]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/vf610_nfc.c
Add more SPDX-License-Identifier tags
[people/ms/u-boot.git] / drivers / mtd / nand / vf610_nfc.c
1 /*
2 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3 *
4 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5 * Ported to U-Boot by Stefan Agner
6 * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
7 * Jason ported to M54418TWR and MVFA5.
8 * Authors: Stefan Agner <stefan.agner@toradex.com>
9 * Bill Pringlemeir <bpringlemeir@nbsps.com>
10 * Shaohui Xie <b21989@freescale.com>
11 * Jason Jin <Jason.jin@freescale.com>
12 *
13 * Based on original driver mpc5121_nfc.c.
14 *
15 * SPDX-License-Identifier: GPL-2.0+
16 *
17 * Limitations:
18 * - Untested on MPC5125 and M54418.
19 * - DMA and pipelining not used.
20 * - 2K pages or less.
21 * - HW ECC: Only 2K page with 64+ OOB.
22 * - HW ECC: Only 24 and 32-bit error correction implemented.
23 */
24
25 #include <common.h>
26 #include <malloc.h>
27
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/partitions.h>
31
32 #include <nand.h>
33 #include <errno.h>
34 #include <asm/io.h>
35
36 /* Register Offsets */
37 #define NFC_FLASH_CMD1 0x3F00
38 #define NFC_FLASH_CMD2 0x3F04
39 #define NFC_COL_ADDR 0x3F08
40 #define NFC_ROW_ADDR 0x3F0c
41 #define NFC_ROW_ADDR_INC 0x3F14
42 #define NFC_FLASH_STATUS1 0x3F18
43 #define NFC_FLASH_STATUS2 0x3F1c
44 #define NFC_CACHE_SWAP 0x3F28
45 #define NFC_SECTOR_SIZE 0x3F2c
46 #define NFC_FLASH_CONFIG 0x3F30
47 #define NFC_IRQ_STATUS 0x3F38
48
49 /* Addresses for NFC MAIN RAM BUFFER areas */
50 #define NFC_MAIN_AREA(n) ((n) * 0x1000)
51
52 #define PAGE_2K 0x0800
53 #define OOB_64 0x0040
54 #define OOB_MAX 0x0100
55
56 /*
57 * NFC_CMD2[CODE] values. See section:
58 * - 31.4.7 Flash Command Code Description, Vybrid manual
59 * - 23.8.6 Flash Command Sequencer, MPC5125 manual
60 *
61 * Briefly these are bitmasks of controller cycles.
62 */
63 #define READ_PAGE_CMD_CODE 0x7EE0
64 #define READ_ONFI_PARAM_CMD_CODE 0x4860
65 #define PROGRAM_PAGE_CMD_CODE 0x7FC0
66 #define ERASE_CMD_CODE 0x4EC0
67 #define READ_ID_CMD_CODE 0x4804
68 #define RESET_CMD_CODE 0x4040
69 #define STATUS_READ_CMD_CODE 0x4068
70
71 /* NFC ECC mode define */
72 #define ECC_BYPASS 0
73 #define ECC_45_BYTE 6
74 #define ECC_60_BYTE 7
75
76 /*** Register Mask and bit definitions */
77
78 /* NFC_FLASH_CMD1 Field */
79 #define CMD_BYTE2_MASK 0xFF000000
80 #define CMD_BYTE2_SHIFT 24
81
82 /* NFC_FLASH_CM2 Field */
83 #define CMD_BYTE1_MASK 0xFF000000
84 #define CMD_BYTE1_SHIFT 24
85 #define CMD_CODE_MASK 0x00FFFF00
86 #define CMD_CODE_SHIFT 8
87 #define BUFNO_MASK 0x00000006
88 #define BUFNO_SHIFT 1
89 #define START_BIT (1<<0)
90
91 /* NFC_COL_ADDR Field */
92 #define COL_ADDR_MASK 0x0000FFFF
93 #define COL_ADDR_SHIFT 0
94
95 /* NFC_ROW_ADDR Field */
96 #define ROW_ADDR_MASK 0x00FFFFFF
97 #define ROW_ADDR_SHIFT 0
98 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
99 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
100 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
101 #define ROW_ADDR_CHIP_SEL_SHIFT 24
102
103 /* NFC_FLASH_STATUS2 Field */
104 #define STATUS_BYTE1_MASK 0x000000FF
105
106 /* NFC_FLASH_CONFIG Field */
107 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
108 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22
109 #define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
110 #define CONFIG_DMA_REQ_BIT (1<<20)
111 #define CONFIG_ECC_MODE_MASK 0x000E0000
112 #define CONFIG_ECC_MODE_SHIFT 17
113 #define CONFIG_FAST_FLASH_BIT (1<<16)
114 #define CONFIG_16BIT (1<<7)
115 #define CONFIG_BOOT_MODE_BIT (1<<6)
116 #define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
117 #define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
118 #define CONFIG_PAGE_CNT_MASK 0xF
119 #define CONFIG_PAGE_CNT_SHIFT 0
120
121 /* NFC_IRQ_STATUS Field */
122 #define IDLE_IRQ_BIT (1<<29)
123 #define IDLE_EN_BIT (1<<20)
124 #define CMD_DONE_CLEAR_BIT (1<<18)
125 #define IDLE_CLEAR_BIT (1<<17)
126
127 #define NFC_TIMEOUT (1000)
128
129 /*
130 * ECC status - seems to consume 8 bytes (double word). The documented
131 * status byte is located in the lowest byte of the second word (which is
132 * the 4th or 7th byte depending on endianness).
