]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 /*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * SPDX-License-Identifier: GPL-2.0+
14 */
15
16 #include <common.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/types.h>
20 #include <malloc.h>
21 #include <asm/errno.h>
22 #include <asm/io.h>
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/imx-common/regs-bch.h>
26 #include <asm/imx-common/regs-gpmi.h>
27 #include <asm/arch/sys_proto.h>
28 #include <asm/imx-common/dma.h>
29
30 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
31
32 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
33 #if defined(CONFIG_MX6)
34 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
35 #else
36 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
37 #endif
38 #define MXS_NAND_METADATA_SIZE 10
39
40 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
41
42 #define MXS_NAND_BCH_TIMEOUT 10000
43
44 struct mxs_nand_info {
45 int cur_chip;
46
47 uint32_t cmd_queue_len;
48 uint32_t data_buf_size;
49
50 uint8_t *cmd_buf;
51 uint8_t *data_buf;
52 uint8_t *oob_buf;
53
54 uint8_t marking_block_bad;
55 uint8_t raw_oob_mode;
56
57 /* Functions with altered behaviour */
58 int (*hooked_read_oob)(struct mtd_info *mtd,
59 loff_t from, struct mtd_oob_ops *ops);
60 int (*hooked_write_oob)(struct mtd_info *mtd,
61 loff_t to, struct mtd_oob_ops *ops);
62 int (*hooked_block_markbad)(struct mtd_info *mtd,
63 loff_t ofs);
64
65 /* DMA descriptors */
66 struct mxs_dma_desc **desc;
67 uint32_t desc_index;
68 };
69
70 struct nand_ecclayout fake_ecc_layout;
71
72 /*
73 * Cache management functions
74 */
75 #ifndef CONFIG_SYS_DCACHE_OFF
76 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
77 {
78 uint32_t addr = (uint32_t)info->data_buf;
79
80 flush_dcache_range(addr, addr + info->data_buf_size);
81 }
82
83 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
84 {
85 uint32_t addr = (uint32_t)info->data_buf;
86
87 invalidate_dcache_range(addr, addr + info->data_buf_size);
88 }
89
90 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
91 {
92 uint32_t addr = (uint32_t)info->cmd_buf;
93
94 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
95 }
96 #else
97 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
98 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
99 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
100 #endif
101
102 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
103 {
104 struct mxs_dma_desc *desc;
105
106 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
107 printf("MXS NAND: Too many DMA descriptors requested\n");
108 return NULL;
109 }
110
111 desc = info->desc[info->desc_index];
112 info->desc_index++;
113
114 return desc;
115 }
116
117 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
118 {
119 int i;
120 struct mxs_dma_desc *desc;
121
122 for (i = 0; i < info->desc_index; i++) {
123 desc = info->desc[i];
124 memset(desc, 0, sizeof(struct mxs_dma_desc));
125 desc->address = (dma_addr_t)desc;
126 }
127
128 info->desc_index = 0;
129 }
130
131 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
132 {
133 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
134 }
135
136 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
137 {
138 return ecc_strength * 13;
139 }
140
141 static uint32_t mxs_nand_aux_status_offset(void)
142 {
143 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
144 }
145
146 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
147 uint32_t page_oob_size)
148 {
149 if (page_data_size == 2048)
150 return 8;
151
152 if (page_data_size == 4096) {
153 if (page_oob_size == 128)
154 return 8;
155
156 if (page_oob_size == 218)
157 return 16;
158
159 if (page_oob_size == 224)
160 return 16;
161 }
162
163 return 0;
164 }
165
166 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
167 uint32_t ecc_strength)
168 {
169 uint32_t chunk_data_size_in_bits;
170 uint32_t chunk_ecc_size_in_bits;
171 uint32_t chunk_total_size_in_bits;
172 uint32_t block_mark_chunk_number;
173 uint32_t block_mark_chunk_bit_offset;
174 uint32_t block_mark_bit_offset;
175
176 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
177 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
178
179 chunk_total_size_in_bits =
180 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
181
182 /* Compute the bit offset of the block mark within the physical page. */
183 block_mark_bit_offset = page_data_size * 8;
184
185 /* Subtract the metadata bits. */
186 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
187
188 /*
189 * Compute the chunk number (starting at zero) in which the block mark
190 * appears.
