]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_util.c
149af83abd34aac37e46beda81de90d61ecd3808
[people/ms/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 */
32
33 #include <common.h>
34 #include <command.h>
35 #include <watchdog.h>
36 #include <malloc.h>
37 #include <div64.h>
38
39
40 #include <asm/errno.h>
41 #include <linux/mtd/mtd.h>
42 #include <nand.h>
43 #include <jffs2/jffs2.h>
44
45 typedef struct erase_info erase_info_t;
46 typedef struct mtd_info mtd_info_t;
47
48 /* support only for native endian JFFS2 */
49 #define cpu_to_je16(x) (x)
50 #define cpu_to_je32(x) (x)
51
52 /*****************************************************************************/
53 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
54 {
55 return 0;
56 }
57
58 /**
59 * nand_erase_opts: - erase NAND flash with support for various options
60 * (jffs2 formating)
61 *
62 * @param meminfo NAND device to erase
63 * @param opts options, @see struct nand_erase_options
64 * @return 0 in case of success
65 *
66 * This code is ported from flash_eraseall.c from Linux mtd utils by
67 * Arcom Control System Ltd.
68 */
69 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
70 {
71 struct jffs2_unknown_node cleanmarker;
72 erase_info_t erase;
73 ulong erase_length;
74 int bbtest = 1;
75 int result;
76 int percent_complete = -1;
77 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
78 const char *mtd_device = meminfo->name;
79 struct mtd_oob_ops oob_opts;
80 struct nand_chip *chip = meminfo->priv;
81
82 memset(&erase, 0, sizeof(erase));
83 memset(&oob_opts, 0, sizeof(oob_opts));
84
85 erase.mtd = meminfo;
86 erase.len = meminfo->erasesize;
87 erase.addr = opts->offset;
88 erase_length = opts->length;
89
90 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
91 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
92 cleanmarker.totlen = cpu_to_je32(8);
93
94 /* scrub option allows to erase badblock. To prevent internal
95 * check from erase() method, set block check method to dummy
96 * and disable bad block table while erasing.
97 */
98 if (opts->scrub) {
99 struct nand_chip *priv_nand = meminfo->priv;
100
101 nand_block_bad_old = priv_nand->block_bad;
102 priv_nand->block_bad = nand_block_bad_scrub;
103 /* we don't need the bad block table anymore...
104 * after scrub, there are no bad blocks left!
105 */
106 if (priv_nand->bbt) {
107 kfree(priv_nand->bbt);
108 }
109 priv_nand->bbt = NULL;
110 }
111
112 if (erase_length < meminfo->erasesize) {
113 printf("Warning: Erase size 0x%08lx smaller than one " \
114 "erase block 0x%08x\n",erase_length, meminfo->erasesize);
115 printf(" Erasing 0x%08x instead\n", meminfo->erasesize);
116 erase_length = meminfo->erasesize;
117 }
118
119 for (;
120 erase.addr < opts->offset + erase_length;
121 erase.addr += meminfo->erasesize) {
122
123 WATCHDOG_RESET ();
124
125 if (!opts->scrub && bbtest) {
126 int ret = meminfo->block_isbad(meminfo, erase.addr);
127 if (ret > 0) {
128 if (!opts->quiet)
129 printf("\rSkipping bad block at "
130 "0x%08x "
131 " \n",
132 erase.addr);
133 continue;
134
135 } else if (ret < 0) {
136 printf("\n%s: MTD get bad block failed: %d\n",
137 mtd_device,
138 ret);
139 return -1;
140 }
141 }
142
143 result = meminfo->erase(meminfo, &erase);
144 if (result != 0) {
145 printf("\n%s: MTD Erase failure: %d\n",
146 mtd_device, result);
147 continue;
148 }
149
150 /* format for JFFS2 ? */
151 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
152 chip->ops.ooblen = 8;
153 chip->ops.datbuf = NULL;
154 chip->ops.oobbuf = (uint8_t *)&cleanmarker;
155 chip->ops.ooboffs = 0;
156 chip->ops.mode = MTD_OOB_AUTO;
157
158 result = meminfo->write_oob(meminfo,
159 erase.addr,
160 &chip->ops);
161 if (result != 0) {
162 printf("\n%s: MTD writeoob failure: %d\n",
163 mtd_device, result);
164 continue;
165 }
166 }
167
