]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxc_nand.c
mtd: nand: Add page argument to write_page() etc.
[people/ms/u-boot.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <nand.h>
11 #include <linux/err.h>
12 #include <asm/io.h>
13 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
14 defined(CONFIG_MX51) || defined(CONFIG_MX53)
15 #include <asm/arch/imx-regs.h>
16 #endif
17 #include "mxc_nand.h"
18
19 #define DRIVER_NAME "mxc_nand"
20
21 struct mxc_nand_host {
22 struct mtd_info mtd;
23 struct nand_chip *nand;
24
25 struct mxc_nand_regs __iomem *regs;
26 #ifdef MXC_NFC_V3_2
27 struct mxc_nand_ip_regs __iomem *ip_regs;
28 #endif
29 int spare_only;
30 int status_request;
31 int pagesize_2k;
32 int clk_act;
33 uint16_t col_addr;
34 unsigned int page_addr;
35 };
36
37 static struct mxc_nand_host mxc_host;
38 static struct mxc_nand_host *host = &mxc_host;
39
40 /* Define delays in microsec for NAND device operations */
41 #define TROP_US_DELAY 2000
42 /* Macros to get byte and bit positions of ECC */
43 #define COLPOS(x) ((x) >> 3)
44 #define BITPOS(x) ((x) & 0xf)
45
46 /* Define single bit Error positions in Main & Spare area */
47 #define MAIN_SINGLEBIT_ERROR 0x4
48 #define SPARE_SINGLEBIT_ERROR 0x1
49
50 /* OOB placement block for use with hardware ecc generation */
51 #if defined(MXC_NFC_V1)
52 #ifndef CONFIG_SYS_NAND_LARGEPAGE
53 static struct nand_ecclayout nand_hw_eccoob = {
54 .eccbytes = 5,
55 .eccpos = {6, 7, 8, 9, 10},
56 .oobfree = { {0, 5}, {11, 5}, }
57 };
58 #else
59 static struct nand_ecclayout nand_hw_eccoob2k = {
60 .eccbytes = 20,
61 .eccpos = {
62 6, 7, 8, 9, 10,
63 22, 23, 24, 25, 26,
64 38, 39, 40, 41, 42,
65 54, 55, 56, 57, 58,
66 },
67 .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
68 };
69 #endif
70 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
71 #ifndef CONFIG_SYS_NAND_LARGEPAGE
72 static struct nand_ecclayout nand_hw_eccoob = {
73 .eccbytes = 9,
74 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
75 .oobfree = { {2, 5} }
76 };
77 #else
78 static struct nand_ecclayout nand_hw_eccoob2k = {
79 .eccbytes = 36,
80 .eccpos = {
81 7, 8, 9, 10, 11, 12, 13, 14, 15,
82 23, 24, 25, 26, 27, 28, 29, 30, 31,
83 39, 40, 41, 42, 43, 44, 45, 46, 47,
84 55, 56, 57, 58, 59, 60, 61, 62, 63,
85 },
86 .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
87 };
88 #endif
89 #endif
90
91 static int is_16bit_nand(void)
92 {
93 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
94 return 1;
95 #else
96 return 0;
97 #endif
98 }
99
100 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
101 {
102 uint32_t *d = dest;
103
104 size >>= 2;
105 while (size--)
106 __raw_writel(__raw_readl(source++), d++);
107 return dest;
108 }
109
110 /*
111 * This function polls the NANDFC to wait for the basic operation to
112 * complete by checking the INT bit.
113 */
114 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
115 uint16_t param)
116 {
117 uint32_t tmp;
118
119 while (max_retries-- > 0) {
120 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
121 tmp = readnfc(&host->regs->config2);
122 if (tmp & NFC_V1_V2_CONFIG2_INT) {
123 tmp &= ~NFC_V1_V2_CONFIG2_INT;
124 writenfc(tmp, &host->regs->config2);
125 #elif defined(MXC_NFC_V3_2)
126 tmp = readnfc(&host->ip_regs->ipc);
127 if (tmp & NFC_V3_IPC_INT) {
128 tmp &= ~NFC_V3_IPC_INT;
129 writenfc(tmp, &host->ip_regs->ipc);
130 #endif
131 break;
132 }
133 udelay(1);
134 }
135 if (max_retries < 0) {
136 MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
137 __func__, param);
138 }
139 }
140
141 /*
142 * This function issues the specified command to the NAND device and
143 * waits for completion.
144 */
145 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
146 {
147 MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
148
149 writenfc(cmd, &host->regs->flash_cmd);
150 writenfc(NFC_CMD, &host->regs->operation);
151
152 /* Wait for operation to complete */
153 wait_op_done(host, TROP_US_DELAY, cmd);
154 }
155
156 /*
157 * This function sends an address (or partial address) to the
158 * NAND device. The address is used to select the source/destination for
159 * a NAND command.