191 */
192 block_mark_chunk_number =
193 block_mark_bit_offset / chunk_total_size_in_bits;
194
195 /*
196 * Compute the bit offset of the block mark within its chunk, and
197 * validate it.
198 */
199 block_mark_chunk_bit_offset = block_mark_bit_offset -
200 (block_mark_chunk_number * chunk_total_size_in_bits);
201
202 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
203 return 1;
204
205 /*
206 * Now that we know the chunk number in which the block mark appears,
207 * we can subtract all the ECC bits that appear before it.
208 */
209 block_mark_bit_offset -=
210 block_mark_chunk_number * chunk_ecc_size_in_bits;
211
212 return block_mark_bit_offset;
213 }
214
215 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
216 {
217 uint32_t ecc_strength;
218 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
219 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
220 }
221
222 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
223 {
224 uint32_t ecc_strength;
225 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
226 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
227 }
228
229 /*
230 * Wait for BCH complete IRQ and clear the IRQ
231 */
232 static int mxs_nand_wait_for_bch_complete(void)
233 {
234 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
235 int timeout = MXS_NAND_BCH_TIMEOUT;
236 int ret;
237
238 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
239 BCH_CTRL_COMPLETE_IRQ, timeout);
240
241 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
242
243 return ret;
244 }
245
246 /*
247 * This is the function that we install in the cmd_ctrl function pointer of the
248 * owning struct nand_chip. The only functions in the reference implementation
249 * that use these functions pointers are cmdfunc and select_chip.
250 *
251 * In this driver, we implement our own select_chip, so this function will only
252 * be called by the reference implementation's cmdfunc. For this reason, we can
253 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
254 * Flash.
255 */
256 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
257 {
258 struct nand_chip *nand = mtd->priv;
259 struct mxs_nand_info *nand_info = nand->priv;
260 struct mxs_dma_desc *d;
261 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
262 int ret;
263
264 /*
265 * If this condition is true, something is _VERY_ wrong in MTD
266 * subsystem!
267 */
268 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
269 printf("MXS NAND: Command queue too long\n");
270 return;
271 }
272
273 /*
274 * Every operation begins with a command byte and a series of zero or
275 * more address bytes. These are distinguished by either the Address
276 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
277 * asserted. When MTD is ready to execute the command, it will
278 * deasert both latch enables.
279 *
280 * Rather than run a separate DMA operation for every single byte, we
281 * queue them up and run a single DMA operation for the entire series
282 * of command and data bytes.
283 */
284 if (ctrl & (NAND_ALE | NAND_CLE)) {
285 if (data != NAND_CMD_NONE)
286 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
287 return;
288 }
289
290 /*
291 * If control arrives here, MTD has deasserted both the ALE and CLE,
292 * which means it's ready to run an operation. Check if we have any
293 * bytes to send.
294 */
295 if (nand_info->cmd_queue_len == 0)
296 return;
297
298 /* Compile the DMA descriptor -- a descriptor that sends command. */
299 d = mxs_nand_get_dma_desc(nand_info);
300 d->cmd.data =
301 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
302 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
303 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
304 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
305
306 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
307
308 d->cmd.pio_words[0] =
309 GPMI_CTRL0_COMMAND_MODE_WRITE |
310 GPMI_CTRL0_WORD_LENGTH |
311 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
312 GPMI_CTRL0_ADDRESS_NAND_CLE |
313 GPMI_CTRL0_ADDRESS_INCREMENT |
314 nand_info->cmd_queue_len;
315
316 mxs_dma_desc_append(channel, d);
317
318 /* Flush caches */
319 mxs_nand_flush_cmd_buf(nand_info);
320
321 /* Execute the DMA chain. */
322 ret = mxs_dma_go(channel);
323 if (ret)
324 printf("MXS NAND: Error sending command\n");
325
326 mxs_nand_return_dma_descs(nand_info);
327
328 /* Reset the command queue. */
329 nand_info->cmd_queue_len = 0;
330 }
331
332 /*
333 * Test if the NAND flash is ready.