168 if (!opts->quiet) {
169 unsigned long long n =(unsigned long long)
170 (erase.addr + meminfo->erasesize - opts->offset)
171 * 100;
172 int percent;
173
174 do_div(n, erase_length);
175 percent = (int)n;
176
177 /* output progress message only at whole percent
178 * steps to reduce the number of messages printed
179 * on (slow) serial consoles
180 */
181 if (percent != percent_complete) {
182 percent_complete = percent;
183
184 printf("\rErasing at 0x%x -- %3d%% complete.",
185 erase.addr, percent);
186
187 if (opts->jffs2 && result == 0)
188 printf(" Cleanmarker written at 0x%x.",
189 erase.addr);
190 }
191 }
192 }
193 if (!opts->quiet)
194 printf("\n");
195
196 if (nand_block_bad_old) {
197 struct nand_chip *priv_nand = meminfo->priv;
198
199 priv_nand->block_bad = nand_block_bad_old;
200 priv_nand->scan_bbt(meminfo);
201 }
202
203 return 0;
204 }
205
206 /* XXX U-BOOT XXX */
207 #if 0
208
209 #define MAX_PAGE_SIZE 2048
210 #define MAX_OOB_SIZE 64
211
212 /*
213 * buffer array used for writing data
214 */
215 static unsigned char data_buf[MAX_PAGE_SIZE];
216 static unsigned char oob_buf[MAX_OOB_SIZE];
217
218 /* OOB layouts to pass into the kernel as default */
219 static struct nand_ecclayout none_ecclayout = {
220 .useecc = MTD_NANDECC_OFF,
221 };
222
223 static struct nand_ecclayout jffs2_ecclayout = {
224 .useecc = MTD_NANDECC_PLACE,
225 .eccbytes = 6,
226 .eccpos = { 0, 1, 2, 3, 6, 7 }
227 };
228
229 static struct nand_ecclayout yaffs_ecclayout = {
230 .useecc = MTD_NANDECC_PLACE,
231 .eccbytes = 6,
232 .eccpos = { 8, 9, 10, 13, 14, 15}
233 };
234
235 static struct nand_ecclayout autoplace_ecclayout = {
236 .useecc = MTD_NANDECC_AUTOPLACE
237 };
238 #endif
239
240 /* XXX U-BOOT XXX */
241 #if 0
242 /******************************************************************************
243 * Support for locking / unlocking operations of some NAND devices
244 *****************************************************************************/
245
246 #define NAND_CMD_LOCK 0x2a
247 #define NAND_CMD_LOCK_TIGHT 0x2c
248 #define NAND_CMD_UNLOCK1 0x23
249 #define NAND_CMD_UNLOCK2 0x24
250 #define NAND_CMD_LOCK_STATUS 0x7a
251
252 /**
253 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
254 * state
255 *
256 * @param meminfo nand mtd instance
257 * @param tight bring device in lock tight mode
258 *
259 * @return 0 on success, -1 in case of error
260 *
261 * The lock / lock-tight command only applies to the whole chip. To get some
262 * parts of the chip lock and others unlocked use the following sequence:
263 *
264 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
265 * - Call nand_unlock() once for each consecutive area to be unlocked
266 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
267 *
268 * If the device is in lock-tight state software can't change the
269 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
270 * calls will fail. It is only posible to leave lock-tight state by
271 * an hardware signal (low pulse on _WP pin) or by power down.
272 */
273 int nand_lock(nand_info_t *meminfo, int tight)
274 {
275 int ret = 0;
276 int status;
277 struct nand_chip *this = meminfo->priv;
278
279 /* select the NAND device */
280 this->select_chip(meminfo, 0);
281
282 this->cmdfunc(meminfo,
283 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
284 -1, -1);
285
286 /* call wait ready function */
287 status = this->waitfunc(meminfo, this, FL_WRITING);
288
289 /* see if device thinks it succeeded */
290 if (status & 0x01) {
291 ret = -1;
292 }
293
294 /* de-select the NAND device */
295 this->select_chip(meminfo, -1);
296 return ret;
297 }
298
299 /**
300 * nand_get_lock_status: - query current lock state from one page of NAND
301 * flash
302 *
303 * @param meminfo nand mtd instance
304 * @param offset page address to query (muss be page aligned!)
