]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_util.c
NAND read/write fix
[people/ms/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * See file CREDITS for list of people who contributed to this
15 * project.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License version
19 * 2 as published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 */
32
33 #include <common.h>
34
35 #if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
36
37 #include <command.h>
38 #include <watchdog.h>
39 #include <malloc.h>
40 #include <div64.h>
41
42
43 #include <asm/errno.h>
44 #include <linux/mtd/mtd.h>
45 #include <nand.h>
46 #include <jffs2/jffs2.h>
47
48 typedef struct erase_info erase_info_t;
49 typedef struct mtd_info mtd_info_t;
50
51 /* support only for native endian JFFS2 */
52 #define cpu_to_je16(x) (x)
53 #define cpu_to_je32(x) (x)
54
55 /*****************************************************************************/
56 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
57 {
58 return 0;
59 }
60
61 /**
62 * nand_erase_opts: - erase NAND flash with support for various options
63 * (jffs2 formating)
64 *
65 * @param meminfo NAND device to erase
66 * @param opts options, @see struct nand_erase_options
67 * @return 0 in case of success
68 *
69 * This code is ported from flash_eraseall.c from Linux mtd utils by
70 * Arcom Control System Ltd.
71 */
72 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
73 {
74 struct jffs2_unknown_node cleanmarker;
75 erase_info_t erase;
76 ulong erase_length;
77 int bbtest = 1;
78 int result;
79 int percent_complete = -1;
80 int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
81 const char *mtd_device = meminfo->name;
82 struct mtd_oob_ops oob_opts;
83 struct nand_chip *chip = meminfo->priv;
84 uint8_t buf[64];
85
86 memset(buf, 0, sizeof(buf));
87 memset(&erase, 0, sizeof(erase));
88 memset(&oob_opts, 0, sizeof(oob_opts));
89
90 erase.mtd = meminfo;
91 erase.len = meminfo->erasesize;
92 erase.addr = opts->offset;
93 erase_length = opts->length;
94
95
96 cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
97 cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
98 cleanmarker.totlen = cpu_to_je32(8);
99 cleanmarker.hdr_crc = cpu_to_je32(
100 crc32_no_comp(0, (unsigned char *) &cleanmarker,
101 sizeof(struct jffs2_unknown_node) - 4));
102
103 /* scrub option allows to erase badblock. To prevent internal
104 * check from erase() method, set block check method to dummy
105 * and disable bad block table while erasing.
106 */
107 if (opts->scrub) {
108 struct nand_chip *priv_nand = meminfo->priv;
109
110 nand_block_bad_old = priv_nand->block_bad;
111 priv_nand->block_bad = nand_block_bad_scrub;
112 /* we don't need the bad block table anymore...
113 * after scrub, there are no bad blocks left!
114 */
115 if (priv_nand->bbt) {
116 kfree(priv_nand->bbt);
117 }
118 priv_nand->bbt = NULL;
119 }
120
121 if (erase_length < meminfo->erasesize) {
122 printf("Warning: Erase size 0x%08lx smaller than one " \
123 "erase block 0x%08x\n",erase_length, meminfo->erasesize);
124 printf(" Erasing 0x%08x instead\n", meminfo->erasesize);
125 erase_length = meminfo->erasesize;
126 }
127
128 for (;
129 erase.addr < opts->offset + erase_length;
130 erase.addr += meminfo->erasesize) {
131
132 WATCHDOG_RESET ();
133
134 if (!opts->scrub && bbtest) {
135 int ret = meminfo->block_isbad(meminfo, erase.addr);
136 if (ret > 0) {
137 if (!opts->quiet)
138 printf("\rSkipping bad block at "
139 "0x%08x "
140 " \n",
141 erase.addr);
142 continue;
143
144 } else if (ret < 0) {
145 printf("\n%s: MTD get bad block failed: %d\n",
146 mtd_device,
147 ret);
148 return -1;
149 }
150 }
151
152 result = meminfo->erase(meminfo, &erase);
153 if (result != 0) {
154 printf("\n%s: MTD Erase failure: %d\n",
155 mtd_device, result);
156 continue;
157 }
158
159 /* format for JFFS2 ? */
160 if (opts->jffs2) {
161
162 chip->ops.len = chip->ops.ooblen = 64;
163 chip->ops.datbuf = NULL;
164 chip->ops.oobbuf = buf;
165 chip->ops.ooboffs = chip->badblockpos & ~0x01;
166
167 result = meminfo->write_oob(meminfo,
