]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_util.c
NAND: Fix integer overflow in ONFI detection of chips >= 4GiB
[people/ms/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 * Copyright 2010 Freescale Semiconductor
32 * The portions of this file whose copyright is held by Freescale and which
33 * are not considered a derived work of GPL v2-only code may be distributed
34 * and/or modified under the terms of the GNU General Public License as
35 * published by the Free Software Foundation; either version 2 of the
36 * License, or (at your option) any later version.
37 */
38
39 #include <common.h>
40 #include <command.h>
41 #include <watchdog.h>
42 #include <malloc.h>
43 #include <div64.h>
44
45 #include <asm/errno.h>
46 #include <linux/mtd/mtd.h>
47 #include <nand.h>
48 #include <jffs2/jffs2.h>
49
50 typedef struct erase_info erase_info_t;
51 typedef struct mtd_info mtd_info_t;
52
53 /* support only for native endian JFFS2 */
54 #define cpu_to_je16(x) (x)
55 #define cpu_to_je32(x) (x)
56
57 /*****************************************************************************/
58 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
59 {
60 return 0;
61 }
62
63 /**
64 * nand_erase_opts: - erase NAND flash with support for various options
65 * (jffs2 formating)
66 *
67 * @param meminfo NAND device to erase
68 * @param opts options, @see struct nand_erase_options
69 * @return 0 in case of success
70 *
71 * This code is ported from flash_eraseall.c from Linux mtd utils by
72 * Arcom Control System Ltd.
73 */
74 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
75 {
76 struct jffs2_unknown_node cleanmarker;
77 erase_info_t erase;
78 unsigned long erase_length, erased_length; /* in blocks */
79 int bbtest = 1;
80 int result;
81 int percent_complete = -1;
82 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
83 const char *mtd_device = meminfo->name;
84 struct mtd_oob_ops oob_opts;
85 struct nand_chip *chip = meminfo->priv;
86
87 if ((opts->offset & (meminfo->writesize - 1)) != 0) {
88 printf("Attempt to erase non page aligned data\n");
89 return -1;
90 }
91
92 memset(&erase, 0, sizeof(erase));
93 memset(&oob_opts, 0, sizeof(oob_opts));
94
95 erase.mtd = meminfo;
96 erase.len = meminfo->erasesize;
97 erase.addr = opts->offset;
98 erase_length = lldiv(opts->length + meminfo->erasesize - 1,
99 meminfo->erasesize);
100
101 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
102 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
103 cleanmarker.totlen = cpu_to_je32(8);
104
105 /* scrub option allows to erase badblock. To prevent internal
106 * check from erase() method, set block check method to dummy
107 * and disable bad block table while erasing.
108 */
109 if (opts->scrub) {
110 struct nand_chip *priv_nand = meminfo->priv;
111
112 nand_block_bad_old = priv_nand->block_bad;
113 priv_nand->block_bad = nand_block_bad_scrub;
114 /* we don't need the bad block table anymore...
115 * after scrub, there are no bad blocks left!
116 */
117 if (priv_nand->bbt) {
118 kfree(priv_nand->bbt);
119 }
120 priv_nand->bbt = NULL;
121 }
122
123 for (erased_length = 0;
124 erased_length < erase_length;
125 erase.addr += meminfo->erasesize) {
126
127 WATCHDOG_RESET ();
128
129 if (!opts->scrub && bbtest) {
130 int ret = meminfo->block_isbad(meminfo, erase.addr);
131 if (ret > 0) {
132 if (!opts->quiet)
133 printf("\rSkipping bad block at "
134 "0x%08llx "
135 " \n",
136 erase.addr);
137
138 if (!opts->spread)
139 erased_length++;
140
141 continue;
142
143 } else if (ret < 0) {
144 printf("\n%s: MTD get bad block failed: %d\n",
145 mtd_device,
146 ret);
147 return -1;
148 }
149 }
150
151 erased_length++;
152
153 result = meminfo->erase(meminfo, &erase);
154 if (result != 0) {
155 printf("\n%s: MTD Erase failure: %d\n",
156 mtd_device, result);
157 continue;
158 }
159
160 /* format for JFFS2 ? */
161 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
162 chip->ops.ooblen = 8;
163 chip->ops.datbuf = NULL;
164 chip->ops.oobbuf = (uint8_t *)&cleanmarker;
165 chip->ops.ooboffs = 0;
166 chip->ops.mode = MTD_OOB_AUTO;
167
168 result = meminfo->write_oob(meminfo,
169 erase.addr,
170 &chip->ops);
171 if (result != 0) {
172 printf("\n%s: MTD writeoob failure: %d\n",