305 *
306 * @return -1 in case of error
307 * >0 lock status:
308 * bitfield with the following combinations:
309 * NAND_LOCK_STATUS_TIGHT: page in tight state
310 * NAND_LOCK_STATUS_LOCK: page locked
311 * NAND_LOCK_STATUS_UNLOCK: page unlocked
312 *
313 */
314 int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
315 {
316 int ret = 0;
317 int chipnr;
318 int page;
319 struct nand_chip *this = meminfo->priv;
320
321 /* select the NAND device */
322 chipnr = (int)(offset >> this->chip_shift);
323 this->select_chip(meminfo, chipnr);
324
325
326 if ((offset & (meminfo->writesize - 1)) != 0) {
327 printf ("nand_get_lock_status: "
328 "Start address must be beginning of "
329 "nand page!\n");
330 ret = -1;
331 goto out;
332 }
333
334 /* check the Lock Status */
335 page = (int)(offset >> this->page_shift);
336 this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
337
338 ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
339 | NAND_LOCK_STATUS_LOCK
340 | NAND_LOCK_STATUS_UNLOCK);
341
342 out:
343 /* de-select the NAND device */
344 this->select_chip(meminfo, -1);
345 return ret;
346 }
347
348 /**
349 * nand_unlock: - Unlock area of NAND pages
350 * only one consecutive area can be unlocked at one time!
351 *
352 * @param meminfo nand mtd instance
353 * @param start start byte address
354 * @param length number of bytes to unlock (must be a multiple of
355 * page size nand->writesize)
356 *
357 * @return 0 on success, -1 in case of error
358 */
359 int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
360 {
361 int ret = 0;
362 int chipnr;
363 int status;
364 int page;
365 struct nand_chip *this = meminfo->priv;
366 printf ("nand_unlock: start: %08x, length: %d!\n",
367 (int)start, (int)length);
368
369 /* select the NAND device */
370 chipnr = (int)(start >> this->chip_shift);
371 this->select_chip(meminfo, chipnr);
372
373 /* check the WP bit */
374 this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
375 if ((this->read_byte(meminfo) & 0x80) == 0) {
376 printf ("nand_unlock: Device is write protected!\n");
377 ret = -1;
378 goto out;
379 }
380
381 if ((start & (meminfo->writesize - 1)) != 0) {
382 printf ("nand_unlock: Start address must be beginning of "
383 "nand page!\n");
384 ret = -1;
385 goto out;
386 }
387
388 if (length == 0 || (length & (meminfo->writesize - 1)) != 0) {
389 printf ("nand_unlock: Length must be a multiple of nand page "
390 "size!\n");
391 ret = -1;
392 goto out;
393 }
394
395 /* submit address of first page to unlock */
396 page = (int)(start >> this->page_shift);
397 this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
398
399 /* submit ADDRESS of LAST page to unlock */
400 page += (int)(length >> this->page_shift) - 1;
401 this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
402
403 /* call wait ready function */
404 status = this->waitfunc(meminfo, this, FL_WRITING);
405 /* see if device thinks it succeeded */
406 if (status & 0x01) {
407 /* there was an error */
408 ret = -1;
409 goto out;
410 }
411
412 out:
413 /* de-select the NAND device */
414 this->select_chip(meminfo, -1);
415 return ret;
416 }
417 #endif
418
419 /**
420 * get_len_incl_bad
421 *
422 * Check if length including bad blocks fits into device.
423 *
424 * @param nand NAND device
425 * @param offset offset in flash
426 * @param length image length
427 * @return image length including bad blocks
428 */
429 static size_t get_len_incl_bad (nand_info_t *nand, size_t offset,
430 const size_t length)
431 {
432 size_t len_incl_bad = 0;
433 size_t len_excl_bad = 0;
434 size_t block_len;
435
436 while (len_excl_bad < length) {
437 block_len = nand->erasesize - (offset & (nand->erasesize - 1));
438
439 if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
440 len_excl_bad += block_len;
441
442 len_incl_bad += block_len;
443 offset += block_len;
444
445 if ((offset + len_incl_bad) >= nand->size)
446 break;
447 }
448
449 return len_incl_bad;
450 }
451
452 /**
453 * nand_write_skip_bad:
454 *
455 * Write image to NAND flash.
