]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
Merge branch 'master' of git://www.denx.de/git/u-boot-cfi-flash
[people/ms/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 /*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * SPDX-License-Identifier: GPL-2.0+
14 */
15
16 #include <common.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/types.h>
20 #include <malloc.h>
21 #include <asm/errno.h>
22 #include <asm/io.h>
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/imx-common/regs-bch.h>
26 #include <asm/imx-common/regs-gpmi.h>
27 #include <asm/arch/sys_proto.h>
28 #include <asm/imx-common/dma.h>
29
30 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
31
32 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
33 #if defined(CONFIG_MX6)
34 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
35 #else
36 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
37 #endif
38 #define MXS_NAND_METADATA_SIZE 10
39
40 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
41
42 #define MXS_NAND_BCH_TIMEOUT 10000
43
44 struct mxs_nand_info {
45 int cur_chip;
46
47 uint32_t cmd_queue_len;
48 uint32_t data_buf_size;
49
50 uint8_t *cmd_buf;
51 uint8_t *data_buf;
52 uint8_t *oob_buf;
53
54 uint8_t marking_block_bad;
55 uint8_t raw_oob_mode;
56
57 /* Functions with altered behaviour */
58 int (*hooked_read_oob)(struct mtd_info *mtd,
59 loff_t from, struct mtd_oob_ops *ops);
60 int (*hooked_write_oob)(struct mtd_info *mtd,
61 loff_t to, struct mtd_oob_ops *ops);
62 int (*hooked_block_markbad)(struct mtd_info *mtd,
63 loff_t ofs);
64
65 /* DMA descriptors */
66 struct mxs_dma_desc **desc;
67 uint32_t desc_index;
68 };
69
70 struct nand_ecclayout fake_ecc_layout;
71
72 /*
73 * Cache management functions
74 */
75 #ifndef CONFIG_SYS_DCACHE_OFF
76 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
77 {
78 uint32_t addr = (uint32_t)info->data_buf;
79
80 flush_dcache_range(addr, addr + info->data_buf_size);
81 }
82
83 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
84 {
85 uint32_t addr = (uint32_t)info->data_buf;
86
87 invalidate_dcache_range(addr, addr + info->data_buf_size);
88 }
89
90 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
91 {
92 uint32_t addr = (uint32_t)info->cmd_buf;
93
94 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
95 }
96 #else
97 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
98 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
99 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
100 #endif
101
102 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
103 {
104 struct mxs_dma_desc *desc;
105
106 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
107 printf("MXS NAND: Too many DMA descriptors requested\n");
108 return NULL;
109 }
110
111 desc = info->desc[info->desc_index];
112 info->desc_index++;
113
114 return desc;
115 }
116
117 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
118 {
119 int i;
120 struct mxs_dma_desc *desc;
121
122 for (i = 0; i < info->desc_index; i++) {
123 desc = info->desc[i];
124 memset(desc, 0, sizeof(struct mxs_dma_desc));
125 desc->address = (dma_addr_t)desc;
126 }
127
128 info->desc_index = 0;
129 }
130
131 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
132 {
133 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
134 }
135
136 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
137 {
138 return ecc_strength * 13;
139 }
140
141 static uint32_t mxs_nand_aux_status_offset(void)
142 {
143 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
144 }
145
146 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
147 uint32_t page_oob_size)
148 {
149 if (page_data_size == 2048)
150 return 8;
151
152 if (page_data_size == 4096) {
153 if (page_oob_size == 128)
154 return 8;
155
156 if (page_oob_size == 218)
157 return 16;
158 }
159
160 return 0;
161 }
162
163 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
164 uint32_t ecc_strength)
165 {
166 uint32_t chunk_data_size_in_bits;
167 uint32_t chunk_ecc_size_in_bits;
168 uint32_t chunk_total_size_in_bits;
169 uint32_t block_mark_chunk_number;
170 uint32_t block_mark_chunk_bit_offset;
171 uint32_t block_mark_bit_offset;
172
173 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
174 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
175
176 chunk_total_size_in_bits =
177 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
178
179 /* Compute the bit offset of the block mark within the physical page. */
180 block_mark_bit_offset = page_data_size * 8;
181
182 /* Subtract the metadata bits. */
183 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
184
185 /*
186 * Compute the chunk number (starting at zero) in which the block mark
187 * appears.
