]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/attach.c
9fce02ef267ae11d1e3039bbcd3d386c33e24092
[people/ms/u-boot.git] / drivers / mtd / ubi / attach.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9 /*
10 * UBI attaching sub-system.
11 *
12 * This sub-system is responsible for attaching MTD devices and it also
13 * implements flash media scanning.
14 *
15 * The attaching information is represented by a &struct ubi_attach_info'
16 * object. Information about volumes is represented by &struct ubi_ainf_volume
17 * objects which are kept in volume RB-tree with root at the @volumes field.
18 * The RB-tree is indexed by the volume ID.
19 *
20 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
21 * objects are kept in per-volume RB-trees with the root at the corresponding
22 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
23 * per-volume objects and each of these objects is the root of RB-tree of
24 * per-LEB objects.
25 *
26 * Corrupted physical eraseblocks are put to the @corr list, free physical
27 * eraseblocks are put to the @free list and the physical eraseblock to be
28 * erased are put to the @erase list.
29 *
30 * About corruptions
31 * ~~~~~~~~~~~~~~~~~
32 *
33 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
34 * whether the headers are corrupted or not. Sometimes UBI also protects the
35 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
36 * when it moves the contents of a PEB for wear-leveling purposes.
37 *
38 * UBI tries to distinguish between 2 types of corruptions.
39 *
40 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
41 * tries to handle them gracefully, without printing too many warnings and
42 * error messages. The idea is that we do not lose important data in these
43 * cases - we may lose only the data which were being written to the media just
44 * before the power cut happened, and the upper layers (e.g., UBIFS) are
45 * supposed to handle such data losses (e.g., by using the FS journal).
46 *
47 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
48 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
49 * PEBs in the @erase list are scheduled for erasure later.
50 *
51 * 2. Unexpected corruptions which are not caused by power cuts. During
52 * attaching, such PEBs are put to the @corr list and UBI preserves them.
53 * Obviously, this lessens the amount of available PEBs, and if at some point
54 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
55 * about such PEBs every time the MTD device is attached.
56 *
57 * However, it is difficult to reliably distinguish between these types of
58 * corruptions and UBI's strategy is as follows (in case of attaching by
59 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
60 * the data area does not contain all 0xFFs, and there were no bit-flips or
61 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
62 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
63 * are as follows.
64 * o If the data area contains only 0xFFs, there are no data, and it is safe
65 * to just erase this PEB - this is corruption type 1.
66 * o If the data area has bit-flips or data integrity errors (ECC errors on
67 * NAND), it is probably a PEB which was being erased when power cut
68 * happened, so this is corruption type 1. However, this is just a guess,
69 * which might be wrong.
70 * o Otherwise this is corruption type 2.
71 */
72
73 #define __UBOOT__
74 #ifndef __UBOOT__
75 #include <linux/err.h>
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #else
80 #include <div64.h>
81 #include <linux/err.h>
82 #endif
83
84 #include <linux/math64.h>
85
86 #include <ubi_uboot.h>
87 #include "ubi.h"
88
89 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
90
91 /* Temporary variables used during scanning */
92 static struct ubi_ec_hdr *ech;
93 static struct ubi_vid_hdr *vidh;
94
95 /**
96 * add_to_list - add physical eraseblock to a list.
97 * @ai: attaching information
98 * @pnum: physical eraseblock number to add
99 * @vol_id: the last used volume id for the PEB
100 * @lnum: the last used LEB number for the PEB
101 * @ec: erase counter of the physical eraseblock
102 * @to_head: if not zero, add to the head of the list
103 * @list: the list to add to
104 *
105 * This function allocates a 'struct ubi_ainf_peb' object for physical
106 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
107 * It stores the @lnum and @vol_id alongside, which can both be
108 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
109 * If @to_head is not zero, PEB will be added to the head of the list, which
110 * basically means it will be processed first later. E.g., we add corrupted
111 * PEBs (corrupted due to power cuts) to the head of the erase list to make
112 * sure we erase them first and get rid of corruptions ASAP. This function
113 * returns zero in case of success and a negative error code in case of
114 * failure.