168 erase.addr + meminfo->oobsize,
169 &chip->ops);
170 if (result != 0) {
171 printf("\n%s: MTD writeoob failure: %d\n",
172 mtd_device, result);
173 continue;
174 }
175 else
176 printf("%s: MTD writeoob at 0x%08x\n",mtd_device, erase.addr + meminfo->oobsize );
177 }
178
179 if (!opts->quiet) {
180 unsigned long long n =(unsigned long long)
181 (erase.addr + meminfo->erasesize - opts->offset)
182 * 100;
183 int percent;
184
185 do_div(n, erase_length);
186 percent = (int)n;
187
188 /* output progress message only at whole percent
189 * steps to reduce the number of messages printed
190 * on (slow) serial consoles
191 */
192 if (percent != percent_complete) {
193 percent_complete = percent;
194
195 printf("\rErasing at 0x%x -- %3d%% complete.",
196 erase.addr, percent);
197
198 if (opts->jffs2 && result == 0)
199 printf(" Cleanmarker written at 0x%x.",
200 erase.addr);
201 }
202 }
203 }
204 if (!opts->quiet)
205 printf("\n");
206
207 if (nand_block_bad_old) {
208 struct nand_chip *priv_nand = meminfo->priv;
209
210 priv_nand->block_bad = nand_block_bad_old;
211 priv_nand->scan_bbt(meminfo);
212 }
213
214 return 0;
215 }
216
217 /* XXX U-BOOT XXX */
218 #if 0
219
220 #define MAX_PAGE_SIZE 2048
221 #define MAX_OOB_SIZE 64
222
223 /*
224 * buffer array used for writing data
225 */
226 static unsigned char data_buf[MAX_PAGE_SIZE];
227 static unsigned char oob_buf[MAX_OOB_SIZE];
228
229 /* OOB layouts to pass into the kernel as default */
230 static struct nand_ecclayout none_ecclayout = {
231 .useecc = MTD_NANDECC_OFF,
232 };
233
234 static struct nand_ecclayout jffs2_ecclayout = {
235 .useecc = MTD_NANDECC_PLACE,
236 .eccbytes = 6,
237 .eccpos = { 0, 1, 2, 3, 6, 7 }
238 };
239
240 static struct nand_ecclayout yaffs_ecclayout = {
241 .useecc = MTD_NANDECC_PLACE,
242 .eccbytes = 6,
243 .eccpos = { 8, 9, 10, 13, 14, 15}
244 };
245
246 static struct nand_ecclayout autoplace_ecclayout = {
247 .useecc = MTD_NANDECC_AUTOPLACE
248 };
249 #endif
250
251 /* XXX U-BOOT XXX */
252 #if 0
253 /******************************************************************************
254 * Support for locking / unlocking operations of some NAND devices
255 *****************************************************************************/
256
257 #define NAND_CMD_LOCK 0x2a
258 #define NAND_CMD_LOCK_TIGHT 0x2c
259 #define NAND_CMD_UNLOCK1 0x23
260 #define NAND_CMD_UNLOCK2 0x24
261 #define NAND_CMD_LOCK_STATUS 0x7a
262
263 /**
264 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
265 * state
266 *
267 * @param meminfo nand mtd instance
268 * @param tight bring device in lock tight mode
269 *
270 * @return 0 on success, -1 in case of error
271 *
272 * The lock / lock-tight command only applies to the whole chip. To get some
273 * parts of the chip lock and others unlocked use the following sequence:
274 *
275 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
276 * - Call nand_unlock() once for each consecutive area to be unlocked
277 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
278 *
279 * If the device is in lock-tight state software can't change the
280 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
281 * calls will fail. It is only posible to leave lock-tight state by
282 * an hardware signal (low pulse on _WP pin) or by power down.
283 */
284 int nand_lock(nand_info_t *meminfo, int tight)
285 {
286 int ret = 0;
287 int status;
288 struct nand_chip *this = meminfo->priv;
289
290 /* select the NAND device */
291 this->select_chip(meminfo, 0);
292
293 this->cmdfunc(meminfo,
294 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
295 -1, -1);
296
297 /* call wait ready function */
298 status = this->waitfunc(meminfo, this, FL_WRITING);
299
300 /* see if device thinks it succeeded */
301 if (status & 0x01) {
302 ret = -1;
303 }
304
305 /* de-select the NAND device */
306 this->select_chip(meminfo, -1);
307 return ret;
308 }
309
310 /**
311 * nand_get_lock_status: - query current lock state from one page of NAND
312 * flash
313 *
314 * @param meminfo nand mtd instance
315 * @param offset page address to query (muss be page aligned!)