160 */
161 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
162 {
163 MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
164
165 writenfc(addr, &host->regs->flash_addr);
166 writenfc(NFC_ADDR, &host->regs->operation);
167
168 /* Wait for operation to complete */
169 wait_op_done(host, TROP_US_DELAY, addr);
170 }
171
172 /*
173 * This function requests the NANDFC to initiate the transfer
174 * of data currently in the NANDFC RAM buffer to the NAND device.
175 */
176 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
177 int spare_only)
178 {
179 if (spare_only)
180 MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
181
182 if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
183 int i;
184 /*
185 * The controller copies the 64 bytes of spare data from
186 * the first 16 bytes of each of the 4 64 byte spare buffers.
187 * Copy the contiguous data starting in spare_area[0] to
188 * the four spare area buffers.
189 */
190 for (i = 1; i < 4; i++) {
191 void __iomem *src = &host->regs->spare_area[0][i * 16];
192 void __iomem *dst = &host->regs->spare_area[i][0];
193
194 mxc_nand_memcpy32(dst, src, 16);
195 }
196 }
197
198 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
199 writenfc(buf_id, &host->regs->buf_addr);
200 #elif defined(MXC_NFC_V3_2)
201 uint32_t tmp = readnfc(&host->regs->config1);
202 tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
203 tmp |= NFC_V3_CONFIG1_RBA(buf_id);
204 writenfc(tmp, &host->regs->config1);
205 #endif
206
207 /* Configure spare or page+spare access */
208 if (!host->pagesize_2k) {
209 uint32_t config1 = readnfc(&host->regs->config1);
210 if (spare_only)
211 config1 |= NFC_CONFIG1_SP_EN;
212 else
213 config1 &= ~NFC_CONFIG1_SP_EN;
214 writenfc(config1, &host->regs->config1);
215 }
216
217 writenfc(NFC_INPUT, &host->regs->operation);
218
219 /* Wait for operation to complete */
220 wait_op_done(host, TROP_US_DELAY, spare_only);
221 }
222
223 /*
224 * Requests NANDFC to initiate the transfer of data from the
225 * NAND device into in the NANDFC ram buffer.
226 */
227 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
228 int spare_only)
229 {
230 MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
231
232 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
233 writenfc(buf_id, &host->regs->buf_addr);
234 #elif defined(MXC_NFC_V3_2)
235 uint32_t tmp = readnfc(&host->regs->config1);
236 tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
237 tmp |= NFC_V3_CONFIG1_RBA(buf_id);
238 writenfc(tmp, &host->regs->config1);
239 #endif
240
241 /* Configure spare or page+spare access */
242 if (!host->pagesize_2k) {
243 uint32_t config1 = readnfc(&host->regs->config1);
244 if (spare_only)
245 config1 |= NFC_CONFIG1_SP_EN;
246 else
247 config1 &= ~NFC_CONFIG1_SP_EN;
248 writenfc(config1, &host->regs->config1);
249 }
250
251 writenfc(NFC_OUTPUT, &host->regs->operation);
252
253 /* Wait for operation to complete */
254 wait_op_done(host, TROP_US_DELAY, spare_only);
255
256 if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
257 int i;
258
259 /*
260 * The controller copies the 64 bytes of spare data to
261 * the first 16 bytes of each of the 4 spare buffers.
262 * Make the data contiguous starting in spare_area[0].
263 */
264 for (i = 1; i < 4; i++) {
265 void __iomem *src = &host->regs->spare_area[i][0];
266 void __iomem *dst = &host->regs->spare_area[0][i * 16];
267
268 mxc_nand_memcpy32(dst, src, 16);
269 }
270 }
271 }
272
273 /* Request the NANDFC to perform a read of the NAND device ID. */
274 static void send_read_id(struct mxc_nand_host *host)
275 {
276 uint32_t tmp;
277
278 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
279 /* NANDFC buffer 0 is used for device ID output */
280 writenfc(0x0, &host->regs->buf_addr);
281 #elif defined(MXC_NFC_V3_2)
282 tmp = readnfc(&host->regs->config1);
283 tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
284 writenfc(tmp, &host->regs->config1);
285 #endif
286
287 /* Read ID into main buffer */
288 tmp = readnfc(&host->regs->config1);
289 tmp &= ~NFC_CONFIG1_SP_EN;
290 writenfc(tmp, &host->regs->config1);
291
292 writenfc(NFC_ID, &host->regs->operation);
293
294 /* Wait for operation to complete */
295 wait_op_done(host, TROP_US_DELAY, 0);
296 }
297
298 /*
299 * This function requests the NANDFC to perform a read of the
300 * NAND device status and returns the current status.
