= 2) {
89 *(u16 *)buf = readw(nand);
90 buf += 2;
91 len -= 2;
92 }
93
94 if (len)
95 *buf = readb(nand);
96 }
97 }
98
99 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
100 int len)
101 {
102 struct nand_chip *chip = mtd_to_nand(mtd);
103 const u32 *nand = chip->IO_ADDR_W;
104
105 /* Make sure that buf is 32 bit aligned */
106 if (((int)buf & 0x3) != 0) {
107 if (((int)buf & 0x1) != 0) {
108 if (len) {
109 writeb(*buf, nand);
110 buf += 1;
111 len--;
112 }
113 }
114
115 if (((int)buf & 0x3) != 0) {
116 if (len >= 2) {
117 writew(*(u16 *)buf, nand);
118 buf += 2;
119 len -= 2;
120 }
121 }
122 }
123
124 /* copy aligned data */
125 while (len >= 4) {
126 __raw_writel(*(u32 *)buf, nand);
127 buf += 4;
128 len -= 4;
129 }
130
131 /* mop up any remaining bytes */
132 if (len) {
133 if (len >= 2) {
134 writew(*(u16 *)buf, nand);
135 buf += 2;
136 len -= 2;
137 }
138
139 if (len)
140 writeb(*buf, nand);
141 }
142 }
143
144 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
145 unsigned int ctrl)
146 {
147 struct nand_chip *this = mtd_to_nand(mtd);
148 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
149
150 if (ctrl & NAND_CTRL_CHANGE) {
151 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
152
153 if (ctrl & NAND_CLE)
154 IO_ADDR_W |= MASK_CLE;
155 if (ctrl & NAND_ALE)
156 IO_ADDR_W |= MASK_ALE;
157 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
158 }
159
160 if (cmd != NAND_CMD_NONE)
161 writeb(cmd, IO_ADDR_W);
162 }
163
164 #ifdef CONFIG_SYS_NAND_HW_ECC
165
166 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
167 {
168 u_int32_t ecc = 0;
169
170 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
171 CONFIG_SYS_NAND_CS - 2]));
172
173 return ecc;
174 }
175
176 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
177 {
178 u_int32_t val;
179
180 /* reading the ECC result register resets the ECC calculation */
181 nand_davinci_readecc(mtd);
182
183 val = __raw_readl(&davinci_emif_regs->nandfcr);
184 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
185 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
186 __raw_writel(val, &davinci_emif_regs->nandfcr);
187 }
188
189 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
190 u_char *ecc_code)
191 {
192 u_int32_t tmp;
193
194 tmp = nand_davinci_readecc(mtd);
195
196 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
197 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
198 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
199
200 /* Invert so that erased block ECC is correct */
201 tmp = ~tmp;
202
203 *ecc_code++ = tmp;
204 *ecc_code++ = tmp >> 8;
205 *ecc_code++ = tmp >> 16;
206
207 /* NOTE: the above code matches mainline Linux:
208 * .PQR.stu ==> ~PQRstu
209 *
210 * MontaVista/TI kernels encode those bytes differently, use
211 * complicated (and allegedly sometimes-wrong) correction code,
212 * and usually shipped with U-Boot that uses software ECC:
213 * .PQR.stu ==> PsQRtu
214 *
215 * If you need MV/TI compatible NAND I/O in U-Boot, it should
216 * be possible to (a) change the mangling above, (b) reverse
217 * that mangling in nand_davinci_correct_data() below.