334 */
335 static int mxs_nand_device_ready(struct mtd_info *mtd)
336 {
337 struct nand_chip *chip = mtd->priv;
338 struct mxs_nand_info *nand_info = chip->priv;
339 struct mxs_gpmi_regs *gpmi_regs =
340 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
341 uint32_t tmp;
342
343 tmp = readl(&gpmi_regs->hw_gpmi_stat);
344 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
345
346 return tmp & 1;
347 }
348
349 /*
350 * Select the NAND chip.
351 */
352 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
353 {
354 struct nand_chip *nand = mtd->priv;
355 struct mxs_nand_info *nand_info = nand->priv;
356
357 nand_info->cur_chip = chip;
358 }
359
360 /*
361 * Handle block mark swapping.
362 *
363 * Note that, when this function is called, it doesn't know whether it's
364 * swapping the block mark, or swapping it *back* -- but it doesn't matter
365 * because the the operation is the same.
366 */
367 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
368 uint8_t *data_buf, uint8_t *oob_buf)
369 {
370 uint32_t bit_offset;
371 uint32_t buf_offset;
372
373 uint32_t src;
374 uint32_t dst;
375
376 bit_offset = mxs_nand_mark_bit_offset(mtd);
377 buf_offset = mxs_nand_mark_byte_offset(mtd);
378
379 /*
380 * Get the byte from the data area that overlays the block mark. Since
381 * the ECC engine applies its own view to the bits in the page, the
382 * physical block mark won't (in general) appear on a byte boundary in
383 * the data.
384 */
385 src = data_buf[buf_offset] >> bit_offset;
386 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
387
388 dst = oob_buf[0];
389
390 oob_buf[0] = src;
391
392 data_buf[buf_offset] &= ~(0xff << bit_offset);
393 data_buf[buf_offset + 1] &= 0xff << bit_offset;
394
395 data_buf[buf_offset] |= dst << bit_offset;
396 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
397 }
398
399 /*
400 * Read data from NAND.
401 */
402 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
403 {
404 struct nand_chip *nand = mtd->priv;
405 struct mxs_nand_info *nand_info = nand->priv;
406 struct mxs_dma_desc *d;
407 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
408 int ret;
409
410 if (length > NAND_MAX_PAGESIZE) {
411 printf("MXS NAND: DMA buffer too big\n");
412 return;
413 }
414
415 if (!buf) {
416 printf("MXS NAND: DMA buffer is NULL\n");
417 return;
418 }
419
420 /* Compile the DMA descriptor - a descriptor that reads data. */
421 d = mxs_nand_get_dma_desc(nand_info);
422 d->cmd.data =
423 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
424 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
425 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
426 (length << MXS_DMA_DESC_BYTES_OFFSET);
427
428 d->cmd.address = (dma_addr_t)nand_info->data_buf;
429
430 d->cmd.pio_words[0] =
431 GPMI_CTRL0_COMMAND_MODE_READ |
432 GPMI_CTRL0_WORD_LENGTH |
433 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
434 GPMI_CTRL0_ADDRESS_NAND_DATA |
435 length;
436
437 mxs_dma_desc_append(channel, d);
438
439 /*
440 * A DMA descriptor that waits for the command to end and the chip to
441 * become ready.
442 *
443 * I think we actually should *not* be waiting for the chip to become
444 * ready because, after all, we don't care. I think the original code
445 * did that and no one has re-thought it yet.
446 */
447 d = mxs_nand_get_dma_desc(nand_info);
448 d->cmd.data =
449 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
450 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
451 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
452
453 d->cmd.address = 0;
454
455 d->cmd.pio_words[0] =
456 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
457 GPMI_CTRL0_WORD_LENGTH |
458 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
459 GPMI_CTRL0_ADDRESS_NAND_DATA;
460
461 mxs_dma_desc_append(channel, d);
462
463 /* Execute the DMA chain. */
464 ret = mxs_dma_go(channel);
465 if (ret) {
466 printf("MXS NAND: DMA read error\n");
467 goto rtn;
468 }
469
470 /* Invalidate caches */
471 mxs_nand_inval_data_buf(nand_info);
472
473 memcpy(buf, nand_info->data_buf, length);
474
475 rtn:
476 mxs_nand_return_dma_descs(nand_info);
477 }
478
479 /*
480 * Write data to NAND.
