]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/denali.c
mtd: nand: Add+use mtd_to/from_nand and nand_get/set_controller_data
[people/ms/u-boot.git] / drivers / mtd / nand / denali.c
1 /*
2 * Copyright (C) 2014 Panasonic Corporation
3 * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
4 * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <malloc.h>
11 #include <nand.h>
12 #include <asm/errno.h>
13 #include <asm/io.h>
14
15 #include "denali.h"
16
17 #define NAND_DEFAULT_TIMINGS -1
18
19 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
20
21 /*
22 * We define a macro here that combines all interrupts this driver uses into
23 * a single constant value, for convenience.
24 */
25 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
26 INTR_STATUS__ECC_TRANSACTION_DONE | \
27 INTR_STATUS__ECC_ERR | \
28 INTR_STATUS__PROGRAM_FAIL | \
29 INTR_STATUS__LOAD_COMP | \
30 INTR_STATUS__PROGRAM_COMP | \
31 INTR_STATUS__TIME_OUT | \
32 INTR_STATUS__ERASE_FAIL | \
33 INTR_STATUS__RST_COMP | \
34 INTR_STATUS__ERASE_COMP | \
35 INTR_STATUS__ECC_UNCOR_ERR | \
36 INTR_STATUS__INT_ACT | \
37 INTR_STATUS__LOCKED_BLK)
38
39 /*
40 * indicates whether or not the internal value for the flash bank is
41 * valid or not
42 */
43 #define CHIP_SELECT_INVALID -1
44
45 #define SUPPORT_8BITECC 1
46
47 /*
48 * this macro allows us to convert from an MTD structure to our own
49 * device context (denali) structure.
50 */
51 #define mtd_to_denali(m) \
52 container_of(mtd_to_nand(m), struct denali_nand_info, nand)
53
54 /*
55 * These constants are defined by the driver to enable common driver
56 * configuration options.
57 */
58 #define SPARE_ACCESS 0x41
59 #define MAIN_ACCESS 0x42
60 #define MAIN_SPARE_ACCESS 0x43
61 #define PIPELINE_ACCESS 0x2000
62
63 #define DENALI_UNLOCK_START 0x10
64 #define DENALI_UNLOCK_END 0x11
65 #define DENALI_LOCK 0x21
66 #define DENALI_LOCK_TIGHT 0x31
67 #define DENALI_BUFFER_LOAD 0x60
68 #define DENALI_BUFFER_WRITE 0x62
69
70 #define DENALI_READ 0
71 #define DENALI_WRITE 0x100
72
73 /* types of device accesses. We can issue commands and get status */
74 #define COMMAND_CYCLE 0
75 #define ADDR_CYCLE 1
76 #define STATUS_CYCLE 2
77
78 /*
79 * this is a helper macro that allows us to
80 * format the bank into the proper bits for the controller
81 */
82 #define BANK(x) ((x) << 24)
83
84 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
85 static inline void clear_interrupt(struct denali_nand_info *denali,
86 uint32_t irq_mask)
87 {
88 uint32_t intr_status_reg;
89
90 intr_status_reg = INTR_STATUS(denali->flash_bank);
91
92 writel(irq_mask, denali->flash_reg + intr_status_reg);
93 }
94
95 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
96 {
97 uint32_t intr_status_reg;
98
99 intr_status_reg = INTR_STATUS(denali->flash_bank);
100
101 return readl(denali->flash_reg + intr_status_reg);
102 }
103
104 static void clear_interrupts(struct denali_nand_info *denali)
105 {
106 uint32_t status;
107
108 status = read_interrupt_status(denali);
109 clear_interrupt(denali, status);
110
111 denali->irq_status = 0;
112 }
113
114 static void denali_irq_enable(struct denali_nand_info *denali,
115 uint32_t int_mask)
116 {
117 int i;
118
119 for (i = 0; i < denali->max_banks; ++i)
120 writel(int_mask, denali->flash_reg + INTR_EN(i));
121 }
122
123 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
124 {
125 unsigned long timeout = 1000000;
126 uint32_t intr_status;
127
128 do {
129 intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
130 if (intr_status & irq_mask) {
131 denali->irq_status &= ~irq_mask;
132 /* our interrupt was detected */
133 break;
134 }
135 udelay(1);
136 timeout--;
137 } while (timeout != 0);
138
139 if (timeout == 0) {
140 /* timeout */
141 printf("Denali timeout with interrupt status %08x\n",
142 read_interrupt_status(denali));
143 intr_status = 0;
144 }
145 return intr_status;
146 }
147
148 /*
149 * Certain operations for the denali NAND controller use an indexed mode to
150 * read/write data. The operation is performed by writing the address value
151 * of the command to the device memory followed by the data. This function
152 * abstracts this common operation.