133 * Calculate an offset to store the ECC status at the end of the buffer.
134 */
135 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
136
137 #define ECC_STATUS 0x4
138 #define ECC_STATUS_MASK 0x80
139 #define ECC_STATUS_ERR_COUNT 0x3F
140
141 enum vf610_nfc_alt_buf {
142 ALT_BUF_DATA = 0,
143 ALT_BUF_ID = 1,
144 ALT_BUF_STAT = 2,
145 ALT_BUF_ONFI = 3,
146 };
147
148 struct vf610_nfc {
149 struct mtd_info *mtd;
150 struct nand_chip chip;
151 void __iomem *regs;
152 uint buf_offset;
153 int write_sz;
154 /* Status and ID are in alternate locations. */
155 enum vf610_nfc_alt_buf alt_buf;
156 };
157
158 #define mtd_to_nfc(_mtd) \
159 (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
160
161 #if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
162 #define ECC_HW_MODE ECC_45_BYTE
163
164 static struct nand_ecclayout vf610_nfc_ecc = {
165 .eccbytes = 45,
166 .eccpos = {19, 20, 21, 22, 23,
167 24, 25, 26, 27, 28, 29, 30, 31,
168 32, 33, 34, 35, 36, 37, 38, 39,
169 40, 41, 42, 43, 44, 45, 46, 47,
170 48, 49, 50, 51, 52, 53, 54, 55,
171 56, 57, 58, 59, 60, 61, 62, 63},
172 .oobfree = {
173 {.offset = 2,
174 .length = 17} }
175 };
176 #elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
177 #define ECC_HW_MODE ECC_60_BYTE
178
179 static struct nand_ecclayout vf610_nfc_ecc = {
180 .eccbytes = 60,
181 .eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
182 12, 13, 14, 15, 16, 17, 18, 19,
183 20, 21, 22, 23, 24, 25, 26, 27,
184 28, 29, 30, 31, 32, 33, 34, 35,
185 36, 37, 38, 39, 40, 41, 42, 43,
186 44, 45, 46, 47, 48, 49, 50, 51,
187 52, 53, 54, 55, 56, 57, 58, 59,
188 60, 61, 62, 63 },
189 .oobfree = {
190 {.offset = 2,
191 .length = 2} }
192 };
193 #endif
194
195 static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
196 {
197 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
198
199 return readl(nfc->regs + reg);
200 }
201
202 static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
203 {
204 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
205
206 writel(val, nfc->regs + reg);
207 }
208
209 static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
210 {
211 vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
212 }
213
214 static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
215 {
216 vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
217 }
218
219 static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
220 u32 mask, u32 shift, u32 val)
221 {
222 vf610_nfc_write(mtd, reg,
223 (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
224 }
225
226 static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
227 {
228 /*
229 * Use this accessor for the internal SRAM buffers. On the ARM
230 * Freescale Vybrid SoC it's known that the driver can treat
231 * the SRAM buffer as if it's memory. Other platform might need
232 * to treat the buffers differently.
233 *
234 * For the time being, use memcpy
235 */
236 memcpy(dst, src, n);
237 }
238
239 /* Clear flags for upcoming command */
240 static inline void vf610_nfc_clear_status(void __iomem *regbase)
241 {
242 void __iomem *reg = regbase + NFC_IRQ_STATUS;
243 u32 tmp = __raw_readl(reg);
244 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
245 __raw_writel(tmp, reg);
246 }
247
248 /* Wait for complete operation */
249 static void vf610_nfc_done(struct mtd_info *mtd)
250 {
251 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
252 uint start;
253
254 /*
255 * Barrier is needed after this write. This write need
256 * to be done before reading the next register the first
257 * time.