301 */
302 static uint16_t get_dev_status(struct mxc_nand_host *host)
303 {
304 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
305 void __iomem *main_buf = host->regs->main_area[1];
306 uint32_t store;
307 #endif
308 uint32_t ret, tmp;
309 /* Issue status request to NAND device */
310
311 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
312 /* store the main area1 first word, later do recovery */
313 store = readl(main_buf);
314 /* NANDFC buffer 1 is used for device status */
315 writenfc(1, &host->regs->buf_addr);
316 #endif
317
318 /* Read status into main buffer */
319 tmp = readnfc(&host->regs->config1);
320 tmp &= ~NFC_CONFIG1_SP_EN;
321 writenfc(tmp, &host->regs->config1);
322
323 writenfc(NFC_STATUS, &host->regs->operation);
324
325 /* Wait for operation to complete */
326 wait_op_done(host, TROP_US_DELAY, 0);
327
328 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
329 /*
330 * Status is placed in first word of main buffer
331 * get status, then recovery area 1 data
332 */
333 ret = readw(main_buf);
334 writel(store, main_buf);
335 #elif defined(MXC_NFC_V3_2)
336 ret = readnfc(&host->regs->config1) >> 16;
337 #endif
338
339 return ret;
340 }
341
342 /* This function is used by upper layer to checks if device is ready */
343 static int mxc_nand_dev_ready(struct mtd_info *mtd)
344 {
345 /*
346 * NFC handles R/B internally. Therefore, this function
347 * always returns status as ready.
348 */
349 return 1;
350 }
351
352 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
353 {
354 struct nand_chip *nand_chip = mtd_to_nand(mtd);
355 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
356 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
357 uint16_t tmp = readnfc(&host->regs->config1);
358
359 if (on)
360 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
361 else
362 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
363 writenfc(tmp, &host->regs->config1);
364 #elif defined(MXC_NFC_V3_2)
365 uint32_t tmp = readnfc(&host->ip_regs->config2);
366
367 if (on)
368 tmp |= NFC_V3_CONFIG2_ECC_EN;
369 else
370 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
371 writenfc(tmp, &host->ip_regs->config2);
372 #endif
373 }
374
375 #ifdef CONFIG_MXC_NAND_HWECC
376 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
377 {
378 /*
379 * If HW ECC is enabled, we turn it on during init. There is
380 * no need to enable again here.
381 */
382 }
383
384 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
385 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
386 struct nand_chip *chip,
387 int page)
388 {
389 struct mxc_nand_host *host = nand_get_controller_data(chip);
390 uint8_t *buf = chip->oob_poi;
391 int length = mtd->oobsize;
392 int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
393 uint8_t *bufpoi = buf;
394 int i, toread;
395
396 MTDDEBUG(MTD_DEBUG_LEVEL0,
397 "%s: Reading OOB area of page %u to oob %p\n",
398 __func__, page, buf);
399
400 chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
401 for (i = 0; i < chip->ecc.steps; i++) {
402 toread = min_t(int, length, chip->ecc.prepad);
403 if (toread) {
404 chip->read_buf(mtd, bufpoi, toread);
405 bufpoi += toread;
406 length -= toread;
407 }
408 bufpoi += chip->ecc.bytes;
409 host->col_addr += chip->ecc.bytes;
410 length -= chip->ecc.bytes;
411
412 toread = min_t(int, length, chip->ecc.postpad);
413 if (toread) {
414 chip->read_buf(mtd, bufpoi, toread);
415 bufpoi += toread;
416 length -= toread;
417 }
418 }
419 if (length > 0)
420 chip->read_buf(mtd, bufpoi, length);
421
422 _mxc_nand_enable_hwecc(mtd, 0);
423 chip->cmdfunc(mtd, NAND_CMD_READOOB,
424 mtd->writesize + chip->ecc.prepad, page);
425 bufpoi = buf + chip->ecc.prepad;
426 length = mtd->oobsize - chip->ecc.prepad;
427 for (i = 0; i < chip->ecc.steps; i++) {
428 toread = min_t(int, length, chip->ecc.bytes);
429 chip->read_buf(mtd, bufpoi, toread);
430 bufpoi += eccpitch;
431 length -= eccpitch;
432 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
433 }
434 _mxc_nand_enable_hwecc(mtd, 1);
435 return 1;
436 }
437
438 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
439 struct nand_chip *chip,
440 uint8_t *buf,
441 int oob_required,
442 int page)
443 {
444 struct mxc_nand_host *host = nand_get_controller_data(chip);
445 int eccsize = chip->ecc.size;
446 int eccbytes = chip->ecc.bytes;
447 int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
448 uint8_t *oob = chip->oob_poi;
449 int steps, size;
450 int n;
451
452 _mxc_nand_enable_hwecc(mtd, 0);
453 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
454
455 for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
456 host->col_addr = n * eccsize;
457 chip->read_buf(mtd, buf, eccsize);
458 buf += eccsize;
459
460 host->col_addr = mtd->writesize + n * eccpitch;
461 if (chip->ecc.prepad) {
462 chip->read_buf(mtd, oob, chip->ecc.prepad);
463 oob += chip->ecc.prepad;
464 }
465
466 chip->read_buf(mtd, oob, eccbytes);
467 oob += eccbytes;