153 */
154 static void index_addr(struct denali_nand_info *denali,
155 uint32_t address, uint32_t data)
156 {
157 writel(address, denali->flash_mem + INDEX_CTRL_REG);
158 writel(data, denali->flash_mem + INDEX_DATA_REG);
159 }
160
161 /* Perform an indexed read of the device */
162 static void index_addr_read_data(struct denali_nand_info *denali,
163 uint32_t address, uint32_t *pdata)
164 {
165 writel(address, denali->flash_mem + INDEX_CTRL_REG);
166 *pdata = readl(denali->flash_mem + INDEX_DATA_REG);
167 }
168
169 /*
170 * We need to buffer some data for some of the NAND core routines.
171 * The operations manage buffering that data.
172 */
173 static void reset_buf(struct denali_nand_info *denali)
174 {
175 denali->buf.head = 0;
176 denali->buf.tail = 0;
177 }
178
179 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
180 {
181 denali->buf.buf[denali->buf.tail++] = byte;
182 }
183
184 /* resets a specific device connected to the core */
185 static void reset_bank(struct denali_nand_info *denali)
186 {
187 uint32_t irq_status;
188 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
189
190 clear_interrupts(denali);
191
192 writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
193
194 irq_status = wait_for_irq(denali, irq_mask);
195 if (irq_status & INTR_STATUS__TIME_OUT)
196 debug("reset bank failed.\n");
197 }
198
199 /* Reset the flash controller */
200 static uint32_t denali_nand_reset(struct denali_nand_info *denali)
201 {
202 int i;
203
204 for (i = 0; i < denali->max_banks; i++)
205 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
206 denali->flash_reg + INTR_STATUS(i));
207
208 for (i = 0; i < denali->max_banks; i++) {
209 writel(1 << i, denali->flash_reg + DEVICE_RESET);
210 while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
211 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
212 if (readl(denali->flash_reg + INTR_STATUS(i)) &
213 INTR_STATUS__TIME_OUT)
214 debug("NAND Reset operation timed out on bank"
215 " %d\n", i);
216 }
217
218 for (i = 0; i < denali->max_banks; i++)
219 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
220 denali->flash_reg + INTR_STATUS(i));
221
222 return 0;
223 }
224
225 /*
226 * this routine calculates the ONFI timing values for a given mode and
227 * programs the clocking register accordingly. The mode is determined by
228 * the get_onfi_nand_para routine.
229 */
230 static void nand_onfi_timing_set(struct denali_nand_info *denali,
231 uint16_t mode)
232 {
233 uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
234 uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
235 uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
236 uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
237 uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
238 uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
239 uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
240 uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
241 uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
242 uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
243 uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
244 uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
245
246 uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
247 uint32_t dv_window = 0;
248 uint32_t en_lo, en_hi;
249 uint32_t acc_clks;
250 uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
251
252 en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
253 en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
254 if ((en_hi * CLK_X) < (treh[mode] + 2))
255 en_hi++;
256
257 if ((en_lo + en_hi) * CLK_X < trc[mode])
258 en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
259 CLK_X);
260
261 if ((en_lo + en_hi) < CLK_MULTI)
262 en_lo += CLK_MULTI - en_lo - en_hi;
263
264 while (dv_window < 8) {
265 data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
266
267 data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
268
269 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
270 data_invalid_rhoh : data_invalid_rloh;
271
272 dv_window = data_invalid - trea[mode];
273
274 if (dv_window < 8)
275 en_lo++;
276 }
277
278 acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
279
280 while (acc_clks * CLK_X - trea[mode] < 3)
281 acc_clks++;
282
283 if (data_invalid - acc_clks * CLK_X < 2)
284 debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
285
286 addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
287 re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
288 re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
289 we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
290 cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
291 if (cs_cnt == 0)
292 cs_cnt = 1;
293
294 if (tcea[mode]) {
295 while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
296 cs_cnt++;
297 }
298
299 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
300 if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
301 readl(denali->flash_reg + DEVICE_ID) == 0x88)
302 acc_clks = 6;
303
304 writel(acc_clks, denali->flash_reg + ACC_CLKS);
305 writel(re_2_we, denali->flash_reg + RE_2_WE);
306 writel(re_2_re, denali->flash_reg + RE_2_RE);
307 writel(we_2_re, denali->flash_reg + WE_2_RE);
308 writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
309 writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
310 writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
311 writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
312 }
313
314 /* queries the NAND device to see what ONFI modes it supports. */
315 static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
316 {
317 int i;
318
319 /*
320 * we needn't to do a reset here because driver has already
321 * reset all the banks before
322 */
323 if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
324 ONFI_TIMING_MODE__VALUE))
325 return -EIO;
326
327 for (i = 5; i > 0; i--) {
328 if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
