]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_util.c
Merge branch 'master' of git://git.denx.de/u-boot-ppc4xx
[people/ms/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 */
32
33 #include <common.h>
34 #include <command.h>
35 #include <watchdog.h>
36 #include <malloc.h>
37 #include <div64.h>
38
39 #include <asm/errno.h>
40 #include <linux/mtd/mtd.h>
41 #include <nand.h>
42 #include <jffs2/jffs2.h>
43
44 #if !defined(CONFIG_SYS_64BIT_VSPRINTF)
45 #warning Please define CONFIG_SYS_64BIT_VSPRINTF for correct output!
46 #endif
47
48 typedef struct erase_info erase_info_t;
49 typedef struct mtd_info mtd_info_t;
50
51 /* support only for native endian JFFS2 */
52 #define cpu_to_je16(x) (x)
53 #define cpu_to_je32(x) (x)
54
55 /*****************************************************************************/
56 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
57 {
58 return 0;
59 }
60
61 /**
62 * nand_erase_opts: - erase NAND flash with support for various options
63 * (jffs2 formating)
64 *
65 * @param meminfo NAND device to erase
66 * @param opts options, @see struct nand_erase_options
67 * @return 0 in case of success
68 *
69 * This code is ported from flash_eraseall.c from Linux mtd utils by
70 * Arcom Control System Ltd.
71 */
72 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
73 {
74 struct jffs2_unknown_node cleanmarker;
75 erase_info_t erase;
76 ulong erase_length;
77 int bbtest = 1;
78 int result;
79 int percent_complete = -1;
80 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
81 const char *mtd_device = meminfo->name;
82 struct mtd_oob_ops oob_opts;
83 struct nand_chip *chip = meminfo->priv;
84
85 memset(&erase, 0, sizeof(erase));
86 memset(&oob_opts, 0, sizeof(oob_opts));
87
88 erase.mtd = meminfo;
89 erase.len = meminfo->erasesize;
90 erase.addr = opts->offset;
91 erase_length = opts->length;
92
93 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
94 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
95 cleanmarker.totlen = cpu_to_je32(8);
96
97 /* scrub option allows to erase badblock. To prevent internal
98 * check from erase() method, set block check method to dummy
99 * and disable bad block table while erasing.
100 */
101 if (opts->scrub) {
102 struct nand_chip *priv_nand = meminfo->priv;
103
104 nand_block_bad_old = priv_nand->block_bad;
105 priv_nand->block_bad = nand_block_bad_scrub;
106 /* we don't need the bad block table anymore...
107 * after scrub, there are no bad blocks left!
108 */
109 if (priv_nand->bbt) {
110 kfree(priv_nand->bbt);
111 }
112 priv_nand->bbt = NULL;
113 }
114
115 if (erase_length < meminfo->erasesize) {
116 printf("Warning: Erase size 0x%08lx smaller than one " \
117 "erase block 0x%08x\n",erase_length, meminfo->erasesize);
118 printf(" Erasing 0x%08x instead\n", meminfo->erasesize);
119 erase_length = meminfo->erasesize;
120 }
121
122 for (;
123 erase.addr < opts->offset + erase_length;
124 erase.addr += meminfo->erasesize) {
125
126 WATCHDOG_RESET ();
127
128 if (!opts->scrub && bbtest) {
129 int ret = meminfo->block_isbad(meminfo, erase.addr);
130 if (ret > 0) {
131 if (!opts->quiet)
132 printf("\rSkipping bad block at "
133 "0x%08llx "
134 " \n",
135 erase.addr);
136 continue;
137
138 } else if (ret < 0) {
139 printf("\n%s: MTD get bad block failed: %d\n",
140 mtd_device,
141 ret);
142 return -1;
143 }
144 }
145
146 result = meminfo->erase(meminfo, &erase);
147 if (result != 0) {
148 printf("\n%s: MTD Erase failure: %d\n",
149 mtd_device, result);
150 continue;
151 }
152
153 /* format for JFFS2 ? */
154 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
155 chip->ops.ooblen = 8;
156 chip->ops.datbuf = NULL;
157 chip->ops.oobbuf = (uint8_t *)&cleanmarker;
158 chip->ops.ooboffs = 0;
159 chip->ops.mode = MTD_OOB_AUTO;
160
161 result = meminfo->write_oob(meminfo,
162 erase.addr,
163 &chip->ops);
164 if (result != 0) {
165 printf("\n%s: MTD writeoob failure: %d\n",