468
469 if (chip->ecc.postpad) {
470 chip->read_buf(mtd, oob, chip->ecc.postpad);
471 oob += chip->ecc.postpad;
472 }
473 }
474
475 size = mtd->oobsize - (oob - chip->oob_poi);
476 if (size)
477 chip->read_buf(mtd, oob, size);
478 _mxc_nand_enable_hwecc(mtd, 1);
479
480 return 0;
481 }
482
483 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
484 struct nand_chip *chip,
485 uint8_t *buf,
486 int oob_required,
487 int page)
488 {
489 struct mxc_nand_host *host = nand_get_controller_data(chip);
490 int n, eccsize = chip->ecc.size;
491 int eccbytes = chip->ecc.bytes;
492 int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
493 int eccsteps = chip->ecc.steps;
494 uint8_t *p = buf;
495 uint8_t *oob = chip->oob_poi;
496
497 MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
498 page, buf, oob);
499
500 /* first read the data area and the available portion of OOB */
501 for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
502 int stat;
503
504 host->col_addr = n * eccsize;
505
506 chip->read_buf(mtd, p, eccsize);
507
508 host->col_addr = mtd->writesize + n * eccpitch;
509
510 if (chip->ecc.prepad) {
511 chip->read_buf(mtd, oob, chip->ecc.prepad);
512 oob += chip->ecc.prepad;
513 }
514
515 stat = chip->ecc.correct(mtd, p, oob, NULL);
516
517 if (stat < 0)
518 mtd->ecc_stats.failed++;
519 else
520 mtd->ecc_stats.corrected += stat;
521 oob += eccbytes;
522
523 if (chip->ecc.postpad) {
524 chip->read_buf(mtd, oob, chip->ecc.postpad);
525 oob += chip->ecc.postpad;
526 }
527 }
528
529 /* Calculate remaining oob bytes */
530 n = mtd->oobsize - (oob - chip->oob_poi);
531 if (n)
532 chip->read_buf(mtd, oob, n);
533
534 /* Then switch ECC off and read the OOB area to get the ECC code */
535 _mxc_nand_enable_hwecc(mtd, 0);
536 chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
537 eccsteps = chip->ecc.steps;
538 oob = chip->oob_poi + chip->ecc.prepad;
539 for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
540 host->col_addr = mtd->writesize +
541 n * eccpitch +
542 chip->ecc.prepad;
543 chip->read_buf(mtd, oob, eccbytes);
544 oob += eccbytes + chip->ecc.postpad;
545 }
546 _mxc_nand_enable_hwecc(mtd, 1);
547 return 0;
548 }
549
550 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
551 struct nand_chip *chip, int page)
552 {
553 struct mxc_nand_host *host = nand_get_controller_data(chip);
554 int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
555 int length = mtd->oobsize;
556 int i, len, status, steps = chip->ecc.steps;
557 const uint8_t *bufpoi = chip->oob_poi;
558
559 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
560 for (i = 0; i < steps; i++) {
561 len = min_t(int, length, eccpitch);
562
563 chip->write_buf(mtd, bufpoi, len);
564 bufpoi += len;
565 length -= len;
566 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
567 }
568 if (length > 0)
569 chip->write_buf(mtd, bufpoi, length);
570
571 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
572 status = chip->waitfunc(mtd, chip);
573 return status & NAND_STATUS_FAIL ? -EIO : 0;
574 }
575
576 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
577 struct nand_chip *chip,
578 const uint8_t *buf,
579 int oob_required, int page)
580 {
581 struct mxc_nand_host *host = nand_get_controller_data(chip);
582 int eccsize = chip->ecc.size;
583 int eccbytes = chip->ecc.bytes;
584 int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
585 uint8_t *oob = chip->oob_poi;
586 int steps, size;
587 int n;
588
589 for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
590 host->col_addr = n * eccsize;
591 chip->write_buf(mtd, buf, eccsize);
592 buf += eccsize;
593
594 host->col_addr = mtd->writesize + n * eccpitch;
595
596 if (chip->ecc.prepad) {
597 chip->write_buf(mtd, oob, chip->ecc.prepad);
598 oob += chip->ecc.prepad;
599 }
600
601 host->col_addr += eccbytes;
602 oob += eccbytes;
603
604 if (chip->ecc.postpad) {
605 chip->write_buf(mtd, oob, chip->ecc.postpad);
606 oob += chip->ecc.postpad;
607 }
608 }
609
610 size = mtd->oobsize - (oob - chip->oob_poi);
611 if (size)
612 chip->write_buf(mtd, oob, size);
613 return 0;
614 }
615
616 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
617 struct nand_chip *chip,
618 const uint8_t *buf,
619 int oob_required, int page)
620 {
621 struct mxc_nand_host *host = nand_get_controller_data(chip);
622 int i, n, eccsize = chip->ecc.size;
623 int eccbytes = chip->ecc.bytes;
624 int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
625 int eccsteps = chip->ecc.steps;
626 const uint8_t *p = buf;
627 uint8_t *oob = chip->oob_poi;
628
629 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
630
631 for (i = n = 0;
632 eccsteps;
633 n++, eccsteps--, i += eccbytes, p += eccsize) {
634 host->col_addr = n * eccsize;
635
636 chip->write_buf(mtd, p, eccsize);
637
638 host->col_addr = mtd->writesize + n * eccpitch;
639
640 if (chip->ecc.prepad) {
641 chip->write_buf(mtd, oob, chip->ecc.prepad);
642 oob += chip->ecc.prepad;
643 }
644
