]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_spl_simple.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / mtd / nand / nand_spl_simple.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <nand.h>
10 #include <asm/io.h>
11 #include <linux/mtd/nand_ecc.h>
12
13 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
14 static nand_info_t mtd;
15 static struct nand_chip nand_chip;
16
17 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
18 CONFIG_SYS_NAND_ECCSIZE)
19 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
20
21
22 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
23 /*
24 * NAND command for small page NAND devices (512)
25 */
26 static int nand_command(int block, int page, uint32_t offs,
27 u8 cmd)
28 {
29 struct nand_chip *this = mtd.priv;
30 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
31
32 while (!this->dev_ready(&mtd))
33 ;
34
35 /* Begin command latch cycle */
36 this->cmd_ctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
37 /* Set ALE and clear CLE to start address cycle */
38 /* Column address */
39 this->cmd_ctrl(&mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
40 this->cmd_ctrl(&mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
41 this->cmd_ctrl(&mtd, (page_addr >> 8) & 0xff,
42 NAND_CTRL_ALE); /* A[24:17] */
43 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
44 /* One more address cycle for devices > 32MiB */
45 this->cmd_ctrl(&mtd, (page_addr >> 16) & 0x0f,
46 NAND_CTRL_ALE); /* A[28:25] */
47 #endif
48 /* Latch in address */
49 this->cmd_ctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
50
51 /*
52 * Wait a while for the data to be ready
53 */
54 while (!this->dev_ready(&mtd))
55 ;
56
57 return 0;
58 }
59 #else
60 /*
61 * NAND command for large page NAND devices (2k)
62 */
63 static int nand_command(int block, int page, uint32_t offs,
64 u8 cmd)
65 {
66 struct nand_chip *this = mtd.priv;
67 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
68 void (*hwctrl)(struct mtd_info *mtd, int cmd,
69 unsigned int ctrl) = this->cmd_ctrl;
70
71 while (!this->dev_ready(&mtd))
72 ;
73
74 /* Emulate NAND_CMD_READOOB */
75 if (cmd == NAND_CMD_READOOB) {
76 offs += CONFIG_SYS_NAND_PAGE_SIZE;
77 cmd = NAND_CMD_READ0;
78 }
79
80 /* Shift the offset from byte addressing to word addressing. */
81 if (this->options & NAND_BUSWIDTH_16)
82 offs >>= 1;
83
84 /* Begin command latch cycle */
85 hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
86 /* Set ALE and clear CLE to start address cycle */
87 /* Column address */
88 hwctrl(&mtd, offs & 0xff,
89 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
90 hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
91 /* Row address */
92 hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
93 hwctrl(&mtd, ((page_addr >> 8) & 0xff),
94 NAND_CTRL_ALE); /* A[27:20] */
95 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
96 /* One more address cycle for devices > 128MiB */
97 hwctrl(&mtd, (page_addr >> 16) & 0x0f,
98 NAND_CTRL_ALE); /* A[31:28] */
99 #endif
100 /* Latch in address */
101 hwctrl(&mtd, NAND_CMD_READSTART,
102 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
103 hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
104
105 /*
106 * Wait a while for the data to be ready
107 */
108 while (!this->dev_ready(&mtd))
109 ;
110
111 return 0;
112 }
113 #endif
114
115 static int nand_is_bad_block(int block)
116 {
117 struct nand_chip *this = mtd.priv;
118
119 nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
120 NAND_CMD_READOOB);
121
122 /*
123 * Read one byte (or two if it's a 16 bit chip).
124 */
125 if (this->options & NAND_BUSWIDTH_16) {
126 if (readw(this->IO_ADDR_R) != 0xffff)
127 return 1;
128 } else {
129 if (readb(this->IO_ADDR_R) != 0xff)
130 return 1;
131 }
132
133 return 0;
134 }
135
136 #if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST)
137 static int nand_read_page(int block, int page, uchar *dst)
138 {
139 struct nand_chip *this = mtd.priv;
140 u_char ecc_calc[ECCTOTAL];
141 u_char ecc_code[ECCTOTAL];
142 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
143 int i;
144 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
145 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
146 int eccsteps = ECCSTEPS;
147 uint8_t *p = dst;
148
149 nand_command(block, page, 0, NAND_CMD_READOOB);
150 this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
151 nand_command(block, page, 0, NAND_CMD_READ0);
152
153 /* Pick the ECC bytes out of the oob data */
154 for (i = 0; i < ECCTOTAL; i++)
155 ecc_code[i] = oob_data[nand_ecc_pos[i]];
156
157
158 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
159 this->ecc.hwctl(&mtd, NAND_ECC_READ);
160 this->read_buf(&mtd, p, eccsize);
161 this->ecc.calculate(&mtd, p, &ecc_calc[i]);
162 this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
163 }
164
165 return 0;
166 }
167 #else
168 static int nand_read_page(int block, int page, void *dst)
169 {
170 struct nand_chip *this = mtd.priv;
171 u_char ecc_calc[ECCTOTAL];
172 u_char ecc_code[ECCTOTAL];
173 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
174 int i;
175 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
176 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
177 int eccsteps = ECCSTEPS;
178 uint8_t *p = dst;
179
180 nand_command(block, page, 0, NAND_CMD_READ0);
181
182 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
183 if (this->ecc.mode != NAND_ECC_SOFT)
184 this->ecc.hwctl(&mtd, NAND_ECC_READ);
185 this->read_buf(&mtd, p, eccsize);
186 this->ecc.calculate(&mtd, p, &ecc_calc[i]);
187 }
188 this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
189
190 /* Pick the ECC bytes out of the oob data */
191 for (i = 0; i < ECCTOTAL; i++)
192 ecc_code[i] = oob_data[nand_ecc_pos[i]];
193
194 eccsteps = ECCSTEPS;
195 p = dst;
196
197 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
198 /* No chance to do something with the possible error message
199 * from correct_data(). We just hope that all possible errors
200 * are corrected by this routine.
201 */
202 this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
203 }
204
205 return 0;
206 }
207 #endif
208
209 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
210 {
211 unsigned int block, lastblock;
212 unsigned int page;
213
214 /*
215 * offs has to be aligned to a page address!
216 */
217 block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
218 lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
219 page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
220
221 while (block <= lastblock) {
222 if (!nand_is_bad_block(block)) {
223 /*
224 * Skip bad blocks
225 */
226 while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
227 nand_read_page(block, page, dst);
228 dst += CONFIG_SYS_NAND_PAGE_SIZE;
229 page++;
230 }
231
232 page = 0;
233 } else {
234 lastblock++;
235 }
236
237 block++;
238 }
239
240 return 0;
241 }
242
243 /* nand_init() - initialize data to make nand usable by SPL */
244 void nand_init(void)
245 {
246 /*
247 * Init board specific nand support
248 */
249 mtd.priv = &nand_chip;
250 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
251 (void __iomem *)CONFIG_SYS_NAND_BASE;
252 board_nand_init(&nand_chip);
253
254 #ifdef CONFIG_SPL_NAND_SOFTECC
255 if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
256 nand_chip.ecc.calculate = nand_calculate_ecc;
257 nand_chip.ecc.correct = nand_correct_data;
258 }
259 #endif
260
261 if (nand_chip.select_chip)
262 nand_chip.select_chip(&mtd, 0);
263 }
264
265 /* Unselect after operation */
266 void nand_deselect(void)
267 {
268 if (nand_chip.select_chip)
269 nand_chip.select_chip(&mtd, -1);
270 }