166 mtd_device, result);
167 continue;
168 }
169 }
170
171 if (!opts->quiet) {
172 unsigned long long n =(unsigned long long)
173 (erase.addr + meminfo->erasesize - opts->offset)
174 * 100;
175 int percent;
176
177 do_div(n, erase_length);
178 percent = (int)n;
179
180 /* output progress message only at whole percent
181 * steps to reduce the number of messages printed
182 * on (slow) serial consoles
183 */
184 if (percent != percent_complete) {
185 percent_complete = percent;
186
187 printf("\rErasing at 0x%llx -- %3d%% complete.",
188 erase.addr, percent);
189
190 if (opts->jffs2 && result == 0)
191 printf(" Cleanmarker written at 0x%llx.",
192 erase.addr);
193 }
194 }
195 }
196 if (!opts->quiet)
197 printf("\n");
198
199 if (nand_block_bad_old) {
200 struct nand_chip *priv_nand = meminfo->priv;
201
202 priv_nand->block_bad = nand_block_bad_old;
203 priv_nand->scan_bbt(meminfo);
204 }
205
206 return 0;
207 }
208
209 /* XXX U-BOOT XXX */
210 #if 0
211
212 #define MAX_PAGE_SIZE 2048
213 #define MAX_OOB_SIZE 64
214
215 /*
216 * buffer array used for writing data
217 */
218 static unsigned char data_buf[MAX_PAGE_SIZE];
219 static unsigned char oob_buf[MAX_OOB_SIZE];
220
221 /* OOB layouts to pass into the kernel as default */
222 static struct nand_ecclayout none_ecclayout = {
223 .useecc = MTD_NANDECC_OFF,
224 };
225
226 static struct nand_ecclayout jffs2_ecclayout = {
227 .useecc = MTD_NANDECC_PLACE,
228 .eccbytes = 6,
229 .eccpos = { 0, 1, 2, 3, 6, 7 }
230 };
231
232 static struct nand_ecclayout yaffs_ecclayout = {
233 .useecc = MTD_NANDECC_PLACE,
234 .eccbytes = 6,
235 .eccpos = { 8, 9, 10, 13, 14, 15}
236 };
237
238 static struct nand_ecclayout autoplace_ecclayout = {
239 .useecc = MTD_NANDECC_AUTOPLACE
240 };
241 #endif
242
243 /* XXX U-BOOT XXX */
244 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
245
246 /******************************************************************************
247 * Support for locking / unlocking operations of some NAND devices
248 *****************************************************************************/
249
250 #define NAND_CMD_LOCK 0x2a
251 #define NAND_CMD_LOCK_TIGHT 0x2c
252 #define NAND_CMD_UNLOCK1 0x23
253 #define NAND_CMD_UNLOCK2 0x24
254 #define NAND_CMD_LOCK_STATUS 0x7a
255
256 /**
257 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
258 * state
259 *
260 * @param mtd nand mtd instance
261 * @param tight bring device in lock tight mode
262 *
263 * @return 0 on success, -1 in case of error
264 *
265 * The lock / lock-tight command only applies to the whole chip. To get some
266 * parts of the chip lock and others unlocked use the following sequence:
267 *
268 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
269 * - Call nand_unlock() once for each consecutive area to be unlocked
270 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
271 *
272 * If the device is in lock-tight state software can't change the
273 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
274 * calls will fail. It is only posible to leave lock-tight state by
275 * an hardware signal (low pulse on _WP pin) or by power down.
276 */
277 int nand_lock(struct mtd_info *mtd, int tight)
278 {
279 int ret = 0;
280 int status;
281 struct nand_chip *chip = mtd->priv;
282
283 /* select the NAND device */
284 chip->select_chip(mtd, 0);
285
286 chip->cmdfunc(mtd,
287 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
288 -1, -1);
289
290 /* call wait ready function */
291 status = chip->waitfunc(mtd, chip);
292
293 /* see if device thinks it succeeded */
294 if (status & 0x01) {
295 ret = -1;
296 }
297
298 /* de-select the NAND device */
299 chip->select_chip(mtd, -1);
300 return ret;
301 }
302
303 /**
304 * nand_get_lock_status: - query current lock state from one page of NAND
305 * flash
306 *
307 * @param mtd nand mtd instance
308 * @param offset page address to query (muss be page aligned!)