188 */
189 block_mark_chunk_number =
190 block_mark_bit_offset / chunk_total_size_in_bits;
191
192 /*
193 * Compute the bit offset of the block mark within its chunk, and
194 * validate it.
195 */
196 block_mark_chunk_bit_offset = block_mark_bit_offset -
197 (block_mark_chunk_number * chunk_total_size_in_bits);
198
199 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
200 return 1;
201
202 /*
203 * Now that we know the chunk number in which the block mark appears,
204 * we can subtract all the ECC bits that appear before it.
205 */
206 block_mark_bit_offset -=
207 block_mark_chunk_number * chunk_ecc_size_in_bits;
208
209 return block_mark_bit_offset;
210 }
211
212 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
213 {
214 uint32_t ecc_strength;
215 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
216 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
217 }
218
219 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
220 {
221 uint32_t ecc_strength;
222 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
223 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
224 }
225
226 /*
227 * Wait for BCH complete IRQ and clear the IRQ
228 */
229 static int mxs_nand_wait_for_bch_complete(void)
230 {
231 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
232 int timeout = MXS_NAND_BCH_TIMEOUT;
233 int ret;
234
235 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
236 BCH_CTRL_COMPLETE_IRQ, timeout);
237
238 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
239
240 return ret;
241 }
242
243 /*
244 * This is the function that we install in the cmd_ctrl function pointer of the
245 * owning struct nand_chip. The only functions in the reference implementation
246 * that use these functions pointers are cmdfunc and select_chip.
247 *
248 * In this driver, we implement our own select_chip, so this function will only
249 * be called by the reference implementation's cmdfunc. For this reason, we can
250 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
251 * Flash.
252 */
253 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
254 {
255 struct nand_chip *nand = mtd->priv;
256 struct mxs_nand_info *nand_info = nand->priv;
257 struct mxs_dma_desc *d;
258 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
259 int ret;
260
261 /*
262 * If this condition is true, something is _VERY_ wrong in MTD
263 * subsystem!
264 */
265 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
266 printf("MXS NAND: Command queue too long\n");
267 return;
268 }
269
270 /*
271 * Every operation begins with a command byte and a series of zero or
272 * more address bytes. These are distinguished by either the Address
273 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
274 * asserted. When MTD is ready to execute the command, it will
275 * deasert both latch enables.
276 *
277 * Rather than run a separate DMA operation for every single byte, we
278 * queue them up and run a single DMA operation for the entire series
279 * of command and data bytes.
280 */
281 if (ctrl & (NAND_ALE | NAND_CLE)) {
282 if (data != NAND_CMD_NONE)
283 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
284 return;
285 }
286
287 /*
288 * If control arrives here, MTD has deasserted both the ALE and CLE,
289 * which means it's ready to run an operation. Check if we have any
290 * bytes to send.
291 */
292 if (nand_info->cmd_queue_len == 0)
293 return;
294
295 /* Compile the DMA descriptor -- a descriptor that sends command. */
296 d = mxs_nand_get_dma_desc(nand_info);
297 d->cmd.data =
298 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
299 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
300 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
301 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
302
303 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
304
305 d->cmd.pio_words[0] =
306 GPMI_CTRL0_COMMAND_MODE_WRITE |
307 GPMI_CTRL0_WORD_LENGTH |
308 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
309 GPMI_CTRL0_ADDRESS_NAND_CLE |
310 GPMI_CTRL0_ADDRESS_INCREMENT |
311 nand_info->cmd_queue_len;
312
313 mxs_dma_desc_append(channel, d);
314
315 /* Flush caches */
316 mxs_nand_flush_cmd_buf(nand_info);
317
318 /* Execute the DMA chain. */
319 ret = mxs_dma_go(channel);
320 if (ret)
321 printf("MXS NAND: Error sending command\n");
322
323 mxs_nand_return_dma_descs(nand_info);
324
325 /* Reset the command queue. */
326 nand_info->cmd_queue_len = 0;
327 }
328
329 /*
330 * Test if the NAND flash is ready.