481 */
482 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
483 int length)
484 {
485 struct nand_chip *nand = mtd->priv;
486 struct mxs_nand_info *nand_info = nand->priv;
487 struct mxs_dma_desc *d;
488 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
489 int ret;
490
491 if (length > NAND_MAX_PAGESIZE) {
492 printf("MXS NAND: DMA buffer too big\n");
493 return;
494 }
495
496 if (!buf) {
497 printf("MXS NAND: DMA buffer is NULL\n");
498 return;
499 }
500
501 memcpy(nand_info->data_buf, buf, length);
502
503 /* Compile the DMA descriptor - a descriptor that writes data. */
504 d = mxs_nand_get_dma_desc(nand_info);
505 d->cmd.data =
506 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
507 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
508 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
509 (length << MXS_DMA_DESC_BYTES_OFFSET);
510
511 d->cmd.address = (dma_addr_t)nand_info->data_buf;
512
513 d->cmd.pio_words[0] =
514 GPMI_CTRL0_COMMAND_MODE_WRITE |
515 GPMI_CTRL0_WORD_LENGTH |
516 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
517 GPMI_CTRL0_ADDRESS_NAND_DATA |
518 length;
519
520 mxs_dma_desc_append(channel, d);
521
522 /* Flush caches */
523 mxs_nand_flush_data_buf(nand_info);
524
525 /* Execute the DMA chain. */
526 ret = mxs_dma_go(channel);
527 if (ret)
528 printf("MXS NAND: DMA write error\n");
529
530 mxs_nand_return_dma_descs(nand_info);
531 }
532
533 /*
534 * Read a single byte from NAND.
535 */
536 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
537 {
538 uint8_t buf;
539 mxs_nand_read_buf(mtd, &buf, 1);
540 return buf;
541 }
542
543 /*
544 * Read a page from NAND.
545 */
546 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
547 uint8_t *buf, int oob_required,
548 int page)
549 {
550 struct mxs_nand_info *nand_info = nand->priv;
551 struct mxs_dma_desc *d;
552 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
553 uint32_t corrected = 0, failed = 0;
554 uint8_t *status;
555 int i, ret;
556
557 /* Compile the DMA descriptor - wait for ready. */
558 d = mxs_nand_get_dma_desc(nand_info);
559 d->cmd.data =
560 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
561 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
562 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
563
564 d->cmd.address = 0;
565
566 d->cmd.pio_words[0] =
567 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
568 GPMI_CTRL0_WORD_LENGTH |
569 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
570 GPMI_CTRL0_ADDRESS_NAND_DATA;
571
572 mxs_dma_desc_append(channel, d);
573
574 /* Compile the DMA descriptor - enable the BCH block and read. */
575 d = mxs_nand_get_dma_desc(nand_info);
576 d->cmd.data =
577 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
578 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
579
580 d->cmd.address = 0;
581
582 d->cmd.pio_words[0] =
583 GPMI_CTRL0_COMMAND_MODE_READ |
584 GPMI_CTRL0_WORD_LENGTH |
585 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
586 GPMI_CTRL0_ADDRESS_NAND_DATA |
587 (mtd->writesize + mtd->oobsize);
588 d->cmd.pio_words[1] = 0;
589 d->cmd.pio_words[2] =
590 GPMI_ECCCTRL_ENABLE_ECC |
591 GPMI_ECCCTRL_ECC_CMD_DECODE |
592 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
593 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
594 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
595 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
596
597 mxs_dma_desc_append(channel, d);
598
599 /* Compile the DMA descriptor - disable the BCH block. */
600 d = mxs_nand_get_dma_desc(nand_info);
601 d->cmd.data =
602 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
603 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
604 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
605
606 d->cmd.address = 0;
607
608 d->cmd.pio_words[0] =
609 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
610 GPMI_CTRL0_WORD_LENGTH |
611 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
