]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_util.c
Merge branch 'next' of git://git.denx.de/u-boot-avr32
[people/ms/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 */
32
33 #include <common.h>
34 #include <command.h>
35 #include <watchdog.h>
36 #include <malloc.h>
37 #include <div64.h>
38
39
40 #include <asm/errno.h>
41 #include <linux/mtd/mtd.h>
42 #include <nand.h>
43 #include <jffs2/jffs2.h>
44
45 typedef struct erase_info erase_info_t;
46 typedef struct mtd_info mtd_info_t;
47
48 /* support only for native endian JFFS2 */
49 #define cpu_to_je16(x) (x)
50 #define cpu_to_je32(x) (x)
51
52 /*****************************************************************************/
53 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
54 {
55 return 0;
56 }
57
58 /**
59 * nand_erase_opts: - erase NAND flash with support for various options
60 * (jffs2 formating)
61 *
62 * @param meminfo NAND device to erase
63 * @param opts options, @see struct nand_erase_options
64 * @return 0 in case of success
65 *
66 * This code is ported from flash_eraseall.c from Linux mtd utils by
67 * Arcom Control System Ltd.
68 */
69 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
70 {
71 struct jffs2_unknown_node cleanmarker;
72 erase_info_t erase;
73 ulong erase_length;
74 int bbtest = 1;
75 int result;
76 int percent_complete = -1;
77 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
78 const char *mtd_device = meminfo->name;
79 struct mtd_oob_ops oob_opts;
80 struct nand_chip *chip = meminfo->priv;
81 uint8_t buf[64];
82
83 memset(buf, 0, sizeof(buf));
84 memset(&erase, 0, sizeof(erase));
85 memset(&oob_opts, 0, sizeof(oob_opts));
86
87 erase.mtd = meminfo;
88 erase.len = meminfo->erasesize;
89 erase.addr = opts->offset;
90 erase_length = opts->length;
91
92
93 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
94 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
95 cleanmarker.totlen = cpu_to_je32(8);
96 cleanmarker.hdr_crc = cpu_to_je32(
97 crc32_no_comp(0, (unsigned char *) &cleanmarker,
98 sizeof(struct jffs2_unknown_node) - 4));
99
100 /* scrub option allows to erase badblock. To prevent internal
101 * check from erase() method, set block check method to dummy
102 * and disable bad block table while erasing.
103 */
104 if (opts->scrub) {
105 struct nand_chip *priv_nand = meminfo->priv;
106
107 nand_block_bad_old = priv_nand->block_bad;
108 priv_nand->block_bad = nand_block_bad_scrub;
109 /* we don't need the bad block table anymore...
110 * after scrub, there are no bad blocks left!
111 */
112 if (priv_nand->bbt) {
113 kfree(priv_nand->bbt);
114 }
115 priv_nand->bbt = NULL;
116 }
117
118 if (erase_length < meminfo->erasesize) {
119 printf("Warning: Erase size 0x%08lx smaller than one " \
120 "erase block 0x%08x\n",erase_length, meminfo->erasesize);
121 printf(" Erasing 0x%08x instead\n", meminfo->erasesize);
122 erase_length = meminfo->erasesize;
123 }
124
125 for (;
126 erase.addr < opts->offset + erase_length;
127 erase.addr += meminfo->erasesize) {
128
129 WATCHDOG_RESET ();
130
131 if (!opts->scrub && bbtest) {
132 int ret = meminfo->block_isbad(meminfo, erase.addr);
133 if (ret > 0) {
134 if (!opts->quiet)
135 printf("\rSkipping bad block at "
136 "0x%08x "
137 " \n",
138 erase.addr);
139 continue;
140
141 } else if (ret < 0) {
142 printf("\n%s: MTD get bad block failed: %d\n",
143 mtd_device,
144 ret);
145 return -1;
146 }
147 }
148
149 result = meminfo->erase(meminfo, &erase);
150 if (result != 0) {
151 printf("\n%s: MTD Erase failure: %d\n",
152 mtd_device, result);
153 continue;
154 }
155
156 /* format for JFFS2 ? */
157 if (opts->jffs2) {
158
159 chip->ops.len = chip->ops.ooblen = 64;
160 chip->ops.datbuf = NULL;
161 chip->ops.oobbuf = buf;
162 chip->ops.ooboffs = chip->badblockpos & ~0x01;
163
164 result = meminfo->write_oob(meminfo,
165 erase.addr + meminfo->oobsize,
166 &chip->ops);
167 if (result != 0) {
168 printf("\n%s: MTD writeoob failure: %d\n",
169 mtd_device, result);