258 * vf610_nfc_set implicates such a barrier by using writel
259 * to write to the register.
260 */
261 vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
262
263 start = get_timer(0);
264
265 while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
266 if (get_timer(start) > NFC_TIMEOUT) {
267 printf("Timeout while waiting for IDLE.\n");
268 return;
269 }
270 }
271 vf610_nfc_clear_status(nfc->regs);
272 }
273
274 static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
275 {
276 u32 flash_id;
277
278 if (col < 4) {
279 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
280 flash_id >>= (3 - col) * 8;
281 } else {
282 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
283 flash_id >>= 24;
284 }
285
286 return flash_id & 0xff;
287 }
288
289 static u8 vf610_nfc_get_status(struct mtd_info *mtd)
290 {
291 return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
292 }
293
294 /* Single command */
295 static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
296 u32 cmd_code)
297 {
298 void __iomem *reg = regbase + NFC_FLASH_CMD2;
299 u32 tmp;
300 vf610_nfc_clear_status(regbase);
301
302 tmp = __raw_readl(reg);
303 tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
304 tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
305 tmp |= cmd_code << CMD_CODE_SHIFT;
306 __raw_writel(tmp, reg);
307 }
308
309 /* Two commands */
310 static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
311 u32 cmd_byte2, u32 cmd_code)
312 {
313 void __iomem *reg = regbase + NFC_FLASH_CMD1;
314 u32 tmp;
315 vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
316
317 tmp = __raw_readl(reg);
318 tmp &= ~CMD_BYTE2_MASK;
319 tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
320 __raw_writel(tmp, reg);
321 }
322
323 static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
324 {
325 if (column != -1) {
326 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
327 if (nfc->chip.options & NAND_BUSWIDTH_16)
328 column = column / 2;
329 vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
330 COL_ADDR_SHIFT, column);
331 }
332 if (page != -1)
333 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
334 ROW_ADDR_SHIFT, page);
335 }
336
337 static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
338 {
339 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
340 CONFIG_ECC_MODE_MASK,
341 CONFIG_ECC_MODE_SHIFT, ecc_mode);
342 }
343
344 static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
345 {
346 __raw_writel(size, regbase + NFC_SECTOR_SIZE);
347 }
348
349 /* Send command to NAND chip */
350 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
351 int column, int page)
352 {
353 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
354 int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
355
356 nfc->buf_offset = max(column, 0);
357 nfc->alt_buf = ALT_BUF_DATA;
358
359 switch (command) {
360 case NAND_CMD_SEQIN:
361 /* Use valid column/page from preread... */
362 vf610_nfc_addr_cycle(mtd, column, page);
363 nfc->buf_offset = 0;
364
365 /*
366 * SEQIN => data => PAGEPROG sequence is done by the controller
367 * hence we do not need to issue the command here...
368 */
369 return;
370 case NAND_CMD_PAGEPROG:
371 trfr_sz += nfc->write_sz;
372 vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
373 vf610_nfc_transfer_size(nfc->regs, trfr_sz);
374 vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
375 command, PROGRAM_PAGE_CMD_CODE);
376 break;
377
378 case NAND_CMD_RESET:
379 vf610_nfc_transfer_size(nfc->regs, 0);
380 vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
381 break;
382
383 case NAND_CMD_READOOB:
384 trfr_sz += mtd->oobsize;
385 column = mtd->writesize;
386 vf610_nfc_transfer_size(nfc->regs, trfr_sz);
387 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
388 NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
389 vf610_nfc_addr_cycle(mtd, column, page);
390 vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
391 break;
392
393 case NAND_CMD_READ0:
394 trfr_sz += mtd->writesize + mtd->oobsize;
395 vf610_nfc_transfer_size(nfc->regs, trfr_sz);
396 vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
397 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
398 NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
399 vf610_nfc_addr_cycle(mtd, column, page);
400 break;
401
402 case NAND_CMD_PARAM:
403 nfc->alt_buf = ALT_BUF_ONFI;
404 trfr_sz = 3 * sizeof(struct nand_onfi_params);
405 vf610_nfc_transfer_size(nfc->regs, trfr_sz);
406 vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