218 */
219
220 return 0;
221 }
222
223 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
224 u_char *read_ecc, u_char *calc_ecc)
225 {
226 struct nand_chip *this = mtd_to_nand(mtd);
227 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
228 (read_ecc[2] << 16);
229 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
230 (calc_ecc[2] << 16);
231 u_int32_t diff = ecc_calc ^ ecc_nand;
232
233 if (diff) {
234 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
235 /* Correctable error */
236 if ((diff >> (12 + 3)) < this->ecc.size) {
237 uint8_t find_bit = 1 << ((diff >> 12) & 7);
238 uint32_t find_byte = diff >> (12 + 3);
239
240 dat[find_byte] ^= find_bit;
241 pr_debug("Correcting single "
242 "bit ECC error at offset: %d, bit: "
243 "%d\n", find_byte, find_bit);
244 return 1;
245 } else {
246 return -EBADMSG;
247 }
248 } else if (!(diff & (diff - 1))) {
249 /* Single bit ECC error in the ECC itself,
250 nothing to fix */
251 pr_debug("Single bit ECC error in " "ECC.\n");
252 return 1;
253 } else {
254 /* Uncorrectable error */
255 pr_debug("ECC UNCORRECTED_ERROR 1\n");
256 return -EBADMSG;
257 }
258 }
259 return 0;
260 }
261 #endif /* CONFIG_SYS_NAND_HW_ECC */
262
263 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
264 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
265 #if defined(CONFIG_SYS_NAND_PAGE_2K)
266 .eccbytes = 40,
267 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
268 .eccpos = {
269 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
270 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
271 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
272 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
273 },
274 .oobfree = {
275 {2, 4}, {16, 6}, {32, 6}, {48, 6},
276 },
277 #else
278 .eccpos = {
279 24, 25, 26, 27, 28,
280 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
281 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
282 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
283 59, 60, 61, 62, 63,
284 },
285 .oobfree = {
286 {.offset = 2, .length = 22, },
287 },
288 #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
289 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
290 .eccbytes = 80,
291 .eccpos = {
292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
293 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
294 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
295 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
296 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
297 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
298 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
299 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
300 },
301 .oobfree = {
302 {.offset = 2, .length = 46, },
303 },
304 #endif
305 };
306
307 #if defined CONFIG_KEYSTONE_RBL_NAND
308 static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
309 #if defined(CONFIG_SYS_NAND_PAGE_2K)
310 .eccbytes = 40,
311 .eccpos = {
312 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
313 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
314 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
315 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
316 },
317 .oobfree = {
318 {.offset = 2, .length = 4, },
319 {.offset = 16, .length = 6, },
320 {.offset = 32, .length = 6, },
321 {.offset = 48, .length = 6, },
322 },
323 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
324 .eccbytes = 80,
325 .eccpos = {
326 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
327 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
328 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
329 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
330 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
331 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
332 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
333 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
334 },
335 .oobfree = {
336 {.offset = 2, .length = 4, },
337 {.offset = 16, .length = 6, },
338 {.offset = 32, .length = 6, },
339 {.offset = 48, .length = 6, },
340 {.offset = 64, .length = 6, },
341 {.offset = 80, .length = 6, },
342 {.offset = 96, .length = 6, },
343 {.offset = 112, .length = 6, },
344 },
345 #endif
346 };
347
348 #ifdef CONFIG_SYS_NAND_PAGE_2K
349 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
350 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
351 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
352 #endif
353
354 /**
355 * nand_davinci_write_page - write one page
356 * @mtd: MTD device structure
357 * @chip: NAND chip descriptor
358 * @buf: the data to write
359 * @oob_required: must write chip->oob_poi to OOB
360 * @page: page number to write
361 * @cached: cached programming
362 * @raw: use _raw version of write_page
363 */
364 static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
365 uint32_t offset, int data_len,
366 const uint8_t *buf, int oob_required,
367 int page, int cached, int raw)
368 {
369 int status;
370 int ret = 0;
371 struct nand_ecclayout *saved_ecc_layout;
372
373 /* save current ECC layout and assign Keystone RBL ECC layout */
374 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
375 saved_ecc_layout = chip->ecc.layout;
376 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
377 mtd->oobavail = chip->ecc.layout->oobavail;
378 }
379
380 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
381
382 if (unlikely(raw)) {
383 status = chip->ecc.write_page_raw(mtd, chip, buf,
384 oob_required, page);
385 } else {
386 status = chip->ecc.write_page(mtd, chip, buf,
387 oob_required, page);
388 }
389
390 if (status < 0) {
391 ret = status;
392 goto err;
393 }
394
395 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
396 status = chip->waitfunc(mtd, chip);
397
398 /*
399 * See if operation failed and additional status checks are
400 * available.