170 continue;
171 }
172 else
173 printf("%s: MTD writeoob at 0x%08x\n",mtd_device, erase.addr + meminfo->oobsize );
174 }
175
176 if (!opts->quiet) {
177 unsigned long long n =(unsigned long long)
178 (erase.addr + meminfo->erasesize - opts->offset)
179 * 100;
180 int percent;
181
182 do_div(n, erase_length);
183 percent = (int)n;
184
185 /* output progress message only at whole percent
186 * steps to reduce the number of messages printed
187 * on (slow) serial consoles
188 */
189 if (percent != percent_complete) {
190 percent_complete = percent;
191
192 printf("\rErasing at 0x%x -- %3d%% complete.",
193 erase.addr, percent);
194
195 if (opts->jffs2 && result == 0)
196 printf(" Cleanmarker written at 0x%x.",
197 erase.addr);
198 }
199 }
200 }
201 if (!opts->quiet)
202 printf("\n");
203
204 if (nand_block_bad_old) {
205 struct nand_chip *priv_nand = meminfo->priv;
206
207 priv_nand->block_bad = nand_block_bad_old;
208 priv_nand->scan_bbt(meminfo);
209 }
210
211 return 0;
212 }
213
214 /* XXX U-BOOT XXX */
215 #if 0
216
217 #define MAX_PAGE_SIZE 2048
218 #define MAX_OOB_SIZE 64
219
220 /*
221 * buffer array used for writing data
222 */
223 static unsigned char data_buf[MAX_PAGE_SIZE];
224 static unsigned char oob_buf[MAX_OOB_SIZE];
225
226 /* OOB layouts to pass into the kernel as default */
227 static struct nand_ecclayout none_ecclayout = {
228 .useecc = MTD_NANDECC_OFF,
229 };
230
231 static struct nand_ecclayout jffs2_ecclayout = {
232 .useecc = MTD_NANDECC_PLACE,
233 .eccbytes = 6,
234 .eccpos = { 0, 1, 2, 3, 6, 7 }
235 };
236
237 static struct nand_ecclayout yaffs_ecclayout = {
238 .useecc = MTD_NANDECC_PLACE,
239 .eccbytes = 6,
240 .eccpos = { 8, 9, 10, 13, 14, 15}
241 };
242
243 static struct nand_ecclayout autoplace_ecclayout = {
244 .useecc = MTD_NANDECC_AUTOPLACE
245 };
246 #endif
247
248 /* XXX U-BOOT XXX */
249 #if 0
250 /******************************************************************************
251 * Support for locking / unlocking operations of some NAND devices
252 *****************************************************************************/
253
254 #define NAND_CMD_LOCK 0x2a
255 #define NAND_CMD_LOCK_TIGHT 0x2c
256 #define NAND_CMD_UNLOCK1 0x23
257 #define NAND_CMD_UNLOCK2 0x24
258 #define NAND_CMD_LOCK_STATUS 0x7a
259
260 /**
261 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
262 * state
263 *
264 * @param meminfo nand mtd instance
265 * @param tight bring device in lock tight mode
266 *
267 * @return 0 on success, -1 in case of error
268 *
269 * The lock / lock-tight command only applies to the whole chip. To get some
270 * parts of the chip lock and others unlocked use the following sequence:
271 *
272 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
273 * - Call nand_unlock() once for each consecutive area to be unlocked
274 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
275 *
276 * If the device is in lock-tight state software can't change the
277 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
278 * calls will fail. It is only posible to leave lock-tight state by
279 * an hardware signal (low pulse on _WP pin) or by power down.
280 */
281 int nand_lock(nand_info_t *meminfo, int tight)
282 {
283 int ret = 0;
284 int status;
285 struct nand_chip *this = meminfo->priv;
286
287 /* select the NAND device */
288 this->select_chip(meminfo, 0);
289
290 this->cmdfunc(meminfo,
291 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
292 -1, -1);
293
294 /* call wait ready function */
295 status = this->waitfunc(meminfo, this, FL_WRITING);
296
297 /* see if device thinks it succeeded */
298 if (status & 0x01) {
299 ret = -1;
300 }
301
302 /* de-select the NAND device */
303 this->select_chip(meminfo, -1);
304 return ret;
305 }
306
307 /**
308 * nand_get_lock_status: - query current lock state from one page of NAND
309 * flash
310 *
311 * @param meminfo nand mtd instance
312 * @param offset page address to query (muss be page aligned!)