329 (0x01 << i))
330 break;
331 }
332
333 nand_onfi_timing_set(denali, i);
334
335 /*
336 * By now, all the ONFI devices we know support the page cache
337 * rw feature. So here we enable the pipeline_rw_ahead feature
338 */
339
340 return 0;
341 }
342
343 static void get_samsung_nand_para(struct denali_nand_info *denali,
344 uint8_t device_id)
345 {
346 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
347 /* Set timing register values according to datasheet */
348 writel(5, denali->flash_reg + ACC_CLKS);
349 writel(20, denali->flash_reg + RE_2_WE);
350 writel(12, denali->flash_reg + WE_2_RE);
351 writel(14, denali->flash_reg + ADDR_2_DATA);
352 writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
353 writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
354 writel(2, denali->flash_reg + CS_SETUP_CNT);
355 }
356 }
357
358 static void get_toshiba_nand_para(struct denali_nand_info *denali)
359 {
360 uint32_t tmp;
361
362 /*
363 * Workaround to fix a controller bug which reports a wrong
364 * spare area size for some kind of Toshiba NAND device
365 */
366 if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
367 (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
368 writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
369 tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
370 readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371 writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
372 }
373 }
374
375 static void get_hynix_nand_para(struct denali_nand_info *denali,
376 uint8_t device_id)
377 {
378 uint32_t main_size, spare_size;
379
380 switch (device_id) {
381 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
382 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383 writel(128, denali->flash_reg + PAGES_PER_BLOCK);
384 writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
385 writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
386 main_size = 4096 *
387 readl(denali->flash_reg + DEVICES_CONNECTED);
388 spare_size = 224 *
389 readl(denali->flash_reg + DEVICES_CONNECTED);
390 writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
391 writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
392 writel(0, denali->flash_reg + DEVICE_WIDTH);
393 break;
394 default:
395 debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
396 "Will use default parameter values instead.\n",
397 device_id);
398 }
399 }
400
401 /*
402 * determines how many NAND chips are connected to the controller. Note for
403 * Intel CE4100 devices we don't support more than one device.
404 */
405 static void find_valid_banks(struct denali_nand_info *denali)
406 {
407 uint32_t id[denali->max_banks];
408 int i;
409
410 denali->total_used_banks = 1;
411 for (i = 0; i < denali->max_banks; i++) {
412 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
413 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
414 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
415
416 if (i == 0) {
417 if (!(id[i] & 0x0ff))
418 break;
419 } else {
420 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
421 denali->total_used_banks++;
422 else
423 break;
424 }
425 }
426 }
427
428 /*
429 * Use the configuration feature register to determine the maximum number of
430 * banks that the hardware supports.
431 */
432 static void detect_max_banks(struct denali_nand_info *denali)
433 {
434 uint32_t features = readl(denali->flash_reg + FEATURES);
435 /*
436 * Read the revision register, so we can calculate the max_banks
437 * properly: the encoding changed from rev 5.0 to 5.1
438 */
439 u32 revision = MAKE_COMPARABLE_REVISION(
440 readl(denali->flash_reg + REVISION));
441 if (revision < REVISION_5_1)
442 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
443 else
444 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
445 }
446
447 static void detect_partition_feature(struct denali_nand_info *denali)
448 {
449 /*
450 * For MRST platform, denali->fwblks represent the
451 * number of blocks firmware is taken,
452 * FW is in protect partition and MTD driver has no
453 * permission to access it. So let driver know how many
454 * blocks it can't touch.
455 */
456 if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
457 if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
458 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
459 denali->fwblks =
460 ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
461 MIN_MAX_BANK__MIN_VALUE) *
462 denali->blksperchip)
463 +
464 (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
465 MIN_BLK_ADDR__VALUE);
466 } else {
467 denali->fwblks = SPECTRA_START_BLOCK;
468 }
469 } else {
470 denali->fwblks = SPECTRA_START_BLOCK;
471 }
472 }
473
474 static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
475 {
476 uint32_t id_bytes[8], addr;
477 uint8_t maf_id, device_id;
478 int i;
479
480 /*
481 * Use read id method to get device ID and other params.
482 * For some NAND chips, controller can't report the correct
483 * device ID by reading from DEVICE_ID register
484 */
485 addr = MODE_11 | BANK(denali->flash_bank);
486 index_addr(denali, addr | 0, 0x90);
487 index_addr(denali, addr | 1, 0);
488 for (i = 0; i < 8; i++)
489 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
490 maf_id = id_bytes[0];
491 device_id = id_bytes[1];
492
493 if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
494 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
495 if (get_onfi_nand_para(denali))
496 return -EIO;
497 } else if (maf_id == 0xEC) { /* Samsung NAND */
498 get_samsung_nand_para(denali, device_id);
499 } else if (maf_id == 0x98) { /* Toshiba NAND */
500 get_toshiba_nand_para(denali);
501 } else if (maf_id == 0xAD) { /* Hynix NAND */
502 get_hynix_nand_para(denali, device_id);
503 }
504
505 find_valid_banks(denali);
506
507 detect_partition_feature(denali);
508
509 /*
510 * If the user specified to override the default timings
511 * with a specific ONFI mode, we apply those changes here.