407 READ_ONFI_PARAM_CMD_CODE);
408 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
409 ROW_ADDR_SHIFT, column);
410 vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
411 break;
412
413 case NAND_CMD_ERASE1:
414 vf610_nfc_transfer_size(nfc->regs, 0);
415 vf610_nfc_send_commands(nfc->regs, command,
416 NAND_CMD_ERASE2, ERASE_CMD_CODE);
417 vf610_nfc_addr_cycle(mtd, column, page);
418 break;
419
420 case NAND_CMD_READID:
421 nfc->alt_buf = ALT_BUF_ID;
422 nfc->buf_offset = 0;
423 vf610_nfc_transfer_size(nfc->regs, 0);
424 vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
425 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
426 ROW_ADDR_SHIFT, column);
427 break;
428
429 case NAND_CMD_STATUS:
430 nfc->alt_buf = ALT_BUF_STAT;
431 vf610_nfc_transfer_size(nfc->regs, 0);
432 vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
433 break;
434 default:
435 return;
436 }
437
438 vf610_nfc_done(mtd);
439
440 nfc->write_sz = 0;
441 }
442
443 /* Read data from NFC buffers */
444 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
445 {
446 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
447 uint c = nfc->buf_offset;
448
449 /* Alternate buffers are only supported through read_byte */
450 if (nfc->alt_buf)
451 return;
452
453 vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
454
455 nfc->buf_offset += len;
456 }
457
458 /* Write data to NFC buffers */
459 static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
460 int len)
461 {
462 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
463 uint c = nfc->buf_offset;
464 uint l;
465
466 l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
467 vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
468
469 nfc->write_sz += l;
470 nfc->buf_offset += l;
471 }
472
473 /* Read byte from NFC buffers */
474 static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
475 {
476 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
477 u8 tmp;
478 uint c = nfc->buf_offset;
479
480 switch (nfc->alt_buf) {
481 case ALT_BUF_ID:
482 tmp = vf610_nfc_get_id(mtd, c);
483 break;
484 case ALT_BUF_STAT:
485 tmp = vf610_nfc_get_status(mtd);
486 break;
487 #ifdef __LITTLE_ENDIAN
488 case ALT_BUF_ONFI:
489 /* Reverse byte since the controller uses big endianness */
490 c = nfc->buf_offset ^ 0x3;
491 /* fall-through */
492 #endif
493 default:
494 tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
495 break;
496 }
497 nfc->buf_offset++;
498 return tmp;
499 }
500
501 /* Read word from NFC buffers */
502 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
503 {
504 u16 tmp;
505
506 vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
507 return tmp;
508 }
509
510 /* If not provided, upper layers apply a fixed delay. */
511 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
512 {
513 /* NFC handles R/B internally; always ready. */
514 return 1;
515 }
516
517 /*
518 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
519 */
520 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
521 {
522 #ifdef CONFIG_VF610
523 u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
524 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
525
526 if (chip >= 0) {
527 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
528 tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
529 }
530
531 vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
532 #endif
533 }
534
535 /* Count the number of 0's in buff upto max_bits */
536 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
537 {
538 uint32_t *buff32 = (uint32_t *)buff;
539 int k, written_bits = 0;
540
541 for (k = 0; k < (size / 4); k++) {
542 written_bits += hweight32(~buff32[k]);
543 if (written_bits > max_bits)
544 break;
545 }
546
547 return written_bits;
548 }
549
550 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
551 uint8_t *oob, int page)
552 {
553 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
554 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
555 u8 ecc_status;
556 u8 ecc_count;
557 int flips;
558 int flips_threshold = nfc->chip.ecc.strength / 2;
559
560 ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
561 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
562
563 if (!(ecc_status & ECC_STATUS_MASK))
564 return ecc_count;
565
566 /* Read OOB without ECC unit enabled */
567 vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
568 vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
569
570 /*
571 * On an erased page, bit count (including OOB) should be zero or
572 * at least less then half of the ECC strength.