173 mtd_device, result);
174 continue;
175 }
176 }
177
178 if (!opts->quiet) {
179 unsigned long long n = erased_length * 100ULL;
180 int percent;
181
182 do_div(n, erase_length);
183 percent = (int)n;
184
185 /* output progress message only at whole percent
186 * steps to reduce the number of messages printed
187 * on (slow) serial consoles
188 */
189 if (percent != percent_complete) {
190 percent_complete = percent;
191
192 printf("\rErasing at 0x%llx -- %3d%% complete.",
193 erase.addr, percent);
194
195 if (opts->jffs2 && result == 0)
196 printf(" Cleanmarker written at 0x%llx.",
197 erase.addr);
198 }
199 }
200 }
201 if (!opts->quiet)
202 printf("\n");
203
204 if (nand_block_bad_old) {
205 struct nand_chip *priv_nand = meminfo->priv;
206
207 priv_nand->block_bad = nand_block_bad_old;
208 priv_nand->scan_bbt(meminfo);
209 }
210
211 return 0;
212 }
213
214 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
215
216 /******************************************************************************
217 * Support for locking / unlocking operations of some NAND devices
218 *****************************************************************************/
219
220 #define NAND_CMD_LOCK 0x2a
221 #define NAND_CMD_LOCK_TIGHT 0x2c
222 #define NAND_CMD_UNLOCK1 0x23
223 #define NAND_CMD_UNLOCK2 0x24
224 #define NAND_CMD_LOCK_STATUS 0x7a
225
226 /**
227 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
228 * state
229 *
230 * @param mtd nand mtd instance
231 * @param tight bring device in lock tight mode
232 *
233 * @return 0 on success, -1 in case of error
234 *
235 * The lock / lock-tight command only applies to the whole chip. To get some
236 * parts of the chip lock and others unlocked use the following sequence:
237 *
238 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
239 * - Call nand_unlock() once for each consecutive area to be unlocked
240 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
241 *
242 * If the device is in lock-tight state software can't change the
243 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
244 * calls will fail. It is only posible to leave lock-tight state by
245 * an hardware signal (low pulse on _WP pin) or by power down.
246 */
247 int nand_lock(struct mtd_info *mtd, int tight)
248 {
249 int ret = 0;
250 int status;
251 struct nand_chip *chip = mtd->priv;
252
253 /* select the NAND device */
254 chip->select_chip(mtd, 0);
255
256 chip->cmdfunc(mtd,
257 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
258 -1, -1);
259
260 /* call wait ready function */
261 status = chip->waitfunc(mtd, chip);
262
263 /* see if device thinks it succeeded */
264 if (status & 0x01) {
265 ret = -1;
266 }
267
268 /* de-select the NAND device */
269 chip->select_chip(mtd, -1);
270 return ret;
271 }
272
273 /**
274 * nand_get_lock_status: - query current lock state from one page of NAND
275 * flash
276 *
277 * @param mtd nand mtd instance
278 * @param offset page address to query (muss be page aligned!)
279 *
280 * @return -1 in case of error
281 * >0 lock status:
282 * bitfield with the following combinations:
283 * NAND_LOCK_STATUS_TIGHT: page in tight state
284 * NAND_LOCK_STATUS_LOCK: page locked
285 * NAND_LOCK_STATUS_UNLOCK: page unlocked
286 *
287 */
288 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
289 {
290 int ret = 0;
291 int chipnr;
292 int page;
293 struct nand_chip *chip = mtd->priv;
294
295 /* select the NAND device */
296 chipnr = (int)(offset >> chip->chip_shift);
297 chip->select_chip(mtd, chipnr);
298
299
300 if ((offset & (mtd->writesize - 1)) != 0) {
301 printf ("nand_get_lock_status: "
302 "Start address must be beginning of "
303 "nand page!\n");
304 ret = -1;
305 goto out;
306 }
307
308 /* check the Lock Status */
309 page = (int)(offset >> chip->page_shift);
310 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
311
312 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
313 | NAND_LOCK_STATUS_LOCK
314 | NAND_LOCK_STATUS_UNLOCK);
315
316 out:
317 /* de-select the NAND device */
318 chip->select_chip(mtd, -1);
319 return ret;
320 }
321
322 /**
323 * nand_unlock: - Unlock area of NAND pages
324 * only one consecutive area can be unlocked at one time!