512 */
513 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
514 nand_onfi_timing_set(denali, onfi_timing_mode);
515
516 return 0;
517 }
518
519 /*
520 * validation function to verify that the controlling software is making
521 * a valid request
522 */
523 static inline bool is_flash_bank_valid(int flash_bank)
524 {
525 return flash_bank >= 0 && flash_bank < 4;
526 }
527
528 static void denali_irq_init(struct denali_nand_info *denali)
529 {
530 uint32_t int_mask;
531 int i;
532
533 /* Disable global interrupts */
534 writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
535
536 int_mask = DENALI_IRQ_ALL;
537
538 /* Clear all status bits */
539 for (i = 0; i < denali->max_banks; ++i)
540 writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
541
542 denali_irq_enable(denali, int_mask);
543 }
544
545 /*
546 * This helper function setups the registers for ECC and whether or not
547 * the spare area will be transferred.
548 */
549 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
550 bool transfer_spare)
551 {
552 int ecc_en_flag, transfer_spare_flag;
553
554 /* set ECC, transfer spare bits if needed */
555 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
556 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
557
558 /* Enable spare area/ECC per user's request. */
559 writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
560 /* applicable for MAP01 only */
561 writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
562 }
563
564 /*
565 * sends a pipeline command operation to the controller. See the Denali NAND
566 * controller's user guide for more information (section 4.2.3.6).
567 */
568 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
569 bool ecc_en, bool transfer_spare,
570 int access_type, int op)
571 {
572 uint32_t addr, cmd, irq_status;
573 static uint32_t page_count = 1;
574
575 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
576
577 clear_interrupts(denali);
578
579 addr = BANK(denali->flash_bank) | denali->page;
580
581 /* setup the acccess type */
582 cmd = MODE_10 | addr;
583 index_addr(denali, cmd, access_type);
584
585 /* setup the pipeline command */
586 index_addr(denali, cmd, 0x2000 | op | page_count);
587
588 cmd = MODE_01 | addr;
589 writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
590
591 if (op == DENALI_READ) {
592 /* wait for command to be accepted */
593 irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
594
595 if (irq_status == 0)
596 return -EIO;
597 }
598
599 return 0;
600 }
601
602 /* helper function that simply writes a buffer to the flash */
603 static int write_data_to_flash_mem(struct denali_nand_info *denali,
604 const uint8_t *buf, int len)
605 {
606 uint32_t *buf32;
607 int i;
608
609 /*
610 * verify that the len is a multiple of 4.
611 * see comment in read_data_from_flash_mem()
612 */
613 BUG_ON((len % 4) != 0);
614
615 /* write the data to the flash memory */
616 buf32 = (uint32_t *)buf;
617 for (i = 0; i < len / 4; i++)
618 writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
619 return i * 4; /* intent is to return the number of bytes read */
620 }
621
622 /* helper function that simply reads a buffer from the flash */
623 static int read_data_from_flash_mem(struct denali_nand_info *denali,
624 uint8_t *buf, int len)
625 {
626 uint32_t *buf32;
627 int i;
628
629 /*
630 * we assume that len will be a multiple of 4, if not it would be nice
631 * to know about it ASAP rather than have random failures...
632 * This assumption is based on the fact that this function is designed
633 * to be used to read flash pages, which are typically multiples of 4.
634 */
635 BUG_ON((len % 4) != 0);
636
637 /* transfer the data from the flash */
638 buf32 = (uint32_t *)buf;
639 for (i = 0; i < len / 4; i++)
640 *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
641
642 return i * 4; /* intent is to return the number of bytes read */
643 }
644
645 static void denali_mode_main_access(struct denali_nand_info *denali)
646 {
647 uint32_t addr, cmd;
648
649 addr = BANK(denali->flash_bank) | denali->page;
650 cmd = MODE_10 | addr;
651 index_addr(denali, cmd, MAIN_ACCESS);
652 }
653
654 static void denali_mode_main_spare_access(struct denali_nand_info *denali)
655 {
656 uint32_t addr, cmd;
657
658 addr = BANK(denali->flash_bank) | denali->page;
659 cmd = MODE_10 | addr;
660 index_addr(denali, cmd, MAIN_SPARE_ACCESS);
661 }
662
663 /* writes OOB data to the device */
664 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
665 {
666 struct denali_nand_info *denali = mtd_to_denali(mtd);
667 uint32_t irq_status;
668 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
669 INTR_STATUS__PROGRAM_FAIL;
670 int status = 0;
671
672 denali->page = page;
673
674 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
675 DENALI_WRITE) == 0) {
676 write_data_to_flash_mem(denali, buf, mtd->oobsize);
677
678 /* wait for operation to complete */
679 irq_status = wait_for_irq(denali, irq_mask);
680
681 if (irq_status == 0) {
682 dev_err(denali->dev, "OOB write failed\n");
683 status = -EIO;
684 }
685 } else {
686 printf("unable to send pipeline command\n");
687 status = -EIO;
688 }
689 return status;
690 }
691
692 /* reads OOB data from the device */
693 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
694 {
695 struct denali_nand_info *denali = mtd_to_denali(mtd);
696 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
697 uint32_t irq_status, addr, cmd;
698
699 denali->page = page;
700
701 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
702 DENALI_READ) == 0) {
703 read_data_from_flash_mem(denali, buf, mtd->oobsize);
704
705 /*
706 * wait for command to be accepted
707 * can always use status0 bit as the
708 * mask is identical for each bank.