401 */
402 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
403 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
404
405 if (status & NAND_STATUS_FAIL) {
406 ret = -EIO;
407 goto err;
408 }
409
410 err:
411 /* restore ECC layout */
412 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
413 chip->ecc.layout = saved_ecc_layout;
414 mtd->oobavail = saved_ecc_layout->oobavail;
415 }
416
417 return ret;
418 }
419
420 /**
421 * nand_davinci_read_page_hwecc - hardware ECC based page read function
422 * @mtd: mtd info structure
423 * @chip: nand chip info structure
424 * @buf: buffer to store read data
425 * @oob_required: caller requires OOB data read to chip->oob_poi
426 * @page: page number to read
427 *
428 * Not for syndrome calculating ECC controllers which need a special oob layout.
429 */
430 static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
431 uint8_t *buf, int oob_required, int page)
432 {
433 int i, eccsize = chip->ecc.size;
434 int eccbytes = chip->ecc.bytes;
435 int eccsteps = chip->ecc.steps;
436 uint32_t *eccpos;
437 uint8_t *p = buf;
438 uint8_t *ecc_code = chip->buffers->ecccode;
439 uint8_t *ecc_calc = chip->buffers->ecccalc;
440 struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
441
442 /* save current ECC layout and assign Keystone RBL ECC layout */
443 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
444 chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
445 mtd->oobavail = chip->ecc.layout->oobavail;
446 }
447
448 eccpos = chip->ecc.layout->eccpos;
449
450 /* Read the OOB area first */
451 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
452 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
453 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
454
455 for (i = 0; i < chip->ecc.total; i++)
456 ecc_code[i] = chip->oob_poi[eccpos[i]];
457
458 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
459 int stat;
460
461 chip->ecc.hwctl(mtd, NAND_ECC_READ);
462 chip->read_buf(mtd, p, eccsize);
463 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
464
465 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
466 if (stat < 0)
467 mtd->ecc_stats.failed++;
468 else
469 mtd->ecc_stats.corrected += stat;
470 }
471
472 /* restore ECC layout */
473 if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
474 chip->ecc.layout = saved_ecc_layout;
475 mtd->oobavail = saved_ecc_layout->oobavail;
476 }
477
478 return 0;
479 }
480 #endif /* CONFIG_KEYSTONE_RBL_NAND */
481
482 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
483 {
484 u32 val;
485
486 switch (mode) {
487 case NAND_ECC_WRITE:
488 case NAND_ECC_READ:
489 /*
490 * Start a new ECC calculation for reading or writing 512 bytes
491 * of data.
492 */
493 val = __raw_readl(&davinci_emif_regs->nandfcr);
494 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
495 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
496 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
497 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
498 __raw_writel(val, &davinci_emif_regs->nandfcr);
499 break;
500 case NAND_ECC_READSYN:
501 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
502 break;
503 default:
504 break;
505 }
506 }
507
508 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
509 {
510 int i;
511
512 for (i = 0; i < 4; i++) {
513 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
514 NAND_4BITECC_MASK;
515 }
516
517 return 0;
518 }
519
520 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
521 const uint8_t *dat,
522 uint8_t *ecc_code)
523 {
524 unsigned int hw_4ecc[4];
525 unsigned int i;
526
527 nand_davinci_4bit_readecc(mtd, hw_4ecc);
528
529 /*Convert 10 bit ecc value to 8 bit */
530 for (i = 0; i < 2; i++) {
531 unsigned int hw_ecc_low = hw_4ecc[i * 2];
532 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
533
534 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
535 *ecc_code++ = hw_ecc_low & 0xFF;
536
537 /*
538 * Take 2 bits as LSB bits from val1 (count1=0) or val5
539 * (count1=1) and 6 bits from val2 (count1=0) or
540 * val5 (count1=1)
541 */
542 *ecc_code++ =
543 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
544
545 /*
546 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
547 * 4 bits from val3 (count1=0) or val6 (count1=1)
548 */
549 *ecc_code++ =
550 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
551
552 /*
553 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
554 * 2 bits from val4 (count1=0) or val7 (count1=1)
555 */
556 *ecc_code++ =
557 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
558
559 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
560 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
561 }
562
563 return 0;
564 }
565
566 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
567 uint8_t *read_ecc, uint8_t *calc_ecc)
568 {
569 int i;
570 unsigned int hw_4ecc[4];
571 unsigned int iserror;
572 unsigned short *ecc16;
573 unsigned int numerrors, erroraddress, errorvalue;
574 u32 val;
575
576 /*
577 * Check for an ECC where all bytes are 0xFF. If this is the case, we
578 * will assume we are looking at an erased page and we should ignore
579 * the ECC.