309 *
310 * @return -1 in case of error
311 * >0 lock status:
312 * bitfield with the following combinations:
313 * NAND_LOCK_STATUS_TIGHT: page in tight state
314 * NAND_LOCK_STATUS_LOCK: page locked
315 * NAND_LOCK_STATUS_UNLOCK: page unlocked
316 *
317 */
318 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
319 {
320 int ret = 0;
321 int chipnr;
322 int page;
323 struct nand_chip *chip = mtd->priv;
324
325 /* select the NAND device */
326 chipnr = (int)(offset >> chip->chip_shift);
327 chip->select_chip(mtd, chipnr);
328
329
330 if ((offset & (mtd->writesize - 1)) != 0) {
331 printf ("nand_get_lock_status: "
332 "Start address must be beginning of "
333 "nand page!\n");
334 ret = -1;
335 goto out;
336 }
337
338 /* check the Lock Status */
339 page = (int)(offset >> chip->page_shift);
340 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
341
342 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
343 | NAND_LOCK_STATUS_LOCK
344 | NAND_LOCK_STATUS_UNLOCK);
345
346 out:
347 /* de-select the NAND device */
348 chip->select_chip(mtd, -1);
349 return ret;
350 }
351
352 /**
353 * nand_unlock: - Unlock area of NAND pages
354 * only one consecutive area can be unlocked at one time!
355 *
356 * @param mtd nand mtd instance
357 * @param start start byte address
358 * @param length number of bytes to unlock (must be a multiple of
359 * page size nand->writesize)
360 *
361 * @return 0 on success, -1 in case of error
362 */
363 int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
364 {
365 int ret = 0;
366 int chipnr;
367 int status;
368 int page;
369 struct nand_chip *chip = mtd->priv;
370 printf ("nand_unlock: start: %08x, length: %d!\n",
371 (int)start, (int)length);
372
373 /* select the NAND device */
374 chipnr = (int)(start >> chip->chip_shift);
375 chip->select_chip(mtd, chipnr);
376
377 /* check the WP bit */
378 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
379 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
380 printf ("nand_unlock: Device is write protected!\n");
381 ret = -1;
382 goto out;
383 }
384
385 if ((start & (mtd->erasesize - 1)) != 0) {
386 printf ("nand_unlock: Start address must be beginning of "
387 "nand block!\n");
388 ret = -1;
389 goto out;
390 }
391
392 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
393 printf ("nand_unlock: Length must be a multiple of nand block "
394 "size %08x!\n", mtd->erasesize);
395 ret = -1;
396 goto out;
397 }
398
399 /*
400 * Set length so that the last address is set to the
401 * starting address of the last block
402 */
403 length -= mtd->erasesize;
404
405 /* submit address of first page to unlock */
406 page = (int)(start >> chip->page_shift);
407 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
408
409 /* submit ADDRESS of LAST page to unlock */
410 page += (int)(length >> chip->page_shift);
411 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
412
413 /* call wait ready function */
414 status = chip->waitfunc(mtd, chip);
415 /* see if device thinks it succeeded */
416 if (status & 0x01) {
417 /* there was an error */
418 ret = -1;
419 goto out;
420 }
421
422 out:
423 /* de-select the NAND device */
424 chip->select_chip(mtd, -1);
425 return ret;
426 }
427 #endif
428
429 /**
430 * get_len_incl_bad
431 *
432 * Check if length including bad blocks fits into device.
433 *
434 * @param nand NAND device
435 * @param offset offset in flash
436 * @param length image length
437 * @return image length including bad blocks
438 */
439 static size_t get_len_incl_bad (nand_info_t *nand, loff_t offset,
440 const size_t length)
441 {
442 size_t len_incl_bad = 0;
443 size_t len_excl_bad = 0;
444 size_t block_len;
445
446 while (len_excl_bad < length) {
447 block_len = nand->erasesize - (offset & (nand->erasesize - 1));
448
449 if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
450 len_excl_bad += block_len;
451
452 len_incl_bad += block_len;
453 offset += block_len;
454
455 if ((offset + len_incl_bad) >= nand->size)
456 break;
457 }
458
459 return len_incl_bad;
460 }
461
462 /**
463 * nand_write_skip_bad:
464 *
465 * Write image to NAND flash.