331 */
332 static int mxs_nand_device_ready(struct mtd_info *mtd)
333 {
334 struct nand_chip *chip = mtd->priv;
335 struct mxs_nand_info *nand_info = chip->priv;
336 struct mxs_gpmi_regs *gpmi_regs =
337 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
338 uint32_t tmp;
339
340 tmp = readl(&gpmi_regs->hw_gpmi_stat);
341 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
342
343 return tmp & 1;
344 }
345
346 /*
347 * Select the NAND chip.
348 */
349 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
350 {
351 struct nand_chip *nand = mtd->priv;
352 struct mxs_nand_info *nand_info = nand->priv;
353
354 nand_info->cur_chip = chip;
355 }
356
357 /*
358 * Handle block mark swapping.
359 *
360 * Note that, when this function is called, it doesn't know whether it's
361 * swapping the block mark, or swapping it *back* -- but it doesn't matter
362 * because the the operation is the same.
363 */
364 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
365 uint8_t *data_buf, uint8_t *oob_buf)
366 {
367 uint32_t bit_offset;
368 uint32_t buf_offset;
369
370 uint32_t src;
371 uint32_t dst;
372
373 bit_offset = mxs_nand_mark_bit_offset(mtd);
374 buf_offset = mxs_nand_mark_byte_offset(mtd);
375
376 /*
377 * Get the byte from the data area that overlays the block mark. Since
378 * the ECC engine applies its own view to the bits in the page, the
379 * physical block mark won't (in general) appear on a byte boundary in
380 * the data.
381 */
382 src = data_buf[buf_offset] >> bit_offset;
383 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
384
385 dst = oob_buf[0];
386
387 oob_buf[0] = src;
388
389 data_buf[buf_offset] &= ~(0xff << bit_offset);
390 data_buf[buf_offset + 1] &= 0xff << bit_offset;
391
392 data_buf[buf_offset] |= dst << bit_offset;
393 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
394 }
395
396 /*
397 * Read data from NAND.
398 */
399 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
400 {
401 struct nand_chip *nand = mtd->priv;
402 struct mxs_nand_info *nand_info = nand->priv;
403 struct mxs_dma_desc *d;
404 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
405 int ret;
406
407 if (length > NAND_MAX_PAGESIZE) {
408 printf("MXS NAND: DMA buffer too big\n");
409 return;
410 }
411
412 if (!buf) {
413 printf("MXS NAND: DMA buffer is NULL\n");
414 return;
415 }
416
417 /* Compile the DMA descriptor - a descriptor that reads data. */
418 d = mxs_nand_get_dma_desc(nand_info);
419 d->cmd.data =
420 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
421 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
422 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
423 (length << MXS_DMA_DESC_BYTES_OFFSET);
424
425 d->cmd.address = (dma_addr_t)nand_info->data_buf;
426
427 d->cmd.pio_words[0] =
428 GPMI_CTRL0_COMMAND_MODE_READ |
429 GPMI_CTRL0_WORD_LENGTH |
430 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
431 GPMI_CTRL0_ADDRESS_NAND_DATA |
432 length;
433
434 mxs_dma_desc_append(channel, d);
435
436 /*
437 * A DMA descriptor that waits for the command to end and the chip to
438 * become ready.
439 *
440 * I think we actually should *not* be waiting for the chip to become
441 * ready because, after all, we don't care. I think the original code
442 * did that and no one has re-thought it yet.
443 */
444 d = mxs_nand_get_dma_desc(nand_info);
445 d->cmd.data =
446 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
447 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
448 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
449
450 d->cmd.address = 0;
451
452 d->cmd.pio_words[0] =
453 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
454 GPMI_CTRL0_WORD_LENGTH |
455 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
456 GPMI_CTRL0_ADDRESS_NAND_DATA;
457
458 mxs_dma_desc_append(channel, d);
459
460 /* Execute the DMA chain. */
461 ret = mxs_dma_go(channel);
462 if (ret) {
463 printf("MXS NAND: DMA read error\n");
464 goto rtn;
465 }
466
467 /* Invalidate caches */
468 mxs_nand_inval_data_buf(nand_info);
469
470 memcpy(buf, nand_info->data_buf, length);
471
472 rtn:
473 mxs_nand_return_dma_descs(nand_info);
474 }
475
476 /*
477 * Write data to NAND.