580 */
581 for (i = 0; i < 10; i++) {
582 if (read_ecc[i] != 0xFF)
583 break;
584 }
585 if (i == 10)
586 return 0;
587
588 /* Convert 8 bit in to 10 bit */
589 ecc16 = (unsigned short *)&read_ecc[0];
590
591 /*
592 * Write the parity values in the NAND Flash 4-bit ECC Load register.
593 * Write each parity value one at a time starting from 4bit_ecc_val8
594 * to 4bit_ecc_val1.
595 */
596
597 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
598 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
599 &davinci_emif_regs->nand4biteccload);
600
601 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
602 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
603 &davinci_emif_regs->nand4biteccload);
604
605 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
606 __raw_writel((ecc16[3] >> 2) & 0x3FF,
607 &davinci_emif_regs->nand4biteccload);
608
609 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
610 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
611 &davinci_emif_regs->nand4biteccload);
612
613 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
614 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
615 &davinci_emif_regs->nand4biteccload);
616
617 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
618 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
619 &davinci_emif_regs->nand4biteccload);
620
621 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
622 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
623 &davinci_emif_regs->nand4biteccload);
624
625 /* Take 10 bits from 0th and 1st bytes */
626 __raw_writel((ecc16[0]) & 0x3FF,
627 &davinci_emif_regs->nand4biteccload);
628
629 /*
630 * Perform a dummy read to the EMIF Revision Code and Status register.
631 * This is required to ensure time for syndrome calculation after
632 * writing the ECC values in previous step.
633 */
634
635 val = __raw_readl(&davinci_emif_regs->nandfsr);
636
637 /*
638 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
639 * A syndrome value of 0 means no bit errors. If the syndrome is
640 * non-zero then go further otherwise return.
641 */
642 nand_davinci_4bit_readecc(mtd, hw_4ecc);
643
644 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
645 return 0;
646
647 /*
648 * Clear any previous address calculation by doing a dummy read of an
649 * error address register.
650 */
651 val = __raw_readl(&davinci_emif_regs->nanderradd1);
652
653 /*
654 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
655 * register to 1.
656 */
657 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
658 &davinci_emif_regs->nandfcr);
659
660 /*
661 * Wait for the corr_state field (bits 8 to 11) in the
662 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
663 * Otherwise ECC calculation has not even begun and the next loop might
664 * fail because of a false positive!
665 */
666 i = NAND_TIMEOUT;
667 do {
668 val = __raw_readl(&davinci_emif_regs->nandfsr);
669 val &= 0xc00;
670 i--;
671 } while ((i > 0) && !val);
672
673 /*
674 * Wait for the corr_state field (bits 8 to 11) in the
675 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
676 */
677 i = NAND_TIMEOUT;
678 do {
679 val = __raw_readl(&davinci_emif_regs->nandfsr);
680 val &= 0xc00;
681 i--;
682 } while ((i > 0) && val);
683
684 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
685 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
686 iserror = iserror >> 8;
687
688 /*
689 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
690 * corrected (five or more errors). The number of errors
691 * calculated (err_num field) differs from the number of errors
692 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
693 * correction complete (errors on bit 8 or 9).
694 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
695 * complete (error exists).