466 * Blocks that are marked bad are skipped and the is written to the next
467 * block instead as long as the image is short enough to fit even after
468 * skipping the bad blocks.
469 *
470 * @param nand NAND device
471 * @param offset offset in flash
472 * @param length buffer length
473 * @param buf buffer to read from
474 * @return 0 in case of success
475 */
476 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
477 u_char *buffer)
478 {
479 int rval;
480 size_t left_to_write = *length;
481 size_t len_incl_bad;
482 u_char *p_buffer = buffer;
483
484 /* Reject writes, which are not page aligned */
485 if ((offset & (nand->writesize - 1)) != 0 ||
486 (*length & (nand->writesize - 1)) != 0) {
487 printf ("Attempt to write non page aligned data\n");
488 return -EINVAL;
489 }
490
491 len_incl_bad = get_len_incl_bad (nand, offset, *length);
492
493 if ((offset + len_incl_bad) >= nand->size) {
494 printf ("Attempt to write outside the flash area\n");
495 return -EINVAL;
496 }
497
498 if (len_incl_bad == *length) {
499 rval = nand_write (nand, offset, length, buffer);
500 if (rval != 0)
501 printf ("NAND write to offset %llx failed %d\n",
502 offset, rval);
503
504 return rval;
505 }
506
507 while (left_to_write > 0) {
508 size_t block_offset = offset & (nand->erasesize - 1);
509 size_t write_size;
510
511 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
512 printf ("Skip bad block 0x%08llx\n",
513 offset & ~(nand->erasesize - 1));
514 offset += nand->erasesize - block_offset;
515 continue;
516 }
517
518 if (left_to_write < (nand->erasesize - block_offset))
519 write_size = left_to_write;
520 else
521 write_size = nand->erasesize - block_offset;
522
523 rval = nand_write (nand, offset, &write_size, p_buffer);
524 if (rval != 0) {
525 printf ("NAND write to offset %llx failed %d\n",
526 offset, rval);
527 *length -= left_to_write;
528 return rval;
529 }
530
531 left_to_write -= write_size;
532 offset += write_size;
533 p_buffer += write_size;
534 }
535
536 return 0;
537 }
538
539 /**
540 * nand_read_skip_bad:
541 *
542 * Read image from NAND flash.
543 * Blocks that are marked bad are skipped and the next block is readen
544 * instead as long as the image is short enough to fit even after skipping the
545 * bad blocks.
546 *
547 * @param nand NAND device
548 * @param offset offset in flash
549 * @param length buffer length, on return holds remaining bytes to read
550 * @param buffer buffer to write to
551 * @return 0 in case of success
552 */
553 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
554 u_char *buffer)
555 {
556 int rval;
557 size_t left_to_read = *length;
558 size_t len_incl_bad;
559 u_char *p_buffer = buffer;
560
561 len_incl_bad = get_len_incl_bad (nand, offset, *length);
562
563 if ((offset + len_incl_bad) >= nand->size) {
564 printf ("Attempt to read outside the flash area\n");
565 return -EINVAL;
566 }
567
568 if (len_incl_bad == *length) {
569 rval = nand_read (nand, offset, length, buffer);
570 if (rval != 0)
571 printf ("NAND read from offset %llx failed %d\n",
572 offset, rval);
573
574 return rval;
575 }
576
577 while (left_to_read > 0) {
578 size_t block_offset = offset & (nand->erasesize - 1);
579 size_t read_length;
580
581 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
582 printf ("Skipping bad block 0x%08llx\n",
583 offset & ~(nand->erasesize - 1));
584 offset += nand->erasesize - block_offset;
585 continue;
586 }
587
588 if (left_to_read < (nand->erasesize - block_offset))
589 read_length = left_to_read;
590 else
591 read_length = nand->erasesize - block_offset;
592
593 rval = nand_read (nand, offset, &read_length, p_buffer);
594 if (rval != 0) {
595 printf ("NAND read from offset %llx failed %d\n",
596 offset, rval);
597 *length -= left_to_read;
598 return rval;
599 }
600
601 left_to_read -= read_length;
602 offset += read_length;
603 p_buffer += read_length;
604 }
605
606 return 0;
607 }