478 */
479 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
480 int length)
481 {
482 struct nand_chip *nand = mtd->priv;
483 struct mxs_nand_info *nand_info = nand->priv;
484 struct mxs_dma_desc *d;
485 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
486 int ret;
487
488 if (length > NAND_MAX_PAGESIZE) {
489 printf("MXS NAND: DMA buffer too big\n");
490 return;
491 }
492
493 if (!buf) {
494 printf("MXS NAND: DMA buffer is NULL\n");
495 return;
496 }
497
498 memcpy(nand_info->data_buf, buf, length);
499
500 /* Compile the DMA descriptor - a descriptor that writes data. */
501 d = mxs_nand_get_dma_desc(nand_info);
502 d->cmd.data =
503 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
504 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
505 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
506 (length << MXS_DMA_DESC_BYTES_OFFSET);
507
508 d->cmd.address = (dma_addr_t)nand_info->data_buf;
509
510 d->cmd.pio_words[0] =
511 GPMI_CTRL0_COMMAND_MODE_WRITE |
512 GPMI_CTRL0_WORD_LENGTH |
513 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
514 GPMI_CTRL0_ADDRESS_NAND_DATA |
515 length;
516
517 mxs_dma_desc_append(channel, d);
518
519 /* Flush caches */
520 mxs_nand_flush_data_buf(nand_info);
521
522 /* Execute the DMA chain. */
523 ret = mxs_dma_go(channel);
524 if (ret)
525 printf("MXS NAND: DMA write error\n");
526
527 mxs_nand_return_dma_descs(nand_info);
528 }
529
530 /*
531 * Read a single byte from NAND.
532 */
533 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
534 {
535 uint8_t buf;
536 mxs_nand_read_buf(mtd, &buf, 1);
537 return buf;
538 }
539
540 /*
541 * Read a page from NAND.
542 */
543 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
544 uint8_t *buf, int oob_required,
545 int page)
546 {
547 struct mxs_nand_info *nand_info = nand->priv;
548 struct mxs_dma_desc *d;
549 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
550 uint32_t corrected = 0, failed = 0;
551 uint8_t *status;
552 int i, ret;
553
554 /* Compile the DMA descriptor - wait for ready. */
555 d = mxs_nand_get_dma_desc(nand_info);
556 d->cmd.data =
557 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
558 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
559 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
560
561 d->cmd.address = 0;
562
563 d->cmd.pio_words[0] =
564 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
565 GPMI_CTRL0_WORD_LENGTH |
566 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
567 GPMI_CTRL0_ADDRESS_NAND_DATA;
568
569 mxs_dma_desc_append(channel, d);
570
571 /* Compile the DMA descriptor - enable the BCH block and read. */
572 d = mxs_nand_get_dma_desc(nand_info);
573 d->cmd.data =
574 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
575 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
576
577 d->cmd.address = 0;
578
579 d->cmd.pio_words[0] =
580 GPMI_CTRL0_COMMAND_MODE_READ |
581 GPMI_CTRL0_WORD_LENGTH |
582 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
583 GPMI_CTRL0_ADDRESS_NAND_DATA |
584 (mtd->writesize + mtd->oobsize);
585 d->cmd.pio_words[1] = 0;
586 d->cmd.pio_words[2] =
587 GPMI_ECCCTRL_ENABLE_ECC |
588 GPMI_ECCCTRL_ECC_CMD_DECODE |
589 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
590 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
591 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
592 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
593
594 mxs_dma_desc_append(channel, d);
595
596 /* Compile the DMA descriptor - disable the BCH block. */
597 d = mxs_nand_get_dma_desc(nand_info);
598 d->cmd.data =
599 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
600 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
601 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
602
603 d->cmd.address = 0;
604
605 d->cmd.pio_words[0] =
606 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
607 GPMI_CTRL0_WORD_LENGTH |
608 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