709 */
710 irq_status = wait_for_irq(denali, irq_mask);
711
712 if (irq_status == 0)
713 printf("page on OOB timeout %d\n", denali->page);
714
715 /*
716 * We set the device back to MAIN_ACCESS here as I observed
717 * instability with the controller if you do a block erase
718 * and the last transaction was a SPARE_ACCESS. Block erase
719 * is reliable (according to the MTD test infrastructure)
720 * if you are in MAIN_ACCESS.
721 */
722 addr = BANK(denali->flash_bank) | denali->page;
723 cmd = MODE_10 | addr;
724 index_addr(denali, cmd, MAIN_ACCESS);
725 }
726 }
727
728 /*
729 * this function examines buffers to see if they contain data that
730 * indicate that the buffer is part of an erased region of flash.
731 */
732 static bool is_erased(uint8_t *buf, int len)
733 {
734 int i;
735
736 for (i = 0; i < len; i++)
737 if (buf[i] != 0xFF)
738 return false;
739 return true;
740 }
741
742 /* programs the controller to either enable/disable DMA transfers */
743 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
744 {
745 writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
746 readl(denali->flash_reg + DMA_ENABLE);
747 }
748
749 /* setups the HW to perform the data DMA */
750 static void denali_setup_dma(struct denali_nand_info *denali, int op)
751 {
752 uint32_t mode;
753 const int page_count = 1;
754 uint64_t addr = (unsigned long)denali->buf.dma_buf;
755
756 flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
757
758 /* For Denali controller that is 64 bit bus IP core */
759 #ifdef CONFIG_SYS_NAND_DENALI_64BIT
760 mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
761
762 /* DMA is a three step process */
763
764 /* 1. setup transfer type, interrupt when complete,
765 burst len = 64 bytes, the number of pages */
766 index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
767
768 /* 2. set memory low address bits 31:0 */
769 index_addr(denali, mode, addr);
770
771 /* 3. set memory high address bits 64:32 */
772 index_addr(denali, mode, addr >> 32);
773 #else
774 mode = MODE_10 | BANK(denali->flash_bank);
775
776 /* DMA is a four step process */
777
778 /* 1. setup transfer type and # of pages */
779 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
780
781 /* 2. set memory high address bits 23:8 */
782 index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200);
783
784 /* 3. set memory low address bits 23:8 */
785 index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
786
787 /* 4. interrupt when complete, burst len = 64 bytes */
788 index_addr(denali, mode | 0x14000, 0x2400);
789 #endif
790 }
791
792 /* Common DMA function */
793 static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
794 uint32_t ops, bool raw_xfer,
795 uint32_t irq_mask, int oob_required)
796 {
797 uint32_t irq_status = 0;
798 /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
799 setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
800
801 /* clear any previous interrupt flags */
802 clear_interrupts(denali);
803
804 /* enable the DMA */
805 denali_enable_dma(denali, true);
806
807 /* setup the DMA */
808 denali_setup_dma(denali, ops);
809
810 /* wait for operation to complete */
811 irq_status = wait_for_irq(denali, irq_mask);
812
813 /* if ECC fault happen, seems we need delay before turning off DMA.
814 * If not, the controller will go into non responsive condition */
815 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
816 udelay(100);
817
818 /* disable the DMA */
819 denali_enable_dma(denali, false);
820
821 return irq_status;
822 }
823
824 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
825 const uint8_t *buf, bool raw_xfer, int oob_required)
826 {
827 struct denali_nand_info *denali = mtd_to_denali(mtd);
828
829 uint32_t irq_status = 0;
830 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
831
832 denali->status = 0;
833
834 /* copy buffer into DMA buffer */
835 memcpy(denali->buf.dma_buf, buf, mtd->writesize);
836
837 /* need extra memcpy for raw transfer */
838 if (raw_xfer)
839 memcpy(denali->buf.dma_buf + mtd->writesize,
840 chip->oob_poi, mtd->oobsize);
841
842 /* setting up DMA */
843 irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
844 irq_mask, oob_required);
845
846 /* if timeout happen, error out */
847 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
848 debug("DMA timeout for denali write_page\n");
849 denali->status = NAND_STATUS_FAIL;
850 return -EIO;
851 }
852
853 if (irq_status & INTR_STATUS__LOCKED_BLK) {
854 debug("Failed as write to locked block\n");
855 denali->status = NAND_STATUS_FAIL;
856 return -EIO;
857 }
858 return 0;
859 }
860
861 /* NAND core entry points */
862
863 /*
864 * this is the callback that the NAND core calls to write a page. Since
865 * writing a page with ECC or without is similar, all the work is done
866 * by write_page above.