325 *
326 * @param mtd nand mtd instance
327 * @param start start byte address
328 * @param length number of bytes to unlock (must be a multiple of
329 * page size nand->writesize)
330 *
331 * @return 0 on success, -1 in case of error
332 */
333 int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
334 {
335 int ret = 0;
336 int chipnr;
337 int status;
338 int page;
339 struct nand_chip *chip = mtd->priv;
340 printf ("nand_unlock: start: %08x, length: %d!\n",
341 (int)start, (int)length);
342
343 /* select the NAND device */
344 chipnr = (int)(start >> chip->chip_shift);
345 chip->select_chip(mtd, chipnr);
346
347 /* check the WP bit */
348 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
349 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
350 printf ("nand_unlock: Device is write protected!\n");
351 ret = -1;
352 goto out;
353 }
354
355 if ((start & (mtd->erasesize - 1)) != 0) {
356 printf ("nand_unlock: Start address must be beginning of "
357 "nand block!\n");
358 ret = -1;
359 goto out;
360 }
361
362 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
363 printf ("nand_unlock: Length must be a multiple of nand block "
364 "size %08x!\n", mtd->erasesize);
365 ret = -1;
366 goto out;
367 }
368
369 /*
370 * Set length so that the last address is set to the
371 * starting address of the last block
372 */
373 length -= mtd->erasesize;
374
375 /* submit address of first page to unlock */
376 page = (int)(start >> chip->page_shift);
377 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
378
379 /* submit ADDRESS of LAST page to unlock */
380 page += (int)(length >> chip->page_shift);
381 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
382
383 /* call wait ready function */
384 status = chip->waitfunc(mtd, chip);
385 /* see if device thinks it succeeded */
386 if (status & 0x01) {
387 /* there was an error */
388 ret = -1;
389 goto out;
390 }
391
392 out:
393 /* de-select the NAND device */
394 chip->select_chip(mtd, -1);
395 return ret;
396 }
397 #endif
398
399 /**
400 * check_skip_len
401 *
402 * Check if there are any bad blocks, and whether length including bad
403 * blocks fits into device
404 *
405 * @param nand NAND device
406 * @param offset offset in flash
407 * @param length image length
408 * @return 0 if the image fits and there are no bad blocks
409 * 1 if the image fits, but there are bad blocks
410 * -1 if the image does not fit
411 */
412 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
413 {
414 size_t len_excl_bad = 0;
415 int ret = 0;
416
417 while (len_excl_bad < length) {
418 size_t block_len, block_off;
419 loff_t block_start;
420
421 if (offset >= nand->size)
422 return -1;
423
424 block_start = offset & ~(loff_t)(nand->erasesize - 1);
425 block_off = offset & (nand->erasesize - 1);
426 block_len = nand->erasesize - block_off;
427
428 if (!nand_block_isbad(nand, block_start))
429 len_excl_bad += block_len;
430 else
431 ret = 1;
432
433 offset += block_len;
434 }
435
436 return ret;
437 }
438
439 /**
440 * nand_write_skip_bad:
441 *
442 * Write image to NAND flash.
443 * Blocks that are marked bad are skipped and the is written to the next
444 * block instead as long as the image is short enough to fit even after
445 * skipping the bad blocks.
446 *
447 * @param nand NAND device
448 * @param offset offset in flash
449 * @param length buffer length
450 * @param buffer buffer to read from
451 * @param withoob whether write with yaffs format
452 * @return 0 in case of success
453 */
454 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
455 u_char *buffer, int withoob)
456 {
457 int rval = 0, blocksize;
458 size_t left_to_write = *length;
459 u_char *p_buffer = buffer;
460 int need_skip;
461
462 #ifdef CONFIG_CMD_NAND_YAFFS
463 if (withoob) {
464 int pages;
465 pages = nand->erasesize / nand->writesize;
466 blocksize = (pages * nand->oobsize) + nand->erasesize;
467 if (*length % (nand->writesize + nand->oobsize)) {
468 printf ("Attempt to write incomplete page"
469 " in yaffs mode\n");
470 return -EINVAL;
471 }
472 } else
473 #endif
474 {
475 blocksize = nand->erasesize;
476 }
477
478 /*
479 * nand_write() handles unaligned, partial page writes.
480 *
481 * We allow length to be unaligned, for convenience in
482 * using the $filesize variable.
483 *
484 * However, starting at an unaligned offset makes the
485 * semantics of bad block skipping ambiguous (really,
486 * you should only start a block skipping access at a
487 * partition boundary). So don't try to handle that.