609 GPMI_CTRL0_ADDRESS_NAND_DATA |
610 (mtd->writesize + mtd->oobsize);
611 d->cmd.pio_words[1] = 0;
612 d->cmd.pio_words[2] = 0;
613
614 mxs_dma_desc_append(channel, d);
615
616 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
617 d = mxs_nand_get_dma_desc(nand_info);
618 d->cmd.data =
619 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
620 MXS_DMA_DESC_DEC_SEM;
621
622 d->cmd.address = 0;
623
624 mxs_dma_desc_append(channel, d);
625
626 /* Execute the DMA chain. */
627 ret = mxs_dma_go(channel);
628 if (ret) {
629 printf("MXS NAND: DMA read error\n");
630 goto rtn;
631 }
632
633 ret = mxs_nand_wait_for_bch_complete();
634 if (ret) {
635 printf("MXS NAND: BCH read timeout\n");
636 goto rtn;
637 }
638
639 /* Invalidate caches */
640 mxs_nand_inval_data_buf(nand_info);
641
642 /* Read DMA completed, now do the mark swapping. */
643 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
644
645 /* Loop over status bytes, accumulating ECC status. */
646 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
647 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
648 if (status[i] == 0x00)
649 continue;
650
651 if (status[i] == 0xff)
652 continue;
653
654 if (status[i] == 0xfe) {
655 failed++;
656 continue;
657 }
658
659 corrected += status[i];
660 }
661
662 /* Propagate ECC status to the owning MTD. */
663 mtd->ecc_stats.failed += failed;
664 mtd->ecc_stats.corrected += corrected;
665
666 /*
667 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
668 * details about our policy for delivering the OOB.
669 *
670 * We fill the caller's buffer with set bits, and then copy the block
671 * mark to the caller's buffer. Note that, if block mark swapping was
672 * necessary, it has already been done, so we can rely on the first
673 * byte of the auxiliary buffer to contain the block mark.
674 */
675 memset(nand->oob_poi, 0xff, mtd->oobsize);
676
677 nand->oob_poi[0] = nand_info->oob_buf[0];
678
679 memcpy(buf, nand_info->data_buf, mtd->writesize);
680
681 rtn:
682 mxs_nand_return_dma_descs(nand_info);
683
684 return ret;
685 }
686
687 /*
688 * Write a page to NAND.
689 */
690 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
691 struct nand_chip *nand, const uint8_t *buf,
692 int oob_required)
693 {
694 struct mxs_nand_info *nand_info = nand->priv;
695 struct mxs_dma_desc *d;
696 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
697 int ret;
698
699 memcpy(nand_info->data_buf, buf, mtd->writesize);
700 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
701
702 /* Handle block mark swapping. */
703 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
704
705 /* Compile the DMA descriptor - write data. */
706 d = mxs_nand_get_dma_desc(nand_info);
707 d->cmd.data =
708 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
709 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
710 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
711
712 d->cmd.address = 0;
713
714 d->cmd.pio_words[0] =
715 GPMI_CTRL0_COMMAND_MODE_WRITE |
716 GPMI_CTRL0_WORD_LENGTH |
717 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
718 GPMI_CTRL0_ADDRESS_NAND_DATA;
719 d->cmd.pio_words[1] = 0;
720 d->cmd.pio_words[2] =
721 GPMI_ECCCTRL_ENABLE_ECC |
722 GPMI_ECCCTRL_ECC_CMD_ENCODE |
723 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
724 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
725 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
726 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
727
728 mxs_dma_desc_append(channel, d);
729
730 /* Flush caches */
731 mxs_nand_flush_data_buf(nand_info);
732
733 /* Execute the DMA chain. */
734 ret = mxs_dma_go(channel);
735 if (ret) {
736 printf("MXS NAND: DMA write error\n");
737 goto rtn;
738 }
739
740 ret = mxs_nand_wait_for_bch_complete();
741 if (ret) {
742 printf("MXS NAND: BCH write timeout\n");
743 goto rtn;
744 }
745
746 rtn:
747 mxs_nand_return_dma_descs(nand_info);
748 return 0;
749 }
750
751 /*
752 * Read OOB from NAND.