645 chip->write_buf(mtd, oob, eccbytes);
646 oob += eccbytes;
647
648 if (chip->ecc.postpad) {
649 chip->write_buf(mtd, oob, chip->ecc.postpad);
650 oob += chip->ecc.postpad;
651 }
652 }
653
654 /* Calculate remaining oob bytes */
655 i = mtd->oobsize - (oob - chip->oob_poi);
656 if (i)
657 chip->write_buf(mtd, oob, i);
658 return 0;
659 }
660
661 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
662 u_char *read_ecc, u_char *calc_ecc)
663 {
664 struct nand_chip *nand_chip = mtd_to_nand(mtd);
665 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
666 uint32_t ecc_status = readl(&host->regs->ecc_status_result);
667 int subpages = mtd->writesize / nand_chip->subpagesize;
668 int pg2blk_shift = nand_chip->phys_erase_shift -
669 nand_chip->page_shift;
670
671 do {
672 if ((ecc_status & 0xf) > 4) {
673 static int last_bad = -1;
674
675 if (last_bad != host->page_addr >> pg2blk_shift) {
676 last_bad = host->page_addr >> pg2blk_shift;
677 printk(KERN_DEBUG
678 "MXC_NAND: HWECC uncorrectable ECC error"
679 " in block %u page %u subpage %d\n",
680 last_bad, host->page_addr,
681 mtd->writesize / nand_chip->subpagesize
682 - subpages);
683 }
684 return -1;
685 }
686 ecc_status >>= 4;
687 subpages--;
688 } while (subpages > 0);
689
690 return 0;
691 }
692 #else
693 #define mxc_nand_read_page_syndrome NULL
694 #define mxc_nand_read_page_raw_syndrome NULL
695 #define mxc_nand_read_oob_syndrome NULL
696 #define mxc_nand_write_page_syndrome NULL
697 #define mxc_nand_write_page_raw_syndrome NULL
698 #define mxc_nand_write_oob_syndrome NULL
699
700 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
701 u_char *read_ecc, u_char *calc_ecc)
702 {
703 struct nand_chip *nand_chip = mtd_to_nand(mtd);
704 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
705
706 /*
707 * 1-Bit errors are automatically corrected in HW. No need for
708 * additional correction. 2-Bit errors cannot be corrected by
709 * HW ECC, so we need to return failure
710 */
711 uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
712
713 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
714 MTDDEBUG(MTD_DEBUG_LEVEL0,
715 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
716 return -1;
717 }
718
719 return 0;
720 }
721 #endif
722
723 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
724 u_char *ecc_code)
725 {
726 return 0;
727 }
728 #endif
729
730 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
731 {
732 struct nand_chip *nand_chip = mtd_to_nand(mtd);
733 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
734 uint8_t ret = 0;
735 uint16_t col;
736 uint16_t __iomem *main_buf =
737 (uint16_t __iomem *)host->regs->main_area[0];
738 uint16_t __iomem *spare_buf =
739 (uint16_t __iomem *)host->regs->spare_area[0];
740 union {
741 uint16_t word;
742 uint8_t bytes[2];
743 } nfc_word;
744
745 /* Check for status request */
746 if (host->status_request)
747 return get_dev_status(host) & 0xFF;
748
749 /* Get column for 16-bit access */
750 col = host->col_addr >> 1;
751
752 /* If we are accessing the spare region */
753 if (host->spare_only)
754 nfc_word.word = readw(&spare_buf[col]);
755 else
756 nfc_word.word = readw(&main_buf[col]);
757
758 /* Pick upper/lower byte of word from RAM buffer */
759 ret = nfc_word.bytes[host->col_addr & 0x1];
760
761 /* Update saved column address */
762 if (nand_chip->options & NAND_BUSWIDTH_16)
763 host->col_addr += 2;
764 else
765 host->col_addr++;
766
767 return ret;
768 }
769
770 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
771 {
772 struct nand_chip *nand_chip = mtd_to_nand(mtd);
773 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
774 uint16_t col, ret;
775 uint16_t __iomem *p;
776
777 MTDDEBUG(MTD_DEBUG_LEVEL3,
778 "mxc_nand_read_word(col = %d)\n", host->col_addr);
779
780 col = host->col_addr;
781 /* Adjust saved column address */
782 if (col < mtd->writesize && host->spare_only)
783 col += mtd->writesize;
784
785 if (col < mtd->writesize) {
786 p = (uint16_t __iomem *)(host->regs->main_area[0] +
787 (col >> 1));
788 } else {
789 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
790 ((col - mtd->writesize) >> 1));
791 }
792
793 if (col & 1) {
794 union {
795 uint16_t word;
796 uint8_t bytes[2];
797 } nfc_word[3];
798
799 nfc_word[0].word = readw(p);
800 nfc_word[1].word = readw(p + 1);
801
802 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
803 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
804
805 ret = nfc_word[2].word;
806 } else {
807 ret = readw(p);
808 }
809
810 /* Update saved column address */
811 host->col_addr = col + 2;
812
813 return ret;
814 }
815
816 /*
817 * Write data of length len to buffer buf. The data to be
818 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
819 * Operation by the NFC, the data is written to NAND Flash
820 */
821 static void mxc_nand_write_buf(struct mtd_info *mtd,
822 const u_char *buf, int len)
823 {
824 struct nand_chip *nand_chip = mtd_to_nand(mtd);