696 */
697
698 if (iserror == ECC_STATE_NO_ERR) {
699 val = __raw_readl(&davinci_emif_regs->nanderrval1);
700 return 0;
701 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
702 val = __raw_readl(&davinci_emif_regs->nanderrval1);
703 return -EBADMSG;
704 }
705
706 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
707 & 0x3) + 1;
708
709 /* Read the error address, error value and correct */
710 for (i = 0; i < numerrors; i++) {
711 if (i > 1) {
712 erroraddress =
713 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
714 (16 * (i & 1))) & 0x3FF);
715 erroraddress = ((512 + 7) - erroraddress);
716 errorvalue =
717 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
718 (16 * (i & 1))) & 0xFF);
719 } else {
720 erroraddress =
721 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
722 (16 * (i & 1))) & 0x3FF);
723 erroraddress = ((512 + 7) - erroraddress);
724 errorvalue =
725 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
726 (16 * (i & 1))) & 0xFF);
727 }
728 /* xor the corrupt data with error value */
729 if (erroraddress < 512)
730 dat[erroraddress] ^= errorvalue;
731 }
732
733 return numerrors;
734 }
735 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
736
737 static int nand_davinci_dev_ready(struct mtd_info *mtd)
738 {
739 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
740 }
741
742 static void nand_flash_init(void)
743 {
744 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
745 * Instead, have your board_init() set EMIF timings, based on its
746 * knowledge of the clocks and what devices are hooked up ... and
747 * don't even do that unless no UBL handled it.
748 */
749 #ifdef CONFIG_SOC_DM644X
750 u_int32_t acfg1 = 0x3ffffffc;
751
752 /*------------------------------------------------------------------*
753 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
754 * *
755 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
756 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
757 * *
758 *------------------------------------------------------------------*/
759 acfg1 = 0
760 | (0 << 31) /* selectStrobe */
761 | (0 << 30) /* extWait */
762 | (1 << 26) /* writeSetup 10 ns */
763 | (3 << 20) /* writeStrobe 40 ns */
764 | (1 << 17) /* writeHold 10 ns */
765 | (1 << 13) /* readSetup 10 ns */
766 | (5 << 7) /* readStrobe 60 ns */
767 | (1 << 4) /* readHold 10 ns */
768 | (3 << 2) /* turnAround ?? ns */
769 | (0 << 0) /* asyncSize 8-bit bus */
770 ;
771
772 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
773
774 /* NAND flash on CS2 */
775 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
776 #endif
777 }
778
779 void davinci_nand_init(struct nand_chip *nand)
780 {
781 #if defined CONFIG_KEYSTONE_RBL_NAND
782 int i;
783 struct nand_ecclayout *layout;
784
785 layout = &nand_keystone_rbl_4bit_layout_oobfirst;
786 layout->oobavail = 0;
787 for (i = 0; layout->oobfree[i].length &&
788 i < ARRAY_SIZE(layout->oobfree); i++)
789 layout->oobavail += layout->oobfree[i].length;
790
791 nand->write_page = nand_davinci_write_page;
792 nand->ecc.read_page = nand_davinci_read_page_hwecc;
793 #endif
794 nand->chip_delay = 0;
795 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
796 nand->bbt_options |= NAND_BBT_USE_FLASH;
797 #endif
798 #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
799 nand->options |= NAND_NO_SUBPAGE_WRITE;
800 #endif
801 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
802 nand->options |= NAND_BUSWIDTH_16;
803 #endif
804 #ifdef CONFIG_SYS_NAND_HW_ECC
805 nand->ecc.mode = NAND_ECC_HW;
806 nand->ecc.size = 512;
807 nand->ecc.bytes = 3;
808 nand->ecc.strength = 1;
809 nand->ecc.calculate = nand_davinci_calculate_ecc;
810 nand->ecc.correct = nand_davinci_correct_data;
811 nand->ecc.hwctl = nand_davinci_enable_hwecc;
812 #else
813 nand->ecc.mode = NAND_ECC_SOFT;
814 #endif /* CONFIG_SYS_NAND_HW_ECC */
815 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
816 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
817 nand->ecc.size = 512;
818 nand->ecc.bytes = 10;
819 nand->ecc.strength = 4;
820 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
821 nand->ecc.correct = nand_davinci_4bit_correct_data;
822 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
823 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
824 #endif
825 /* Set address of hardware control function */
826 nand->cmd_ctrl = nand_davinci_hwcontrol;
827
828 nand->read_buf = nand_davinci_read_buf;
829 nand->write_buf = nand_davinci_write_buf;
830
831 nand->dev_ready = nand_davinci_dev_ready;
832
833 nand_flash_init();
834 }
835
836 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
837
838 int board_nand_init(struct nand_chip *chip)
839 {
840 davinci_nand_init(chip);
841 return 0;
842 }