456 * Blocks that are marked bad are skipped and the is written to the next
457 * block instead as long as the image is short enough to fit even after
458 * skipping the bad blocks.
459 *
460 * @param nand NAND device
461 * @param offset offset in flash
462 * @param length buffer length
463 * @param buf buffer to read from
464 * @return 0 in case of success
465 */
466 int nand_write_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
467 u_char *buffer)
468 {
469 int rval;
470 size_t left_to_write = *length;
471 size_t len_incl_bad;
472 u_char *p_buffer = buffer;
473
474 /* Reject writes, which are not page aligned */
475 if ((offset & (nand->writesize - 1)) != 0 ||
476 (*length & (nand->writesize - 1)) != 0) {
477 printf ("Attempt to write non page aligned data\n");
478 return -EINVAL;
479 }
480
481 len_incl_bad = get_len_incl_bad (nand, offset, *length);
482
483 if ((offset + len_incl_bad) >= nand->size) {
484 printf ("Attempt to write outside the flash area\n");
485 return -EINVAL;
486 }
487
488 if (len_incl_bad == *length) {
489 rval = nand_write (nand, offset, length, buffer);
490 if (rval != 0) {
491 printf ("NAND write to offset %x failed %d\n",
492 offset, rval);
493 return rval;
494 }
495 }
496
497 while (left_to_write > 0) {
498 size_t block_offset = offset & (nand->erasesize - 1);
499 size_t write_size;
500
501 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
502 printf ("Skip bad block 0x%08x\n",
503 offset & ~(nand->erasesize - 1));
504 offset += nand->erasesize - block_offset;
505 continue;
506 }
507
508 if (left_to_write < (nand->erasesize - block_offset))
509 write_size = left_to_write;
510 else
511 write_size = nand->erasesize - block_offset;
512
513 rval = nand_write (nand, offset, &write_size, p_buffer);
514 if (rval != 0) {
515 printf ("NAND write to offset %x failed %d\n",
516 offset, rval);
517 *length -= left_to_write;
518 return rval;
519 }
520
521 left_to_write -= write_size;
522 offset += write_size;
523 p_buffer += write_size;
524 }
525
526 return 0;
527 }
528
529 /**
530 * nand_read_skip_bad:
531 *
532 * Read image from NAND flash.
533 * Blocks that are marked bad are skipped and the next block is readen
534 * instead as long as the image is short enough to fit even after skipping the
535 * bad blocks.
536 *
537 * @param nand NAND device
538 * @param offset offset in flash
539 * @param length buffer length, on return holds remaining bytes to read
540 * @param buffer buffer to write to
541 * @return 0 in case of success
542 */
543 int nand_read_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
544 u_char *buffer)
545 {
546 int rval;
547 size_t left_to_read = *length;
548 size_t len_incl_bad;
549 u_char *p_buffer = buffer;
550
551 len_incl_bad = get_len_incl_bad (nand, offset, *length);
552
553 if ((offset + len_incl_bad) >= nand->size) {
554 printf ("Attempt to read outside the flash area\n");
555 return -EINVAL;
556 }
557
558 if (len_incl_bad == *length) {
559 rval = nand_read (nand, offset, length, buffer);
560 if (rval != 0) {
561 printf ("NAND read from offset %x failed %d\n",
562 offset, rval);
563 return rval;
564 }
565 }
566
567 while (left_to_read > 0) {
568 size_t block_offset = offset & (nand->erasesize - 1);
569 size_t read_length;
570
571 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
572 printf ("Skipping bad block 0x%08x\n",
573 offset & ~(nand->erasesize - 1));
574 offset += nand->erasesize - block_offset;
575 continue;
576 }
577
578 if (left_to_read < (nand->erasesize - block_offset))
579 read_length = left_to_read;
580 else
581 read_length = nand->erasesize - block_offset;
582
583 rval = nand_read (nand, offset, &read_length, p_buffer);
584 if (rval != 0) {
585 printf ("NAND read from offset %x failed %d\n",
586 offset, rval);
587 *length -= left_to_read;
588 return rval;
589 }
590
591 left_to_read -= read_length;
592 offset += read_length;
593 p_buffer += read_length;
594 }
595
596 return 0;
597 }