825 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
826 int n, col, i = 0;
827
828 MTDDEBUG(MTD_DEBUG_LEVEL3,
829 "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
830 len);
831
832 col = host->col_addr;
833
834 /* Adjust saved column address */
835 if (col < mtd->writesize && host->spare_only)
836 col += mtd->writesize;
837
838 n = mtd->writesize + mtd->oobsize - col;
839 n = min(len, n);
840
841 MTDDEBUG(MTD_DEBUG_LEVEL3,
842 "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
843
844 while (n > 0) {
845 void __iomem *p;
846
847 if (col < mtd->writesize) {
848 p = host->regs->main_area[0] + (col & ~3);
849 } else {
850 p = host->regs->spare_area[0] -
851 mtd->writesize + (col & ~3);
852 }
853
854 MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
855 __LINE__, p);
856
857 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
858 union {
859 uint32_t word;
860 uint8_t bytes[4];
861 } nfc_word;
862
863 nfc_word.word = readl(p);
864 nfc_word.bytes[col & 3] = buf[i++];
865 n--;
866 col++;
867
868 writel(nfc_word.word, p);
869 } else {
870 int m = mtd->writesize - col;
871
872 if (col >= mtd->writesize)
873 m += mtd->oobsize;
874
875 m = min(n, m) & ~3;
876
877 MTDDEBUG(MTD_DEBUG_LEVEL3,
878 "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
879 __func__, __LINE__, n, m, i, col);
880
881 mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
882 col += m;
883 i += m;
884 n -= m;
885 }
886 }
887 /* Update saved column address */
888 host->col_addr = col;
889 }
890
891 /*
892 * Read the data buffer from the NAND Flash. To read the data from NAND
893 * Flash first the data output cycle is initiated by the NFC, which copies
894 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
895 */
896 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
897 {
898 struct nand_chip *nand_chip = mtd_to_nand(mtd);
899 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
900 int n, col, i = 0;
901
902 MTDDEBUG(MTD_DEBUG_LEVEL3,
903 "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
904
905 col = host->col_addr;
906
907 /* Adjust saved column address */
908 if (col < mtd->writesize && host->spare_only)
909 col += mtd->writesize;
910
911 n = mtd->writesize + mtd->oobsize - col;
912 n = min(len, n);
913
914 while (n > 0) {
915 void __iomem *p;
916
917 if (col < mtd->writesize) {
918 p = host->regs->main_area[0] + (col & ~3);
919 } else {
920 p = host->regs->spare_area[0] -
921 mtd->writesize + (col & ~3);
922 }
923
924 if (((col | (int)&buf[i]) & 3) || n < 4) {
925 union {
926 uint32_t word;
927 uint8_t bytes[4];
928 } nfc_word;
929
930 nfc_word.word = readl(p);
931 buf[i++] = nfc_word.bytes[col & 3];
932 n--;
933 col++;
934 } else {
935 int m = mtd->writesize - col;
936
937 if (col >= mtd->writesize)
938 m += mtd->oobsize;
939
940 m = min(n, m) & ~3;
941 mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
942
943 col += m;
944 i += m;
945 n -= m;
946 }
947 }
948 /* Update saved column address */
949 host->col_addr = col;
950 }
951
952 /*
953 * This function is used by upper layer for select and
954 * deselect of the NAND chip
955 */
956 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
957 {
958 struct nand_chip *nand_chip = mtd_to_nand(mtd);
959 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
960
961 switch (chip) {
962 case -1:
963 /* TODO: Disable the NFC clock */
964 if (host->clk_act)
965 host->clk_act = 0;
966 break;
967 case 0:
968 /* TODO: Enable the NFC clock */
969 if (!host->clk_act)
970 host->clk_act = 1;
971 break;
972
973 default:
974 break;
975 }
976 }
977
978 /*
979 * Used by the upper layer to write command to NAND Flash for
980 * different operations to be carried out on NAND Flash
981 */
982 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
983 int column, int page_addr)
984 {
985 struct nand_chip *nand_chip = mtd_to_nand(mtd);
986 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
987
988 MTDDEBUG(MTD_DEBUG_LEVEL3,
989 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
990 command, column, page_addr);
991
992 /* Reset command state information */
993 host->status_request = false;
994
995 /* Command pre-processing step */
996 switch (command) {
997
998 case NAND_CMD_STATUS:
999 host->col_addr = 0;
1000 host->status_request = true;
1001 break;
1002
1003 case NAND_CMD_READ0:
1004 host->page_addr = page_addr;
1005 host->col_addr = column;
1006 host->spare_only = false;
1007 break;
1008
1009 case NAND_CMD_READOOB:
1010 host->col_addr = column;
1011 host->spare_only = true;
1012 if (host->pagesize_2k)
1013 command = NAND_CMD_READ0; /* only READ0 is valid */
1014 break;
1015
1016 case NAND_CMD_SEQIN:
1017 if (column >= mtd->writesize) {
1018 /*
1019 * before sending SEQIN command for partial write,
1020 * we need read one page out. FSL NFC does not support
1021 * partial write. It always sends out 512+ecc+512+ecc
1022 * for large page nand flash. But for small page nand
1023 * flash, it does support SPARE ONLY operation.