612 GPMI_CTRL0_ADDRESS_NAND_DATA |
613 (mtd->writesize + mtd->oobsize);
614 d->cmd.pio_words[1] = 0;
615 d->cmd.pio_words[2] = 0;
616
617 mxs_dma_desc_append(channel, d);
618
619 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
620 d = mxs_nand_get_dma_desc(nand_info);
621 d->cmd.data =
622 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
623 MXS_DMA_DESC_DEC_SEM;
624
625 d->cmd.address = 0;
626
627 mxs_dma_desc_append(channel, d);
628
629 /* Execute the DMA chain. */
630 ret = mxs_dma_go(channel);
631 if (ret) {
632 printf("MXS NAND: DMA read error\n");
633 goto rtn;
634 }
635
636 ret = mxs_nand_wait_for_bch_complete();
637 if (ret) {
638 printf("MXS NAND: BCH read timeout\n");
639 goto rtn;
640 }
641
642 /* Invalidate caches */
643 mxs_nand_inval_data_buf(nand_info);
644
645 /* Read DMA completed, now do the mark swapping. */
646 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
647
648 /* Loop over status bytes, accumulating ECC status. */
649 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
650 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
651 if (status[i] == 0x00)
652 continue;
653
654 if (status[i] == 0xff)
655 continue;
656
657 if (status[i] == 0xfe) {
658 failed++;
659 continue;
660 }
661
662 corrected += status[i];
663 }
664
665 /* Propagate ECC status to the owning MTD. */
666 mtd->ecc_stats.failed += failed;
667 mtd->ecc_stats.corrected += corrected;
668
669 /*
670 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
671 * details about our policy for delivering the OOB.
672 *
673 * We fill the caller's buffer with set bits, and then copy the block
674 * mark to the caller's buffer. Note that, if block mark swapping was
675 * necessary, it has already been done, so we can rely on the first
676 * byte of the auxiliary buffer to contain the block mark.
677 */
678 memset(nand->oob_poi, 0xff, mtd->oobsize);
679
680 nand->oob_poi[0] = nand_info->oob_buf[0];
681
682 memcpy(buf, nand_info->data_buf, mtd->writesize);
683
684 rtn:
685 mxs_nand_return_dma_descs(nand_info);
686
687 return ret;
688 }
689
690 /*
691 * Write a page to NAND.
692 */
693 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
694 struct nand_chip *nand, const uint8_t *buf,
695 int oob_required)
696 {
697 struct mxs_nand_info *nand_info = nand->priv;
698 struct mxs_dma_desc *d;
699 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
700 int ret;
701
702 memcpy(nand_info->data_buf, buf, mtd->writesize);
703 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
704
705 /* Handle block mark swapping. */
706 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
707
708 /* Compile the DMA descriptor - write data. */
709 d = mxs_nand_get_dma_desc(nand_info);
710 d->cmd.data =
711 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
712 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
713 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
714
715 d->cmd.address = 0;
716
717 d->cmd.pio_words[0] =
718 GPMI_CTRL0_COMMAND_MODE_WRITE |
719 GPMI_CTRL0_WORD_LENGTH |
720 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
721 GPMI_CTRL0_ADDRESS_NAND_DATA;
722 d->cmd.pio_words[1] = 0;
723 d->cmd.pio_words[2] =
724 GPMI_ECCCTRL_ENABLE_ECC |
725 GPMI_ECCCTRL_ECC_CMD_ENCODE |
726 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
727 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
728 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
729 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
730
731 mxs_dma_desc_append(channel, d);
732
733 /* Flush caches */
734 mxs_nand_flush_data_buf(nand_info);
735
736 /* Execute the DMA chain. */
737 ret = mxs_dma_go(channel);
738 if (ret) {
739 printf("MXS NAND: DMA write error\n");
740 goto rtn;
741 }
742
743 ret = mxs_nand_wait_for_bch_complete();
744 if (ret) {
745 printf("MXS NAND: BCH write timeout\n");
746 goto rtn;
747 }
748
749 rtn:
750 mxs_nand_return_dma_descs(nand_info);
751 return 0;
752 }
753
754 /*
755 * Read OOB from NAND.