316 *
317 * @return -1 in case of error
318 * >0 lock status:
319 * bitfield with the following combinations:
320 * NAND_LOCK_STATUS_TIGHT: page in tight state
321 * NAND_LOCK_STATUS_LOCK: page locked
322 * NAND_LOCK_STATUS_UNLOCK: page unlocked
323 *
324 */
325 int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
326 {
327 int ret = 0;
328 int chipnr;
329 int page;
330 struct nand_chip *this = meminfo->priv;
331
332 /* select the NAND device */
333 chipnr = (int)(offset >> this->chip_shift);
334 this->select_chip(meminfo, chipnr);
335
336
337 if ((offset & (meminfo->writesize - 1)) != 0) {
338 printf ("nand_get_lock_status: "
339 "Start address must be beginning of "
340 "nand page!\n");
341 ret = -1;
342 goto out;
343 }
344
345 /* check the Lock Status */
346 page = (int)(offset >> this->page_shift);
347 this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
348
349 ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
350 | NAND_LOCK_STATUS_LOCK
351 | NAND_LOCK_STATUS_UNLOCK);
352
353 out:
354 /* de-select the NAND device */
355 this->select_chip(meminfo, -1);
356 return ret;
357 }
358
359 /**
360 * nand_unlock: - Unlock area of NAND pages
361 * only one consecutive area can be unlocked at one time!
362 *
363 * @param meminfo nand mtd instance
364 * @param start start byte address
365 * @param length number of bytes to unlock (must be a multiple of
366 * page size nand->writesize)
367 *
368 * @return 0 on success, -1 in case of error
369 */
370 int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
371 {
372 int ret = 0;
373 int chipnr;
374 int status;
375 int page;
376 struct nand_chip *this = meminfo->priv;
377 printf ("nand_unlock: start: %08x, length: %d!\n",
378 (int)start, (int)length);
379
380 /* select the NAND device */
381 chipnr = (int)(start >> this->chip_shift);
382 this->select_chip(meminfo, chipnr);
383
384 /* check the WP bit */
385 this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
386 if ((this->read_byte(meminfo) & 0x80) == 0) {
387 printf ("nand_unlock: Device is write protected!\n");
388 ret = -1;
389 goto out;
390 }
391
392 if ((start & (meminfo->writesize - 1)) != 0) {
393 printf ("nand_unlock: Start address must be beginning of "
394 "nand page!\n");
395 ret = -1;
396 goto out;
397 }
398
399 if (length == 0 || (length & (meminfo->writesize - 1)) != 0) {
400 printf ("nand_unlock: Length must be a multiple of nand page "
401 "size!\n");
402 ret = -1;
403 goto out;
404 }
405
406 /* submit address of first page to unlock */
407 page = (int)(start >> this->page_shift);
408 this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
409
410 /* submit ADDRESS of LAST page to unlock */
411 page += (int)(length >> this->page_shift) - 1;
412 this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
413
414 /* call wait ready function */
415 status = this->waitfunc(meminfo, this, FL_WRITING);
416 /* see if device thinks it succeeded */
417 if (status & 0x01) {
418 /* there was an error */
419 ret = -1;
420 goto out;
421 }
422
423 out:
424 /* de-select the NAND device */
425 this->select_chip(meminfo, -1);
426 return ret;
427 }
428 #endif
429
430 /**
431 * get_len_incl_bad
432 *
433 * Check if length including bad blocks fits into device.
434 *
435 * @param nand NAND device
436 * @param offset offset in flash
437 * @param length image length
438 * @return image length including bad blocks
439 */
440 static size_t get_len_incl_bad (nand_info_t *nand, size_t offset,
441 const size_t length)
442 {
443 size_t len_incl_bad = 0;
444 size_t len_excl_bad = 0;
445 size_t block_len;
446
447 while (len_excl_bad < length) {
448 block_len = nand->erasesize - (offset & (nand->erasesize - 1));
449
450 if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
451 len_excl_bad += block_len;
452
453 len_incl_bad += block_len;
454 offset += block_len;
455
456 if ((offset + len_incl_bad) >= nand->size)
457 break;
458 }
459
460 return len_incl_bad;
461 }
462
463 /**
464 * nand_write_skip_bad:
465 *
466 * Write image to NAND flash.