1024 */
1025 if (host->pagesize_2k) {
1026 /* call ourself to read a page */
1027 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1028 page_addr);
1029 }
1030
1031 host->col_addr = column - mtd->writesize;
1032 host->spare_only = true;
1033
1034 /* Set program pointer to spare region */
1035 if (!host->pagesize_2k)
1036 send_cmd(host, NAND_CMD_READOOB);
1037 } else {
1038 host->spare_only = false;
1039 host->col_addr = column;
1040
1041 /* Set program pointer to page start */
1042 if (!host->pagesize_2k)
1043 send_cmd(host, NAND_CMD_READ0);
1044 }
1045 break;
1046
1047 case NAND_CMD_PAGEPROG:
1048 send_prog_page(host, 0, host->spare_only);
1049
1050 if (host->pagesize_2k && is_mxc_nfc_1()) {
1051 /* data in 4 areas */
1052 send_prog_page(host, 1, host->spare_only);
1053 send_prog_page(host, 2, host->spare_only);
1054 send_prog_page(host, 3, host->spare_only);
1055 }
1056
1057 break;
1058 }
1059
1060 /* Write out the command to the device. */
1061 send_cmd(host, command);
1062
1063 /* Write out column address, if necessary */
1064 if (column != -1) {
1065 /*
1066 * MXC NANDFC can only perform full page+spare or
1067 * spare-only read/write. When the upper layers perform
1068 * a read/write buffer operation, we will use the saved
1069 * column address to index into the full page.
1070 */
1071 send_addr(host, 0);
1072 if (host->pagesize_2k)
1073 /* another col addr cycle for 2k page */
1074 send_addr(host, 0);
1075 }
1076
1077 /* Write out page address, if necessary */
1078 if (page_addr != -1) {
1079 u32 page_mask = nand_chip->pagemask;
1080 do {
1081 send_addr(host, page_addr & 0xFF);
1082 page_addr >>= 8;
1083 page_mask >>= 8;
1084 } while (page_mask);
1085 }
1086
1087 /* Command post-processing step */
1088 switch (command) {
1089
1090 case NAND_CMD_RESET:
1091 break;
1092
1093 case NAND_CMD_READOOB:
1094 case NAND_CMD_READ0:
1095 if (host->pagesize_2k) {
1096 /* send read confirm command */
1097 send_cmd(host, NAND_CMD_READSTART);
1098 /* read for each AREA */
1099 send_read_page(host, 0, host->spare_only);
1100 if (is_mxc_nfc_1()) {
1101 send_read_page(host, 1, host->spare_only);
1102 send_read_page(host, 2, host->spare_only);
1103 send_read_page(host, 3, host->spare_only);
1104 }
1105 } else {
1106 send_read_page(host, 0, host->spare_only);
1107 }
1108 break;
1109
1110 case NAND_CMD_READID:
1111 host->col_addr = 0;
1112 send_read_id(host);
1113 break;
1114
1115 case NAND_CMD_PAGEPROG:
1116 break;
1117
1118 case NAND_CMD_STATUS:
1119 break;
1120
1121 case NAND_CMD_ERASE2:
1122 break;
1123 }
1124 }
1125
1126 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1127
1128 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1129 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1130
1131 static struct nand_bbt_descr bbt_main_descr = {
1132 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1133 NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1134 .offs = 0,
1135 .len = 4,
1136 .veroffs = 4,
1137 .maxblocks = 4,
1138 .pattern = bbt_pattern,
1139 };
1140
1141 static struct nand_bbt_descr bbt_mirror_descr = {
1142 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1143 NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144 .offs = 0,
1145 .len = 4,
1146 .veroffs = 4,
1147 .maxblocks = 4,
1148 .pattern = mirror_pattern,
1149 };
1150
1151 #endif
1152
1153 int board_nand_init(struct nand_chip *this)
1154 {
1155 struct mtd_info *mtd;
1156 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1157 uint32_t tmp;
1158 #endif
1159
1160 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1161 this->bbt_options |= NAND_BBT_USE_FLASH;
1162 this->bbt_td = &bbt_main_descr;
1163 this->bbt_md = &bbt_mirror_descr;
1164 #endif
1165
1166 /* structures must be linked */
1167 mtd = &this->mtd;
1168 host->nand = this;
1169
1170 /* 5 us command delay time */
1171 this->chip_delay = 5;
1172
1173 nand_set_controller_data(this, host);
1174 this->dev_ready = mxc_nand_dev_ready;
1175 this->cmdfunc = mxc_nand_command;
1176 this->select_chip = mxc_nand_select_chip;
1177 this->read_byte = mxc_nand_read_byte;
1178 this->read_word = mxc_nand_read_word;
1179 this->write_buf = mxc_nand_write_buf;
1180 this->read_buf = mxc_nand_read_buf;
1181
1182 host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1183 #ifdef MXC_NFC_V3_2
1184 host->ip_regs =
1185 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1186 #endif
1187 host->clk_act = 1;
1188
1189 #ifdef CONFIG_MXC_NAND_HWECC