753 *
754 * This function is a veneer that replaces the function originally installed by
755 * the NAND Flash MTD code.
756 */
757 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
758 struct mtd_oob_ops *ops)
759 {
760 struct nand_chip *chip = mtd->priv;
761 struct mxs_nand_info *nand_info = chip->priv;
762 int ret;
763
764 if (ops->mode == MTD_OPS_RAW)
765 nand_info->raw_oob_mode = 1;
766 else
767 nand_info->raw_oob_mode = 0;
768
769 ret = nand_info->hooked_read_oob(mtd, from, ops);
770
771 nand_info->raw_oob_mode = 0;
772
773 return ret;
774 }
775
776 /*
777 * Write OOB to NAND.
778 *
779 * This function is a veneer that replaces the function originally installed by
780 * the NAND Flash MTD code.
781 */
782 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
783 struct mtd_oob_ops *ops)
784 {
785 struct nand_chip *chip = mtd->priv;
786 struct mxs_nand_info *nand_info = chip->priv;
787 int ret;
788
789 if (ops->mode == MTD_OPS_RAW)
790 nand_info->raw_oob_mode = 1;
791 else
792 nand_info->raw_oob_mode = 0;
793
794 ret = nand_info->hooked_write_oob(mtd, to, ops);
795
796 nand_info->raw_oob_mode = 0;
797
798 return ret;
799 }
800
801 /*
802 * Mark a block bad in NAND.
803 *
804 * This function is a veneer that replaces the function originally installed by
805 * the NAND Flash MTD code.
806 */
807 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
808 {
809 struct nand_chip *chip = mtd->priv;
810 struct mxs_nand_info *nand_info = chip->priv;
811 int ret;
812
813 nand_info->marking_block_bad = 1;
814
815 ret = nand_info->hooked_block_markbad(mtd, ofs);
816
817 nand_info->marking_block_bad = 0;
818
819 return ret;
820 }
821
822 /*
823 * There are several places in this driver where we have to handle the OOB and
824 * block marks. This is the function where things are the most complicated, so
825 * this is where we try to explain it all. All the other places refer back to
826 * here.
827 *
828 * These are the rules, in order of decreasing importance:
829 *
830 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
831 * write operations take measures to protect it.
832 *
833 * 2) In read operations, the first byte of the OOB we return must reflect the
834 * true state of the block mark, no matter where that block mark appears in
835 * the physical page.
836 *
837 * 3) ECC-based read operations return an OOB full of set bits (since we never
838 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
839 * return).
840 *
841 * 4) "Raw" read operations return a direct view of the physical bytes in the
842 * page, using the conventional definition of which bytes are data and which
843 * are OOB. This gives the caller a way to see the actual, physical bytes
844 * in the page, without the distortions applied by our ECC engine.
845 *
846 * What we do for this specific read operation depends on whether we're doing
847 * "raw" read, or an ECC-based read.
848 *
849 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
850 * easy. When reading a page, for example, the NAND Flash MTD code calls our
851 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
852 * ECC-based or raw view of the page is implicit in which function it calls
853 * (there is a similar pair of ECC-based/raw functions for writing).
854 *
855 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
856 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
857 * caller wants an ECC-based or raw view of the page is not propagated down to
858 * this driver.
859 *
860 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
861 * ecc.read_oob and ecc.write_oob function pointers in the owning
862 * struct mtd_info with our own functions. These hook functions set the
863 * raw_oob_mode field so that, when control finally arrives here, we'll know
864 * what to do.
865 */
866 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
867 int page)
868 {
869 struct mxs_nand_info *nand_info = nand->priv;
870
871 /*
872 * First, fill in the OOB buffer. If we're doing a raw read, we need to
873 * get the bytes from the physical page. If we're not doing a raw read,
874 * we need to fill the buffer with set bits.
875 */
876 if (nand_info->raw_oob_mode) {
877 /*
878 * If control arrives here, we're doing a "raw" read. Send the
879 * command to read the conventional OOB and read it.