467 * Blocks that are marked bad are skipped and the is written to the next
468 * block instead as long as the image is short enough to fit even after
469 * skipping the bad blocks.
470 *
471 * @param nand NAND device
472 * @param offset offset in flash
473 * @param length buffer length
474 * @param buf buffer to read from
475 * @return 0 in case of success
476 */
477 int nand_write_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
478 u_char *buffer)
479 {
480 int rval;
481 size_t left_to_write = *length;
482 size_t len_incl_bad;
483 u_char *p_buffer = buffer;
484
485 /* Reject writes, which are not page aligned */
486 if ((offset & (nand->writesize - 1)) != 0 ||
487 (*length & (nand->writesize - 1)) != 0) {
488 printf ("Attempt to write non page aligned data\n");
489 return -EINVAL;
490 }
491
492 len_incl_bad = get_len_incl_bad (nand, offset, *length);
493
494 if ((offset + len_incl_bad) >= nand->size) {
495 printf ("Attempt to write outside the flash area\n");
496 return -EINVAL;
497 }
498
499 if (len_incl_bad == *length) {
500 rval = nand_write (nand, offset, length, buffer);
501 if (rval != 0) {
502 printf ("NAND write to offset %x failed %d\n",
503 offset, rval);
504 return rval;
505 }
506 }
507
508 while (left_to_write > 0) {
509 size_t block_offset = offset & (nand->erasesize - 1);
510 size_t write_size;
511
512 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
513 printf ("Skip bad block 0x%08x\n",
514 offset & ~(nand->erasesize - 1));
515 offset += nand->erasesize - block_offset;
516 continue;
517 }
518
519 if (left_to_write < (nand->erasesize - block_offset))
520 write_size = left_to_write;
521 else
522 write_size = nand->erasesize - block_offset;
523
524 rval = nand_write (nand, offset, &write_size, p_buffer);
525 if (rval != 0) {
526 printf ("NAND write to offset %x failed %d\n",
527 offset, rval);
528 *length -= left_to_write;
529 return rval;
530 }
531
532 left_to_write -= write_size;
533 offset += write_size;
534 p_buffer += write_size;
535 }
536
537 return 0;
538 }
539
540 /**
541 * nand_read_skip_bad:
542 *
543 * Read image from NAND flash.
544 * Blocks that are marked bad are skipped and the next block is readen
545 * instead as long as the image is short enough to fit even after skipping the
546 * bad blocks.
547 *
548 * @param nand NAND device
549 * @param offset offset in flash
550 * @param length buffer length, on return holds remaining bytes to read
551 * @param buffer buffer to write to
552 * @return 0 in case of success
553 */
554 int nand_read_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
555 u_char *buffer)
556 {
557 int rval;
558 size_t left_to_read = *length;
559 size_t len_incl_bad;
560 u_char *p_buffer = buffer;
561
562 len_incl_bad = get_len_incl_bad (nand, offset, *length);
563
564 if ((offset + len_incl_bad) >= nand->size) {
565 printf ("Attempt to read outside the flash area\n");
566 return -EINVAL;
567 }
568
569 if (len_incl_bad == *length) {
570 rval = nand_read (nand, offset, length, buffer);
571 if (rval != 0) {
572 printf ("NAND read from offset %x failed %d\n",
573 offset, rval);
574 return rval;
575 }
576 }
577
578 while (left_to_read > 0) {
579 size_t block_offset = offset & (nand->erasesize - 1);
580 size_t read_length;
581
582 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
583 printf ("Skipping bad block 0x%08x\n",
584 offset & ~(nand->erasesize - 1));
585 offset += nand->erasesize - block_offset;
586 continue;
587 }
588
589 if (left_to_read < (nand->erasesize - block_offset))
590 read_length = left_to_read;
591 else
592 read_length = nand->erasesize - block_offset;
593
594 rval = nand_read (nand, offset, &read_length, p_buffer);
595 if (rval != 0) {
596 printf ("NAND read from offset %x failed %d\n",
597 offset, rval);
598 *length -= left_to_read;
599 return rval;
600 }
601
602 left_to_read -= read_length;
603 offset += read_length;
604 p_buffer += read_length;
605 }
606
607 return 0;
608 }
609
610 #endif /* defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY) */