867 */
868 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
869 const uint8_t *buf, int oob_required)
870 {
871 struct denali_nand_info *denali = mtd_to_denali(mtd);
872
873 /*
874 * for regular page writes, we let HW handle all the ECC
875 * data written to the device.
876 */
877 if (oob_required)
878 /* switch to main + spare access */
879 denali_mode_main_spare_access(denali);
880 else
881 /* switch to main access only */
882 denali_mode_main_access(denali);
883
884 return write_page(mtd, chip, buf, false, oob_required);
885 }
886
887 /*
888 * This is the callback that the NAND core calls to write a page without ECC.
889 * raw access is similar to ECC page writes, so all the work is done in the
890 * write_page() function above.
891 */
892 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
893 const uint8_t *buf, int oob_required)
894 {
895 struct denali_nand_info *denali = mtd_to_denali(mtd);
896
897 /*
898 * for raw page writes, we want to disable ECC and simply write
899 * whatever data is in the buffer.
900 */
901
902 if (oob_required)
903 /* switch to main + spare access */
904 denali_mode_main_spare_access(denali);
905 else
906 /* switch to main access only */
907 denali_mode_main_access(denali);
908
909 return write_page(mtd, chip, buf, true, oob_required);
910 }
911
912 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
913 int page)
914 {
915 return write_oob_data(mtd, chip->oob_poi, page);
916 }
917
918 /* raw include ECC value and all the spare area */
919 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
920 uint8_t *buf, int oob_required, int page)
921 {
922 struct denali_nand_info *denali = mtd_to_denali(mtd);
923
924 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
925
926 if (denali->page != page) {
927 debug("Missing NAND_CMD_READ0 command\n");
928 return -EIO;
929 }
930
931 if (oob_required)
932 /* switch to main + spare access */
933 denali_mode_main_spare_access(denali);
934 else
935 /* switch to main access only */
936 denali_mode_main_access(denali);
937
938 /* setting up the DMA where ecc_enable is false */
939 irq_status = denali_dma_configuration(denali, DENALI_READ, true,
940 irq_mask, oob_required);
941
942 /* if timeout happen, error out */
943 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
944 debug("DMA timeout for denali_read_page_raw\n");
945 return -EIO;
946 }
947
948 /* splitting the content to destination buffer holder */
949 memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
950 mtd->oobsize);
951 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
952
953 return 0;
954 }
955
956 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
957 uint8_t *buf, int oob_required, int page)
958 {
959 struct denali_nand_info *denali = mtd_to_denali(mtd);
960 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
961
962 if (denali->page != page) {
963 debug("Missing NAND_CMD_READ0 command\n");
964 return -EIO;
965 }
966
967 if (oob_required)
968 /* switch to main + spare access */
969 denali_mode_main_spare_access(denali);
970 else
971 /* switch to main access only */
972 denali_mode_main_access(denali);
973
974 /* setting up the DMA where ecc_enable is true */
975 irq_status = denali_dma_configuration(denali, DENALI_READ, false,
976 irq_mask, oob_required);
977
978 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
979
980 /* check whether any ECC error */
981 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
982 /* is the ECC cause by erase page, check using read_page_raw */
983 debug(" Uncorrected ECC detected\n");
984 denali_read_page_raw(mtd, chip, buf, oob_required,
985 denali->page);
986
987 if (is_erased(buf, mtd->writesize) == true &&
988 is_erased(chip->oob_poi, mtd->oobsize) == true) {
989 debug(" ECC error cause by erased block\n");
990 /* false alarm, return the 0xFF */
991 } else {
992 return -EIO;
993 }
994 }
995 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
996 return 0;
997 }
998
999 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1000 int page)
1001 {
1002 read_oob_data(mtd, chip->oob_poi, page);
1003
1004 return 0;
1005 }
1006
1007 static uint8_t denali_read_byte(struct mtd_info *mtd)
1008 {
1009 struct denali_nand_info *denali = mtd_to_denali(mtd);
1010 uint32_t addr, result;
1011
1012 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1013 index_addr_read_data(denali, addr | 2, &result);
1014 return (uint8_t)result & 0xFF;
1015 }
1016
1017 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1018 {
1019 struct denali_nand_info *denali = mtd_to_denali(mtd);