313 *
314 * @return -1 in case of error
315 * >0 lock status:
316 * bitfield with the following combinations:
317 * NAND_LOCK_STATUS_TIGHT: page in tight state
318 * NAND_LOCK_STATUS_LOCK: page locked
319 * NAND_LOCK_STATUS_UNLOCK: page unlocked
320 *
321 */
322 int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
323 {
324 int ret = 0;
325 int chipnr;
326 int page;
327 struct nand_chip *this = meminfo->priv;
328
329 /* select the NAND device */
330 chipnr = (int)(offset >> this->chip_shift);
331 this->select_chip(meminfo, chipnr);
332
333
334 if ((offset & (meminfo->writesize - 1)) != 0) {
335 printf ("nand_get_lock_status: "
336 "Start address must be beginning of "
337 "nand page!\n");
338 ret = -1;
339 goto out;
340 }
341
342 /* check the Lock Status */
343 page = (int)(offset >> this->page_shift);
344 this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
345
346 ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
347 | NAND_LOCK_STATUS_LOCK
348 | NAND_LOCK_STATUS_UNLOCK);
349
350 out:
351 /* de-select the NAND device */
352 this->select_chip(meminfo, -1);
353 return ret;
354 }
355
356 /**
357 * nand_unlock: - Unlock area of NAND pages
358 * only one consecutive area can be unlocked at one time!
359 *
360 * @param meminfo nand mtd instance
361 * @param start start byte address
362 * @param length number of bytes to unlock (must be a multiple of
363 * page size nand->writesize)
364 *
365 * @return 0 on success, -1 in case of error
366 */
367 int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
368 {
369 int ret = 0;
370 int chipnr;
371 int status;
372 int page;
373 struct nand_chip *this = meminfo->priv;
374 printf ("nand_unlock: start: %08x, length: %d!\n",
375 (int)start, (int)length);
376
377 /* select the NAND device */
378 chipnr = (int)(start >> this->chip_shift);
379 this->select_chip(meminfo, chipnr);
380
381 /* check the WP bit */
382 this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
383 if ((this->read_byte(meminfo) & 0x80) == 0) {
384 printf ("nand_unlock: Device is write protected!\n");
385 ret = -1;
386 goto out;
387 }
388
389 if ((start & (meminfo->writesize - 1)) != 0) {
390 printf ("nand_unlock: Start address must be beginning of "
391 "nand page!\n");
392 ret = -1;
393 goto out;
394 }
395
396 if (length == 0 || (length & (meminfo->writesize - 1)) != 0) {
397 printf ("nand_unlock: Length must be a multiple of nand page "
398 "size!\n");
399 ret = -1;
400 goto out;
401 }
402
403 /* submit address of first page to unlock */
404 page = (int)(start >> this->page_shift);
405 this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
406
407 /* submit ADDRESS of LAST page to unlock */
408 page += (int)(length >> this->page_shift) - 1;
409 this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
410
411 /* call wait ready function */
412 status = this->waitfunc(meminfo, this, FL_WRITING);
413 /* see if device thinks it succeeded */
414 if (status & 0x01) {
415 /* there was an error */
416 ret = -1;
417 goto out;
418 }
419
420 out:
421 /* de-select the NAND device */
422 this->select_chip(meminfo, -1);
423 return ret;
424 }
425 #endif
426
427 /**
428 * get_len_incl_bad
429 *
430 * Check if length including bad blocks fits into device.
431 *
432 * @param nand NAND device
433 * @param offset offset in flash
434 * @param length image length
435 * @return image length including bad blocks
436 */
437 static size_t get_len_incl_bad (nand_info_t *nand, size_t offset,
438 const size_t length)
439 {
440 size_t len_incl_bad = 0;
441 size_t len_excl_bad = 0;
442 size_t block_len;
443
444 while (len_excl_bad < length) {
445 block_len = nand->erasesize - (offset & (nand->erasesize - 1));
446
447 if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
448 len_excl_bad += block_len;
449
450 len_incl_bad += block_len;
451 offset += block_len;
452
453 if ((offset + len_incl_bad) >= nand->size)
454 break;
455 }
456
457 return len_incl_bad;
458 }
459
460 /**
461 * nand_write_skip_bad:
462 *
463 * Write image to NAND flash.