756 *
757 * This function is a veneer that replaces the function originally installed by
758 * the NAND Flash MTD code.
759 */
760 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
761 struct mtd_oob_ops *ops)
762 {
763 struct nand_chip *chip = mtd->priv;
764 struct mxs_nand_info *nand_info = chip->priv;
765 int ret;
766
767 if (ops->mode == MTD_OPS_RAW)
768 nand_info->raw_oob_mode = 1;
769 else
770 nand_info->raw_oob_mode = 0;
771
772 ret = nand_info->hooked_read_oob(mtd, from, ops);
773
774 nand_info->raw_oob_mode = 0;
775
776 return ret;
777 }
778
779 /*
780 * Write OOB to NAND.
781 *
782 * This function is a veneer that replaces the function originally installed by
783 * the NAND Flash MTD code.
784 */
785 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
786 struct mtd_oob_ops *ops)
787 {
788 struct nand_chip *chip = mtd->priv;
789 struct mxs_nand_info *nand_info = chip->priv;
790 int ret;
791
792 if (ops->mode == MTD_OPS_RAW)
793 nand_info->raw_oob_mode = 1;
794 else
795 nand_info->raw_oob_mode = 0;
796
797 ret = nand_info->hooked_write_oob(mtd, to, ops);
798
799 nand_info->raw_oob_mode = 0;
800
801 return ret;
802 }
803
804 /*
805 * Mark a block bad in NAND.
806 *
807 * This function is a veneer that replaces the function originally installed by
808 * the NAND Flash MTD code.
809 */
810 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
811 {
812 struct nand_chip *chip = mtd->priv;
813 struct mxs_nand_info *nand_info = chip->priv;
814 int ret;
815
816 nand_info->marking_block_bad = 1;
817
818 ret = nand_info->hooked_block_markbad(mtd, ofs);
819
820 nand_info->marking_block_bad = 0;
821
822 return ret;
823 }
824
825 /*
826 * There are several places in this driver where we have to handle the OOB and
827 * block marks. This is the function where things are the most complicated, so
828 * this is where we try to explain it all. All the other places refer back to
829 * here.
830 *
831 * These are the rules, in order of decreasing importance:
832 *
833 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
834 * write operations take measures to protect it.
835 *
836 * 2) In read operations, the first byte of the OOB we return must reflect the
837 * true state of the block mark, no matter where that block mark appears in
838 * the physical page.
839 *
840 * 3) ECC-based read operations return an OOB full of set bits (since we never
841 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
842 * return).
843 *
844 * 4) "Raw" read operations return a direct view of the physical bytes in the
845 * page, using the conventional definition of which bytes are data and which
846 * are OOB. This gives the caller a way to see the actual, physical bytes
847 * in the page, without the distortions applied by our ECC engine.
848 *
849 * What we do for this specific read operation depends on whether we're doing
850 * "raw" read, or an ECC-based read.
851 *
852 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
853 * easy. When reading a page, for example, the NAND Flash MTD code calls our
854 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
855 * ECC-based or raw view of the page is implicit in which function it calls
856 * (there is a similar pair of ECC-based/raw functions for writing).
857 *
858 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
859 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
860 * caller wants an ECC-based or raw view of the page is not propagated down to
861 * this driver.
862 *
863 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
864 * ecc.read_oob and ecc.write_oob function pointers in the owning
865 * struct mtd_info with our own functions. These hook functions set the
866 * raw_oob_mode field so that, when control finally arrives here, we'll know
867 * what to do.
868 */
869 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
870 int page)
871 {
872 struct mxs_nand_info *nand_info = nand->priv;
873
874 /*
875 * First, fill in the OOB buffer. If we're doing a raw read, we need to
876 * get the bytes from the physical page. If we're not doing a raw read,
877 * we need to fill the buffer with set bits.
878 */
879 if (nand_info->raw_oob_mode) {
880 /*
881 * If control arrives here, we're doing a "raw" read. Send the
882 * command to read the conventional OOB and read it.