1020 uint32_t i, addr, result;
1021
1022 /* delay for tR (data transfer from Flash array to data register) */
1023 udelay(25);
1024
1025 /* ensure device completed else additional delay and polling */
1026 wait_for_irq(denali, INTR_STATUS__INT_ACT);
1027
1028 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1029 for (i = 0; i < len; i++) {
1030 index_addr_read_data(denali, (uint32_t)addr | 2, &result);
1031 write_byte_to_buf(denali, result);
1032 }
1033 memcpy(buf, denali->buf.buf, len);
1034 }
1035
1036 static void denali_select_chip(struct mtd_info *mtd, int chip)
1037 {
1038 struct denali_nand_info *denali = mtd_to_denali(mtd);
1039
1040 denali->flash_bank = chip;
1041 }
1042
1043 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1044 {
1045 struct denali_nand_info *denali = mtd_to_denali(mtd);
1046 int status = denali->status;
1047
1048 denali->status = 0;
1049
1050 return status;
1051 }
1052
1053 static int denali_erase(struct mtd_info *mtd, int page)
1054 {
1055 struct denali_nand_info *denali = mtd_to_denali(mtd);
1056
1057 uint32_t cmd, irq_status;
1058
1059 clear_interrupts(denali);
1060
1061 /* setup page read request for access type */
1062 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1063 index_addr(denali, cmd, 0x1);
1064
1065 /* wait for erase to complete or failure to occur */
1066 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1067 INTR_STATUS__ERASE_FAIL);
1068
1069 if (irq_status & INTR_STATUS__ERASE_FAIL ||
1070 irq_status & INTR_STATUS__LOCKED_BLK)
1071 return NAND_STATUS_FAIL;
1072
1073 return 0;
1074 }
1075
1076 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1077 int page)
1078 {
1079 struct denali_nand_info *denali = mtd_to_denali(mtd);
1080 uint32_t addr;
1081
1082 switch (cmd) {
1083 case NAND_CMD_PAGEPROG:
1084 break;
1085 case NAND_CMD_STATUS:
1086 addr = MODE_11 | BANK(denali->flash_bank);
1087 index_addr(denali, addr | 0, cmd);
1088 break;
1089 case NAND_CMD_READID:
1090 case NAND_CMD_PARAM:
1091 reset_buf(denali);
1092 /*
1093 * sometimes ManufactureId read from register is not right
1094 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1095 * So here we send READID cmd to NAND insteand
1096 */
1097 addr = MODE_11 | BANK(denali->flash_bank);
1098 index_addr(denali, addr | 0, cmd);
1099 index_addr(denali, addr | 1, col & 0xFF);
1100 if (cmd == NAND_CMD_PARAM)
1101 udelay(50);
1102 break;
1103 case NAND_CMD_RNDOUT:
1104 addr = MODE_11 | BANK(denali->flash_bank);
1105 index_addr(denali, addr | 0, cmd);
1106 index_addr(denali, addr | 1, col & 0xFF);
1107 index_addr(denali, addr | 1, col >> 8);
1108 index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
1109 break;
1110 case NAND_CMD_READ0:
1111 case NAND_CMD_SEQIN:
1112 denali->page = page;
1113 break;
1114 case NAND_CMD_RESET:
1115 reset_bank(denali);
1116 break;
1117 case NAND_CMD_READOOB:
1118 /* TODO: Read OOB data */
1119 break;
1120 case NAND_CMD_ERASE1:
1121 /*
1122 * supporting block erase only, not multiblock erase as
1123 * it will cross plane and software need complex calculation
1124 * to identify the block count for the cross plane
1125 */
1126 denali_erase(mtd, page);
1127 break;
1128 case NAND_CMD_ERASE2:
1129 /* nothing to do here as it was done during NAND_CMD_ERASE1 */
1130 break;
1131 case NAND_CMD_UNLOCK1:
1132 addr = MODE_10 | BANK(denali->flash_bank) | page;
1133 index_addr(denali, addr | 0, DENALI_UNLOCK_START);
1134 break;
1135 case NAND_CMD_UNLOCK2:
1136 addr = MODE_10 | BANK(denali->flash_bank) | page;
1137 index_addr(denali, addr | 0, DENALI_UNLOCK_END);
1138 break;
1139 case NAND_CMD_LOCK:
1140 addr = MODE_10 | BANK(denali->flash_bank);
1141 index_addr(denali, addr | 0, DENALI_LOCK);
1142 break;
1143 default:
1144 printf(": unsupported command received 0x%x\n", cmd);
1145 break;
1146 }
1147 }
1148 /* end NAND core entry points */
1149
1150 /* Initialization code to bring the device up to a known good state */
1151 static void denali_hw_init(struct denali_nand_info *denali)
1152 {
1153 /*
1154 * tell driver how many bit controller will skip before writing
1155 * ECC code in OOB. This is normally used for bad block marker
1156 */
1157 writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
1158 denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1159 detect_max_banks(denali);
1160 denali_nand_reset(denali);
1161 writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1162 writel(CHIP_EN_DONT_CARE__FLAG,
1163 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1164 writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1165