464 * Blocks that are marked bad are skipped and the is written to the next
465 * block instead as long as the image is short enough to fit even after
466 * skipping the bad blocks.
467 *
468 * @param nand NAND device
469 * @param offset offset in flash
470 * @param length buffer length
471 * @param buf buffer to read from
472 * @return 0 in case of success
473 */
474 int nand_write_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
475 u_char *buffer)
476 {
477 int rval;
478 size_t left_to_write = *length;
479 size_t len_incl_bad;
480 u_char *p_buffer = buffer;
481
482 /* Reject writes, which are not page aligned */
483 if ((offset & (nand->writesize - 1)) != 0 ||
484 (*length & (nand->writesize - 1)) != 0) {
485 printf ("Attempt to write non page aligned data\n");
486 return -EINVAL;
487 }
488
489 len_incl_bad = get_len_incl_bad (nand, offset, *length);
490
491 if ((offset + len_incl_bad) >= nand->size) {
492 printf ("Attempt to write outside the flash area\n");
493 return -EINVAL;
494 }
495
496 if (len_incl_bad == *length) {
497 rval = nand_write (nand, offset, length, buffer);
498 if (rval != 0) {
499 printf ("NAND write to offset %x failed %d\n",
500 offset, rval);
501 return rval;
502 }
503 }
504
505 while (left_to_write > 0) {
506 size_t block_offset = offset & (nand->erasesize - 1);
507 size_t write_size;
508
509 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
510 printf ("Skip bad block 0x%08x\n",
511 offset & ~(nand->erasesize - 1));
512 offset += nand->erasesize - block_offset;
513 continue;
514 }
515
516 if (left_to_write < (nand->erasesize - block_offset))
517 write_size = left_to_write;
518 else
519 write_size = nand->erasesize - block_offset;
520
521 rval = nand_write (nand, offset, &write_size, p_buffer);
522 if (rval != 0) {
523 printf ("NAND write to offset %x failed %d\n",
524 offset, rval);
525 *length -= left_to_write;
526 return rval;
527 }
528
529 left_to_write -= write_size;
530 offset += write_size;
531 p_buffer += write_size;
532 }
533
534 return 0;
535 }
536
537 /**
538 * nand_read_skip_bad:
539 *
540 * Read image from NAND flash.
541 * Blocks that are marked bad are skipped and the next block is readen
542 * instead as long as the image is short enough to fit even after skipping the
543 * bad blocks.
544 *
545 * @param nand NAND device
546 * @param offset offset in flash
547 * @param length buffer length, on return holds remaining bytes to read
548 * @param buffer buffer to write to
549 * @return 0 in case of success
550 */
551 int nand_read_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
552 u_char *buffer)
553 {
554 int rval;
555 size_t left_to_read = *length;
556 size_t len_incl_bad;
557 u_char *p_buffer = buffer;
558
559 len_incl_bad = get_len_incl_bad (nand, offset, *length);
560
561 if ((offset + len_incl_bad) >= nand->size) {
562 printf ("Attempt to read outside the flash area\n");
563 return -EINVAL;
564 }
565
566 if (len_incl_bad == *length) {
567 rval = nand_read (nand, offset, length, buffer);
568 if (rval != 0) {
569 printf ("NAND read from offset %x failed %d\n",
570 offset, rval);
571 return rval;
572 }
573 }
574
575 while (left_to_read > 0) {
576 size_t block_offset = offset & (nand->erasesize - 1);
577 size_t read_length;
578
579 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
580 printf ("Skipping bad block 0x%08x\n",
581 offset & ~(nand->erasesize - 1));
582 offset += nand->erasesize - block_offset;
583 continue;
584 }
585
586 if (left_to_read < (nand->erasesize - block_offset))
587 read_length = left_to_read;
588 else
589 read_length = nand->erasesize - block_offset;
590
591 rval = nand_read (nand, offset, &read_length, p_buffer);
592 if (rval != 0) {
593 printf ("NAND read from offset %x failed %d\n",
594 offset, rval);
595 *length -= left_to_read;
596 return rval;
597 }
598
599 left_to_read -= read_length;
600 offset += read_length;
601 p_buffer += read_length;
602 }
603
604 return 0;
605 }