880 */
881 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
882 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
883 } else {
884 /*
885 * If control arrives here, we're not doing a "raw" read. Fill
886 * the OOB buffer with set bits and correct the block mark.
887 */
888 memset(nand->oob_poi, 0xff, mtd->oobsize);
889
890 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
891 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
892 }
893
894 return 0;
895
896 }
897
898 /*
899 * Write OOB data to NAND.
900 */
901 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
902 int page)
903 {
904 struct mxs_nand_info *nand_info = nand->priv;
905 uint8_t block_mark = 0;
906
907 /*
908 * There are fundamental incompatibilities between the i.MX GPMI NFC and
909 * the NAND Flash MTD model that make it essentially impossible to write
910 * the out-of-band bytes.
911 *
912 * We permit *ONE* exception. If the *intent* of writing the OOB is to
913 * mark a block bad, we can do that.
914 */
915
916 if (!nand_info->marking_block_bad) {
917 printf("NXS NAND: Writing OOB isn't supported\n");
918 return -EIO;
919 }
920
921 /* Write the block mark. */
922 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
923 nand->write_buf(mtd, &block_mark, 1);
924 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
925
926 /* Check if it worked. */
927 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
928 return -EIO;
929
930 return 0;
931 }
932
933 /*
934 * Claims all blocks are good.
935 *
936 * In principle, this function is *only* called when the NAND Flash MTD system
937 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
938 * the driver for bad block information.
939 *
940 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
941 * this function is *only* called when we take it away.
942 *
943 * Thus, this function is only called when we want *all* blocks to look good,
944 * so it *always* return success.
945 */
946 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
947 {
948 return 0;
949 }
950
951 /*
952 * Nominally, the purpose of this function is to look for or create the bad
953 * block table. In fact, since the we call this function at the very end of
954 * the initialization process started by nand_scan(), and we doesn't have a
955 * more formal mechanism, we "hook" this function to continue init process.
956 *
957 * At this point, the physical NAND Flash chips have been identified and
958 * counted, so we know the physical geometry. This enables us to make some
959 * important configuration decisions.
960 *
961 * The return value of this function propogates directly back to this driver's
962 * call to nand_scan(). Anything other than zero will cause this driver to
963 * tear everything down and declare failure.
964 */
965 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
966 {
967 struct nand_chip *nand = mtd->priv;
968 struct mxs_nand_info *nand_info = nand->priv;
969 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
970 uint32_t tmp;
971
972 /* Configure BCH and set NFC geometry */
973 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
974
975 /* Configure layout 0 */
976 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
977 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
978 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
979 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
980 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
981 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
982 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
983 writel(tmp, &bch_regs->hw_bch_flash0layout0);
984
985 tmp = (mtd->writesize + mtd->oobsize)
986 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
987 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
988 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
989 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
990 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
991 writel(tmp, &bch_regs->hw_bch_flash0layout1);
992
993 /* Set *all* chip selects to use layout 0 */
994 writel(0, &bch_regs->hw_bch_layoutselect);
995
996 /* Enable BCH complete interrupt */
997 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
998
999 /* Hook some operations at the MTD level. */
1000 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1001 nand_info->hooked_read_oob = mtd->_read_oob;
1002 mtd->_read_oob = mxs_nand_hook_read_oob;
1003 }
1004
1005 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1006 nand_info->hooked_write_oob = mtd->_write_oob;
1007 mtd->_write_oob = mxs_nand_hook_write_oob;
1008 }
1009
1010 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1011 nand_info->hooked_block_markbad = mtd->_block_markbad;
1012 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1013 }
1014
1015 /* We use the reference implementation for bad block management. */
1016 return nand_default_bbt(mtd);
1017 }
1018
1019 /*
1020 * Allocate DMA buffers
1021 */
1022 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1023 {
1024 uint8_t *buf;
1025 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1026
1027 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1028
1029 /* DMA buffers */
1030 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1031 if (!buf) {
1032 printf("MXS NAND: Error allocating DMA buffers\n");
1033 return -ENOMEM;
1034 }
1035
1036 memset(buf, 0, nand_info->data_buf_size);
1037
1038 nand_info->data_buf = buf;
1039 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1040 /* Command buffers */
1041 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1042 MXS_NAND_COMMAND_BUFFER_SIZE);
1043 if (!nand_info->cmd_buf) {
1044 free(buf);
1045 printf("MXS NAND: Error allocating command buffers\n");
1046 return -ENOMEM;
1047 }
1048 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1049 nand_info->cmd_queue_len = 0;
1050
1051 return 0;
1052 }
1053
1054 /*
1055 * Initializes the NFC hardware.