1166 /* Should set value for these registers when init */
1167 writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1168 writel(1, denali->flash_reg + ECC_ENABLE);
1169 denali_nand_timing_set(denali);
1170 denali_irq_init(denali);
1171 }
1172
1173 static struct nand_ecclayout nand_oob;
1174
1175 static int denali_init(struct denali_nand_info *denali)
1176 {
1177 int ret;
1178
1179 denali_hw_init(denali);
1180
1181 denali->mtd->name = "denali-nand";
1182 denali->mtd->owner = THIS_MODULE;
1183
1184 /* register the driver with the NAND core subsystem */
1185 denali->nand.select_chip = denali_select_chip;
1186 denali->nand.cmdfunc = denali_cmdfunc;
1187 denali->nand.read_byte = denali_read_byte;
1188 denali->nand.read_buf = denali_read_buf;
1189 denali->nand.waitfunc = denali_waitfunc;
1190
1191 /*
1192 * scan for NAND devices attached to the controller
1193 * this is the first stage in a two step process to register
1194 * with the nand subsystem
1195 */
1196 if (nand_scan_ident(denali->mtd, denali->max_banks, NULL)) {
1197 ret = -ENXIO;
1198 goto fail;
1199 }
1200
1201 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1202 /* check whether flash got BBT table (located at end of flash). As we
1203 * use NAND_BBT_NO_OOB, the BBT page will start with
1204 * bbt_pattern. We will have mirror pattern too */
1205 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1206 /*
1207 * We are using main + spare with ECC support. As BBT need ECC support,
1208 * we need to ensure BBT code don't write to OOB for the BBT pattern.
1209 * All BBT info will be stored into data area with ECC support.
1210 */
1211 denali->nand.bbt_options |= NAND_BBT_NO_OOB;
1212 #endif
1213
1214 denali->nand.ecc.mode = NAND_ECC_HW;
1215 denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
1216
1217 /* no subpage writes on denali */
1218 denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1219
1220 /*
1221 * Tell driver the ecc strength. This register may be already set
1222 * correctly. So we read this value out.
1223 */
1224 denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
1225 switch (denali->nand.ecc.size) {
1226 case 512:
1227 denali->nand.ecc.bytes =
1228 (denali->nand.ecc.strength * 13 + 15) / 16 * 2;
1229 break;
1230 case 1024:
1231 denali->nand.ecc.bytes =
1232 (denali->nand.ecc.strength * 14 + 15) / 16 * 2;
1233 break;
1234 default:
1235 pr_err("Unsupported ECC size\n");
1236 ret = -EINVAL;
1237 goto fail;
1238 }
1239 nand_oob.eccbytes = denali->nand.ecc.bytes;
1240 denali->nand.ecc.layout = &nand_oob;
1241
1242 writel(denali->mtd->erasesize / denali->mtd->writesize,
1243 denali->flash_reg + PAGES_PER_BLOCK);
1244 writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
1245 denali->flash_reg + DEVICE_WIDTH);
1246 writel(denali->mtd->writesize,
1247 denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
1248 writel(denali->mtd->oobsize,
1249 denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
1250 if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
1251 writel(1, denali->flash_reg + DEVICES_CONNECTED);
1252
1253 /* override the default operations */
1254 denali->nand.ecc.read_page = denali_read_page;
1255 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1256 denali->nand.ecc.write_page = denali_write_page;
1257 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1258 denali->nand.ecc.read_oob = denali_read_oob;
1259 denali->nand.ecc.write_oob = denali_write_oob;
1260
1261 if (nand_scan_tail(denali->mtd)) {
1262 ret = -ENXIO;
1263 goto fail;
1264 }
1265
1266 ret = nand_register(0, denali->mtd);
1267
1268 fail:
1269 return ret;
1270 }
1271
1272 static int __board_nand_init(void)
1273 {
1274 struct denali_nand_info *denali;
1275
1276 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1277 if (!denali)
1278 return -ENOMEM;
1279
1280 /*
1281 * If CONFIG_SYS_NAND_SELF_INIT is defined, each driver is responsible
1282 * for instantiating struct nand_chip, while drivers/mtd/nand/nand.c
1283 * still provides a "struct mtd_info nand_info" instance.
1284 */
1285 denali->mtd = &denali->nand.mtd;
1286
1287 /*
1288 * In the future, these base addresses should be taken from
1289 * Device Tree or platform data.
1290 */
1291 denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
1292 denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
1293
1294 return denali_init(denali);
1295 }
1296
1297 void board_nand_init(void)
1298 {
1299 if (__board_nand_init() < 0)
1300 pr_warn("Failed to initialize Denali NAND controller.\n");
1301 }