573 */
574 flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
575 flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
576
577 if (unlikely(flips > flips_threshold))
578 return -EINVAL;
579
580 /* Erased page. */
581 memset(dat, 0xff, nfc->chip.ecc.size);
582 memset(oob, 0xff, mtd->oobsize);
583 return flips;
584 }
585
586 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
587 uint8_t *buf, int oob_required, int page)
588 {
589 int eccsize = chip->ecc.size;
590 int stat;
591
592 vf610_nfc_read_buf(mtd, buf, eccsize);
593 if (oob_required)
594 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
595
596 stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
597
598 if (stat < 0) {
599 mtd->ecc_stats.failed++;
600 return 0;
601 } else {
602 mtd->ecc_stats.corrected += stat;
603 return stat;
604 }
605 }
606
607 /*
608 * ECC will be calculated automatically
609 */
610 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
611 const uint8_t *buf, int oob_required)
612 {
613 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
614
615 vf610_nfc_write_buf(mtd, buf, mtd->writesize);
616 if (oob_required)
617 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
618
619 /* Always write whole page including OOB due to HW ECC */
620 nfc->write_sz = mtd->writesize + mtd->oobsize;
621
622 return 0;
623 }
624
625 struct vf610_nfc_config {
626 int hardware_ecc;
627 int width;
628 int flash_bbt;
629 };
630
631 static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
632 {
633 struct mtd_info *mtd = &nand_info[devnum];
634 struct nand_chip *chip;
635 struct vf610_nfc *nfc;
636 int err = 0;
637 struct vf610_nfc_config cfg = {
638 .hardware_ecc = 1,
639 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
640 .width = 16,
641 #else
642 .width = 8,
643 #endif
644 .flash_bbt = 1,
645 };
646
647 nfc = malloc(sizeof(*nfc));
648 if (!nfc) {
649 printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
650 return -ENOMEM;
651 }
652
653 chip = &nfc->chip;
654 nfc->regs = addr;
655
656 mtd->priv = chip;
657 chip->priv = nfc;
658
659 if (cfg.width == 16)
660 chip->options |= NAND_BUSWIDTH_16;
661
662 chip->dev_ready = vf610_nfc_dev_ready;
663 chip->cmdfunc = vf610_nfc_command;
664 chip->read_byte = vf610_nfc_read_byte;
665 chip->read_word = vf610_nfc_read_word;
666 chip->read_buf = vf610_nfc_read_buf;
667 chip->write_buf = vf610_nfc_write_buf;
668 chip->select_chip = vf610_nfc_select_chip;
669
670 chip->options |= NAND_NO_SUBPAGE_WRITE;
671
672 chip->ecc.size = PAGE_2K;
673
674 /* Set configuration register. */
675 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
676 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
677 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
678 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
679 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
680 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
681
682 /* Disable virtual pages, only one elementary transfer unit */
683 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
684 CONFIG_PAGE_CNT_SHIFT, 1);
685
686 /* first scan to find the device and get the page size */
687 if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
688 err = -ENXIO;
689 goto error;
690 }
691
692 if (cfg.width == 16)
693 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
694
695 /* Bad block options. */
696 if (cfg.flash_bbt)
697 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
698 NAND_BBT_CREATE;
699
700 /* Single buffer only, max 256 OOB minus ECC status */
701 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
702 dev_err(nfc->dev, "Unsupported flash page size\n");
703 err = -ENXIO;
704 goto error;
705 }
706
707 if (cfg.hardware_ecc) {
708 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
709 dev_err(nfc->dev, "Unsupported flash with hwecc\n");
710 err = -ENXIO;
711 goto error;
712 }
713
714 if (chip->ecc.size != mtd->writesize) {
715 dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
716 dev_err(nfc->dev, "Step size needs to be page size\n");
717 err = -ENXIO;
718 goto error;
719 }
720
721 /* Current HW ECC layouts only use 64 bytes of OOB */
722 if (mtd->oobsize > 64)
723 mtd->oobsize = 64;
724
725 /* propagate ecc.layout to mtd_info */
726 mtd->ecclayout = chip->ecc.layout;
727 chip->ecc.read_page = vf610_nfc_read_page;
728 chip->ecc.write_page = vf610_nfc_write_page;
729 chip->ecc.mode = NAND_ECC_HW;
730
731 chip->ecc.size = PAGE_2K;
732 chip->ecc.layout = &vf610_nfc_ecc;
733 #if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
734 chip->ecc.strength = 24;
735 chip->ecc.bytes = 45;
736 #elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
737 chip->ecc.strength = 32;
738 chip->ecc.bytes = 60;
739 #endif
740
741 /* Set ECC_STATUS offset */
742 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
743 CONFIG_ECC_SRAM_ADDR_MASK,
744 CONFIG_ECC_SRAM_ADDR_SHIFT,
745 ECC_SRAM_ADDR >> 3);
746
747 /* Enable ECC status in SRAM */
748 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
749 }
750
751 /* second phase scan */
752 err = nand_scan_tail(mtd);
753 if (err)
754 return err;
755
756 err = nand_register(devnum);
757 if (err)
758 return err;
759
760 return 0;
761
762 error:
763 return err;
764 }
765
766 void board_nand_init(void)
767 {
768 int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
769 if (err)
770 printf("VF610 NAND init failed (err %d)\n", err);
771 }