488 */
489 if ((offset & (nand->writesize - 1)) != 0) {
490 printf ("Attempt to write non page aligned data\n");
491 *length = 0;
492 return -EINVAL;
493 }
494
495 need_skip = check_skip_len(nand, offset, *length);
496 if (need_skip < 0) {
497 printf ("Attempt to write outside the flash area\n");
498 *length = 0;
499 return -EINVAL;
500 }
501
502 if (!need_skip) {
503 rval = nand_write (nand, offset, length, buffer);
504 if (rval == 0)
505 return 0;
506
507 *length = 0;
508 printf ("NAND write to offset %llx failed %d\n",
509 offset, rval);
510 return rval;
511 }
512
513 while (left_to_write > 0) {
514 size_t block_offset = offset & (nand->erasesize - 1);
515 size_t write_size;
516
517 WATCHDOG_RESET ();
518
519 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
520 printf ("Skip bad block 0x%08llx\n",
521 offset & ~(nand->erasesize - 1));
522 offset += nand->erasesize - block_offset;
523 continue;
524 }
525
526 if (left_to_write < (blocksize - block_offset))
527 write_size = left_to_write;
528 else
529 write_size = blocksize - block_offset;
530
531 #ifdef CONFIG_CMD_NAND_YAFFS
532 if (withoob) {
533 int page, pages;
534 size_t pagesize = nand->writesize;
535 size_t pagesize_oob = pagesize + nand->oobsize;
536 struct mtd_oob_ops ops;
537
538 ops.len = pagesize;
539 ops.ooblen = nand->oobsize;
540 ops.mode = MTD_OOB_AUTO;
541 ops.ooboffs = 0;
542
543 pages = write_size / pagesize_oob;
544 for (page = 0; page < pages; page++) {
545 WATCHDOG_RESET();
546
547 ops.datbuf = p_buffer;
548 ops.oobbuf = ops.datbuf + pagesize;
549
550 rval = nand->write_oob(nand, offset, &ops);
551 if (!rval)
552 break;
553
554 offset += pagesize;
555 p_buffer += pagesize_oob;
556 }
557 }
558 else
559 #endif
560 {
561 rval = nand_write (nand, offset, &write_size, p_buffer);
562 offset += write_size;
563 p_buffer += write_size;
564 }
565
566 if (rval != 0) {
567 printf ("NAND write to offset %llx failed %d\n",
568 offset, rval);
569 *length -= left_to_write;
570 return rval;
571 }
572
573 left_to_write -= write_size;
574 }
575
576 return 0;
577 }
578
579 /**
580 * nand_read_skip_bad:
581 *
582 * Read image from NAND flash.
583 * Blocks that are marked bad are skipped and the next block is readen
584 * instead as long as the image is short enough to fit even after skipping the
585 * bad blocks.
586 *
587 * @param nand NAND device
588 * @param offset offset in flash
589 * @param length buffer length, on return holds remaining bytes to read
590 * @param buffer buffer to write to
591 * @return 0 in case of success
592 */
593 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
594 u_char *buffer)
595 {
596 int rval;
597 size_t left_to_read = *length;
598 u_char *p_buffer = buffer;
599 int need_skip;
600
601 if ((offset & (nand->writesize - 1)) != 0) {
602 printf ("Attempt to read non page aligned data\n");
603 *length = 0;
604 return -EINVAL;
605 }
606
607 need_skip = check_skip_len(nand, offset, *length);
608 if (need_skip < 0) {
609 printf ("Attempt to read outside the flash area\n");
610 *length = 0;
611 return -EINVAL;
612 }
613
614 if (!need_skip) {
615 rval = nand_read (nand, offset, length, buffer);
616 if (!rval || rval == -EUCLEAN)
617 return 0;
618
619 *length = 0;
620 printf ("NAND read from offset %llx failed %d\n",
621 offset, rval);
622 return rval;
623 }
624
625 while (left_to_read > 0) {
626 size_t block_offset = offset & (nand->erasesize - 1);
627 size_t read_length;
628
629 WATCHDOG_RESET ();
630
631 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
632 printf ("Skipping bad block 0x%08llx\n",
633 offset & ~(nand->erasesize - 1));
634 offset += nand->erasesize - block_offset;
635 continue;
636 }
637
638 if (left_to_read < (nand->erasesize - block_offset))
639 read_length = left_to_read;
640 else
641 read_length = nand->erasesize - block_offset;
642
643 rval = nand_read (nand, offset, &read_length, p_buffer);
644 if (rval && rval != -EUCLEAN) {
645 printf ("NAND read from offset %llx failed %d\n",
646 offset, rval);
647 *length -= left_to_read;
648 return rval;
649 }
650
651 left_to_read -= read_length;
652 offset += read_length;
653 p_buffer += read_length;
654 }
655
656 return 0;
657 }