1190 this->ecc.calculate = mxc_nand_calculate_ecc;
1191 this->ecc.hwctl = mxc_nand_enable_hwecc;
1192 this->ecc.correct = mxc_nand_correct_data;
1193 if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1194 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1195 this->ecc.read_page = mxc_nand_read_page_syndrome;
1196 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1197 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1198 this->ecc.write_page = mxc_nand_write_page_syndrome;
1199 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1200 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1201 this->ecc.bytes = 9;
1202 this->ecc.prepad = 7;
1203 } else {
1204 this->ecc.mode = NAND_ECC_HW;
1205 }
1206
1207 if (is_mxc_nfc_1())
1208 this->ecc.strength = 1;
1209 else
1210 this->ecc.strength = 4;
1211
1212 host->pagesize_2k = 0;
1213
1214 this->ecc.size = 512;
1215 _mxc_nand_enable_hwecc(mtd, 1);
1216 #else
1217 this->ecc.layout = &nand_soft_eccoob;
1218 this->ecc.mode = NAND_ECC_SOFT;
1219 _mxc_nand_enable_hwecc(mtd, 0);
1220 #endif
1221 /* Reset NAND */
1222 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1223
1224 /* NAND bus width determines access functions used by upper layer */
1225 if (is_16bit_nand())
1226 this->options |= NAND_BUSWIDTH_16;
1227
1228 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1229 host->pagesize_2k = 1;
1230 this->ecc.layout = &nand_hw_eccoob2k;
1231 #else
1232 host->pagesize_2k = 0;
1233 this->ecc.layout = &nand_hw_eccoob;
1234 #endif
1235
1236 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1237 #ifdef MXC_NFC_V2_1
1238 tmp = readnfc(&host->regs->config1);
1239 tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1240 tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1241 writenfc(tmp, &host->regs->config1);
1242 if (host->pagesize_2k)
1243 writenfc(64/2, &host->regs->spare_area_size);
1244 else
1245 writenfc(16/2, &host->regs->spare_area_size);
1246 #endif
1247
1248 /*
1249 * preset operation
1250 * Unlock the internal RAM Buffer
1251 */
1252 writenfc(0x2, &host->regs->config);
1253
1254 /* Blocks to be unlocked */
1255 writenfc(0x0, &host->regs->unlockstart_blkaddr);
1256 /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1257 * unlockend_blkaddr, but the magic 0x4000 does not always work
1258 * when writing more than some 32 megabytes (on 2k page nands)
1259 * However 0xFFFF doesn't seem to have this kind
1260 * of limitation (tried it back and forth several times).
1261 * The linux kernel driver sets this to 0xFFFF for the v2 controller
1262 * only, but probably this was not tested there for v1.
1263 * The very same limitation seems to apply to this kernel driver.
1264 * This might be NAND chip specific and the i.MX31 datasheet is
1265 * extremely vague about the semantics of this register.
1266 */
1267 writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1268
1269 /* Unlock Block Command for given address range */
1270 writenfc(0x4, &host->regs->wrprot);
1271 #elif defined(MXC_NFC_V3_2)
1272 writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1273 writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1274
1275 /* Unlock the internal RAM Buffer */
1276 writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1277 &host->ip_regs->wrprot);
1278
1279 /* Blocks to be unlocked */
1280 for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1281 writenfc(0x0 | 0xFFFF << 16,
1282 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1283
1284 writenfc(0, &host->ip_regs->ipc);
1285
1286 tmp = readnfc(&host->ip_regs->config2);
1287 tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1288 NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1289 tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1290
1291 if (host->pagesize_2k) {
1292 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1293 tmp |= NFC_V3_CONFIG2_PS_2048;
1294 } else {
1295 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1296 tmp |= NFC_V3_CONFIG2_PS_512;
1297 }
1298
1299 writenfc(tmp, &host->ip_regs->config2);
1300
1301 tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1302 NFC_V3_CONFIG3_NO_SDMA |
1303 NFC_V3_CONFIG3_RBB_MODE |
1304 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1305 NFC_V3_CONFIG3_ADD_OP(0);
1306
1307 if (!(this->options & NAND_BUSWIDTH_16))
1308 tmp |= NFC_V3_CONFIG3_FW8;
1309
1310 writenfc(tmp, &host->ip_regs->config3);
1311
1312 writenfc(0, &host->ip_regs->delay_line);
1313 #endif
1314
1315 return 0;
1316 }