1056 */
1057 int mxs_nand_init(struct mxs_nand_info *info)
1058 {
1059 struct mxs_gpmi_regs *gpmi_regs =
1060 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1061 struct mxs_bch_regs *bch_regs =
1062 (struct mxs_bch_regs *)MXS_BCH_BASE;
1063 int i = 0, j;
1064
1065 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1066 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1067 if (!info->desc)
1068 goto err1;
1069
1070 /* Allocate the DMA descriptors. */
1071 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1072 info->desc[i] = mxs_dma_desc_alloc();
1073 if (!info->desc[i])
1074 goto err2;
1075 }
1076
1077 /* Init the DMA controller. */
1078 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1079 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1080 if (mxs_dma_init_channel(j))
1081 goto err3;
1082 }
1083
1084 /* Reset the GPMI block. */
1085 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1086 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1087
1088 /*
1089 * Choose NAND mode, set IRQ polarity, disable write protection and
1090 * select BCH ECC.
1091 */
1092 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1093 GPMI_CTRL1_GPMI_MODE,
1094 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1095 GPMI_CTRL1_BCH_MODE);
1096
1097 return 0;
1098
1099 err3:
1100 for (--j; j >= 0; j--)
1101 mxs_dma_release(j);
1102 err2:
1103 free(info->desc);
1104 err1:
1105 for (--i; i >= 0; i--)
1106 mxs_dma_desc_free(info->desc[i]);
1107 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1108 return -ENOMEM;
1109 }
1110
1111 /*!
1112 * This function is called during the driver binding process.
1113 *
1114 * @param pdev the device structure used to store device specific
1115 * information that is used by the suspend, resume and
1116 * remove functions
1117 *
1118 * @return The function always returns 0.
1119 */
1120 int board_nand_init(struct nand_chip *nand)
1121 {
1122 struct mxs_nand_info *nand_info;
1123 int err;
1124
1125 nand_info = malloc(sizeof(struct mxs_nand_info));
1126 if (!nand_info) {
1127 printf("MXS NAND: Failed to allocate private data\n");
1128 return -ENOMEM;
1129 }
1130 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1131
1132 err = mxs_nand_alloc_buffers(nand_info);
1133 if (err)
1134 goto err1;
1135
1136 err = mxs_nand_init(nand_info);
1137 if (err)
1138 goto err2;
1139
1140 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1141
1142 nand->priv = nand_info;
1143 nand->options |= NAND_NO_SUBPAGE_WRITE;
1144
1145 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1146
1147 nand->dev_ready = mxs_nand_device_ready;
1148 nand->select_chip = mxs_nand_select_chip;
1149 nand->block_bad = mxs_nand_block_bad;
1150 nand->scan_bbt = mxs_nand_scan_bbt;
1151
1152 nand->read_byte = mxs_nand_read_byte;
1153
1154 nand->read_buf = mxs_nand_read_buf;
1155 nand->write_buf = mxs_nand_write_buf;
1156
1157 nand->ecc.read_page = mxs_nand_ecc_read_page;
1158 nand->ecc.write_page = mxs_nand_ecc_write_page;
1159 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1160 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1161
1162 nand->ecc.layout = &fake_ecc_layout;
1163 nand->ecc.mode = NAND_ECC_HW;
1164 nand->ecc.bytes = 9;
1165 nand->ecc.size = 512;
1166 nand->ecc.strength = 8;
1167
1168 return 0;
1169
1170 err2:
1171 free(nand_info->data_buf);
1172 free(nand_info->cmd_buf);
1173 err1:
1174 free(nand_info);
1175 return err;
1176 }