883 */
884 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
885 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
886 } else {
887 /*
888 * If control arrives here, we're not doing a "raw" read. Fill
889 * the OOB buffer with set bits and correct the block mark.
890 */
891 memset(nand->oob_poi, 0xff, mtd->oobsize);
892
893 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
894 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
895 }
896
897 return 0;
898
899 }
900
901 /*
902 * Write OOB data to NAND.
903 */
904 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
905 int page)
906 {
907 struct mxs_nand_info *nand_info = nand->priv;
908 uint8_t block_mark = 0;
909
910 /*
911 * There are fundamental incompatibilities between the i.MX GPMI NFC and
912 * the NAND Flash MTD model that make it essentially impossible to write
913 * the out-of-band bytes.
914 *
915 * We permit *ONE* exception. If the *intent* of writing the OOB is to
916 * mark a block bad, we can do that.
917 */
918
919 if (!nand_info->marking_block_bad) {
920 printf("NXS NAND: Writing OOB isn't supported\n");
921 return -EIO;
922 }
923
924 /* Write the block mark. */
925 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
926 nand->write_buf(mtd, &block_mark, 1);
927 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
928
929 /* Check if it worked. */
930 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
931 return -EIO;
932
933 return 0;
934 }
935
936 /*
937 * Claims all blocks are good.
938 *
939 * In principle, this function is *only* called when the NAND Flash MTD system
940 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
941 * the driver for bad block information.
942 *
943 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
944 * this function is *only* called when we take it away.
945 *
946 * Thus, this function is only called when we want *all* blocks to look good,
947 * so it *always* return success.
948 */
949 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
950 {
951 return 0;
952 }
953
954 /*
955 * Nominally, the purpose of this function is to look for or create the bad
956 * block table. In fact, since the we call this function at the very end of
957 * the initialization process started by nand_scan(), and we doesn't have a
958 * more formal mechanism, we "hook" this function to continue init process.
959 *
960 * At this point, the physical NAND Flash chips have been identified and
961 * counted, so we know the physical geometry. This enables us to make some
962 * important configuration decisions.
963 *
964 * The return value of this function propogates directly back to this driver's
965 * call to nand_scan(). Anything other than zero will cause this driver to
966 * tear everything down and declare failure.
967 */
968 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
969 {
970 struct nand_chip *nand = mtd->priv;
971 struct mxs_nand_info *nand_info = nand->priv;
972 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
973 uint32_t tmp;
974
975 /* Configure BCH and set NFC geometry */
976 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
977
978 /* Configure layout 0 */
979 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
980 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
981 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
982 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
983 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
984 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
985 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
986 writel(tmp, &bch_regs->hw_bch_flash0layout0);
987
988 tmp = (mtd->writesize + mtd->oobsize)
989 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
990 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
991 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
992 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
993 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
994 writel(tmp, &bch_regs->hw_bch_flash0layout1);
995
996 /* Set *all* chip selects to use layout 0 */
997 writel(0, &bch_regs->hw_bch_layoutselect);
998
999 /* Enable BCH complete interrupt */
1000 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1001
1002 /* Hook some operations at the MTD level. */
1003 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1004 nand_info->hooked_read_oob = mtd->_read_oob;
1005 mtd->_read_oob = mxs_nand_hook_read_oob;
1006 }
1007
1008 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1009 nand_info->hooked_write_oob = mtd->_write_oob;
1010 mtd->_write_oob = mxs_nand_hook_write_oob;
1011 }
1012
1013 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1014 nand_info->hooked_block_markbad = mtd->_block_markbad;
1015 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1016 }
1017
1018 /* We use the reference implementation for bad block management. */
1019 return nand_default_bbt(mtd);
1020 }
1021
1022 /*
1023 * Allocate DMA buffers
1024 */
1025 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1026 {
1027 uint8_t *buf;
1028 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1029
1030 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1031
1032 /* DMA buffers */
1033 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1034 if (!buf) {
1035 printf("MXS NAND: Error allocating DMA buffers\n");
1036 return -ENOMEM;
1037 }
1038
1039 memset(buf, 0, nand_info->data_buf_size);
1040
1041 nand_info->data_buf = buf;
1042 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1043 /* Command buffers */
1044 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1045 MXS_NAND_COMMAND_BUFFER_SIZE);
1046 if (!nand_info->cmd_buf) {
1047 free(buf);
1048 printf("MXS NAND: Error allocating command buffers\n");
1049 return -ENOMEM;
1050 }
1051 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1052 nand_info->cmd_queue_len = 0;
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * Initializes the NFC hardware.
