]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_ecc.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / mtd / nand / nand_ecc.c
1 /*
2 * This file contains an ECC algorithm from Toshiba that detects and
3 * corrects 1 bit errors in a 256 byte block of data.
4 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
7 * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
8 * Toshiba America Electronics Components, Inc.
9 *
10 * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
11 *
12 * SPDX-License-Identifier: GPL-2.0+
13 *
14 * As a special exception, if other files instantiate templates or use
15 * macros or inline functions from these files, or you compile these
16 * files and link them with other works to produce a work based on these
17 * files, these files do not by themselves cause the resulting work to be
18 * covered by the GNU General Public License. However the source code for
19 * these files must still be made available in accordance with section (3)
20 * of the GNU General Public License.
21 *
22 * This exception does not invalidate any other reasons why a work based on
23 * this file might be covered by the GNU General Public License.
24 */
25
26 #include <common.h>
27
28 #include <asm/errno.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand_ecc.h>
31
32 /* The PPC4xx NDFC uses Smart Media (SMC) bytes order */
33 #ifdef CONFIG_NAND_NDFC
34 #define CONFIG_MTD_NAND_ECC_SMC
35 #endif
36
37 /*
38 * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
39 * only nand_correct_data() is needed
40 */
41
42 #if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
43 /*
44 * Pre-calculated 256-way 1 byte column parity
45 */
46 static const u_char nand_ecc_precalc_table[] = {
47 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
48 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
49 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
50 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
51 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
52 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
53 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
54 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
55 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
56 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
57 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
58 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
59 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
60 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
61 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
62 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
63 };
64
65 /**
66 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
67 * @mtd: MTD block structure
68 * @dat: raw data
69 * @ecc_code: buffer for ECC
70 */
71 int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
72 u_char *ecc_code)
73 {
74 uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
75 int i;
76
77 /* Initialize variables */
78 reg1 = reg2 = reg3 = 0;
79
80 /* Build up column parity */
81 for(i = 0; i < 256; i++) {
82 /* Get CP0 - CP5 from table */
83 idx = nand_ecc_precalc_table[*dat++];
84 reg1 ^= (idx & 0x3f);
85
86 /* All bit XOR = 1 ? */
87 if (idx & 0x40) {
88 reg3 ^= (uint8_t) i;
89 reg2 ^= ~((uint8_t) i);
90 }
91 }
92
93 /* Create non-inverted ECC code from line parity */
94 tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
95 tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
96 tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
97 tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
98 tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
99 tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
100 tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
101 tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
102
103 tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
104 tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
105 tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
106 tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
107 tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
108 tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
109 tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
110 tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
111
112 /* Calculate final ECC code */
113 #ifdef CONFIG_MTD_NAND_ECC_SMC
114 ecc_code[0] = ~tmp2;
115 ecc_code[1] = ~tmp1;
116 #else
117 ecc_code[0] = ~tmp1;
118 ecc_code[1] = ~tmp2;
119 #endif
120 ecc_code[2] = ((~reg1) << 2) | 0x03;
121
122 return 0;
123 }
124 #endif /* CONFIG_NAND_SPL */
125
126 static inline int countbits(uint32_t byte)
127 {
128 int res = 0;
129
130 for (;byte; byte >>= 1)
131 res += byte & 0x01;
132 return res;
133 }
134
135 /**
136 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
137 * @mtd: MTD block structure
138 * @dat: raw data read from the chip
139 * @read_ecc: ECC from the chip
140 * @calc_ecc: the ECC calculated from raw data
141 *
142 * Detect and correct a 1 bit error for 256 byte block
143 */
144 int nand_correct_data(struct mtd_info *mtd, u_char *dat,
145 u_char *read_ecc, u_char *calc_ecc)
146 {
147 uint8_t s0, s1, s2;
148
149 #ifdef CONFIG_MTD_NAND_ECC_SMC
150 s0 = calc_ecc[0] ^ read_ecc[0];
151 s1 = calc_ecc[1] ^ read_ecc[1];
152 s2 = calc_ecc[2] ^ read_ecc[2];
153 #else
154 s1 = calc_ecc[0] ^ read_ecc[0];
155 s0 = calc_ecc[1] ^ read_ecc[1];
156 s2 = calc_ecc[2] ^ read_ecc[2];
157 #endif
158 if ((s0 | s1 | s2) == 0)
159 return 0;
160
161 /* Check for a single bit error */
162 if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
163 ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
164 ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
165
166 uint32_t byteoffs, bitnum;
167
168 byteoffs = (s1 << 0) & 0x80;
169 byteoffs |= (s1 << 1) & 0x40;
170 byteoffs |= (s1 << 2) & 0x20;
171 byteoffs |= (s1 << 3) & 0x10;
172
173 byteoffs |= (s0 >> 4) & 0x08;
174 byteoffs |= (s0 >> 3) & 0x04;
175 byteoffs |= (s0 >> 2) & 0x02;
176 byteoffs |= (s0 >> 1) & 0x01;
177
178 bitnum = (s2 >> 5) & 0x04;
179 bitnum |= (s2 >> 4) & 0x02;
180 bitnum |= (s2 >> 3) & 0x01;
181
182 dat[byteoffs] ^= (1 << bitnum);
183
184 return 1;
185 }
186
187 if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
188 return 1;
189
190 return -EBADMSG;
191 }