1059 */
1060 int mxs_nand_init(struct mxs_nand_info *info)
1061 {
1062 struct mxs_gpmi_regs *gpmi_regs =
1063 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1064 struct mxs_bch_regs *bch_regs =
1065 (struct mxs_bch_regs *)MXS_BCH_BASE;
1066 int i = 0, j;
1067
1068 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1069 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1070 if (!info->desc)
1071 goto err1;
1072
1073 /* Allocate the DMA descriptors. */
1074 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1075 info->desc[i] = mxs_dma_desc_alloc();
1076 if (!info->desc[i])
1077 goto err2;
1078 }
1079
1080 /* Init the DMA controller. */
1081 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1082 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1083 if (mxs_dma_init_channel(j))
1084 goto err3;
1085 }
1086
1087 /* Reset the GPMI block. */
1088 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1089 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1090
1091 /*
1092 * Choose NAND mode, set IRQ polarity, disable write protection and
1093 * select BCH ECC.
1094 */
1095 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1096 GPMI_CTRL1_GPMI_MODE,
1097 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1098 GPMI_CTRL1_BCH_MODE);
1099
1100 return 0;
1101
1102 err3:
1103 for (--j; j >= 0; j--)
1104 mxs_dma_release(j);
1105 err2:
1106 free(info->desc);
1107 err1:
1108 for (--i; i >= 0; i--)
1109 mxs_dma_desc_free(info->desc[i]);
1110 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1111 return -ENOMEM;
1112 }
1113
1114 /*!
1115 * This function is called during the driver binding process.
1116 *
1117 * @param pdev the device structure used to store device specific
1118 * information that is used by the suspend, resume and
1119 * remove functions
1120 *
1121 * @return The function always returns 0.
1122 */
1123 int board_nand_init(struct nand_chip *nand)
1124 {
1125 struct mxs_nand_info *nand_info;
1126 int err;
1127
1128 nand_info = malloc(sizeof(struct mxs_nand_info));
1129 if (!nand_info) {
1130 printf("MXS NAND: Failed to allocate private data\n");
1131 return -ENOMEM;
1132 }
1133 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1134
1135 err = mxs_nand_alloc_buffers(nand_info);
1136 if (err)
1137 goto err1;
1138
1139 err = mxs_nand_init(nand_info);
1140 if (err)
1141 goto err2;
1142
1143 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1144
1145 nand->priv = nand_info;
1146 nand->options |= NAND_NO_SUBPAGE_WRITE;
1147
1148 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1149
1150 nand->dev_ready = mxs_nand_device_ready;
1151 nand->select_chip = mxs_nand_select_chip;
1152 nand->block_bad = mxs_nand_block_bad;
1153 nand->scan_bbt = mxs_nand_scan_bbt;
1154
1155 nand->read_byte = mxs_nand_read_byte;
1156
1157 nand->read_buf = mxs_nand_read_buf;
1158 nand->write_buf = mxs_nand_write_buf;
1159
1160 nand->ecc.read_page = mxs_nand_ecc_read_page;
1161 nand->ecc.write_page = mxs_nand_ecc_write_page;
1162 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1163 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1164
1165 nand->ecc.layout = &fake_ecc_layout;
1166 nand->ecc.mode = NAND_ECC_HW;
1167 nand->ecc.bytes = 9;
1168 nand->ecc.size = 512;
1169 nand->ecc.strength = 8;
1170
1171 return 0;
1172
1173 err2:
1174 free(nand_info->data_buf);
1175 free(nand_info->cmd_buf);
1176 err1:
1177 free(nand_info);
1178 return err;
1179 }