115 */
116 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
117 int lnum, int ec, int to_head, struct list_head *list)
118 {
119 struct ubi_ainf_peb *aeb;
120
121 if (list == &ai->free) {
122 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
123 } else if (list == &ai->erase) {
124 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
125 } else if (list == &ai->alien) {
126 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
127 ai->alien_peb_count += 1;
128 } else
129 BUG();
130
131 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
132 if (!aeb)
133 return -ENOMEM;
134
135 aeb->pnum = pnum;
136 aeb->vol_id = vol_id;
137 aeb->lnum = lnum;
138 aeb->ec = ec;
139 if (to_head)
140 list_add(&aeb->u.list, list);
141 else
142 list_add_tail(&aeb->u.list, list);
143 return 0;
144 }
145
146 /**
147 * add_corrupted - add a corrupted physical eraseblock.
148 * @ai: attaching information
149 * @pnum: physical eraseblock number to add
150 * @ec: erase counter of the physical eraseblock
151 *
152 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
153 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
154 * was presumably not caused by a power cut. Returns zero in case of success
155 * and a negative error code in case of failure.
156 */
157 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
158 {
159 struct ubi_ainf_peb *aeb;
160
161 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
162
163 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
164 if (!aeb)
165 return -ENOMEM;
166
167 ai->corr_peb_count += 1;
168 aeb->pnum = pnum;
169 aeb->ec = ec;
170 list_add(&aeb->u.list, &ai->corr);
171 return 0;
172 }
173
174 /**
175 * validate_vid_hdr - check volume identifier header.
176 * @vid_hdr: the volume identifier header to check
177 * @av: information about the volume this logical eraseblock belongs to
178 * @pnum: physical eraseblock number the VID header came from
179 *
180 * This function checks that data stored in @vid_hdr is consistent. Returns
181 * non-zero if an inconsistency was found and zero if not.
182 *
183 * Note, UBI does sanity check of everything it reads from the flash media.
184 * Most of the checks are done in the I/O sub-system. Here we check that the
185 * information in the VID header is consistent to the information in other VID
186 * headers of the same volume.
187 */
188 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
189 const struct ubi_ainf_volume *av, int pnum)
190 {
191 int vol_type = vid_hdr->vol_type;
192 int vol_id = be32_to_cpu(vid_hdr->vol_id);
193 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
194 int data_pad = be32_to_cpu(vid_hdr->data_pad);
195
196 if (av->leb_count != 0) {
197 int av_vol_type;
198
199 /*
200 * This is not the first logical eraseblock belonging to this
201 * volume. Ensure that the data in its VID header is consistent
202 * to the data in previous logical eraseblock headers.
203 */
204
205 if (vol_id != av->vol_id) {
206 ubi_err("inconsistent vol_id");
207 goto bad;
208 }
209
210 if (av->vol_type == UBI_STATIC_VOLUME)
211 av_vol_type = UBI_VID_STATIC;
212 else
213 av_vol_type = UBI_VID_DYNAMIC;
214
215 if (vol_type != av_vol_type) {
216 ubi_err("inconsistent vol_type");
217 goto bad;
218 }
219
220 if (used_ebs != av->used_ebs) {
221 ubi_err("inconsistent used_ebs");
222 goto bad;
223 }
224
225 if (data_pad != av->data_pad) {
226 ubi_err("inconsistent data_pad");
227 goto bad;
228 }
229 }
230
231 return 0;
232
233 bad:
234 ubi_err("inconsistent VID header at PEB %d", pnum);
235 ubi_dump_vid_hdr(vid_hdr);
236 ubi_dump_av(av);
237 return -EINVAL;
238 }
239
240 /**
241 * add_volume - add volume to the attaching information.
242 * @ai: attaching information
243 * @vol_id: ID of the volume to add
244 * @pnum: physical eraseblock number
245 * @vid_hdr: volume identifier header
246 *
247 * If the volume corresponding to the @vid_hdr logical eraseblock is already
248 * present in the attaching information, this function does nothing. Otherwise
249 * it adds corresponding volume to the attaching information. Returns a pointer
250 * to the allocated "av" object in case of success and a negative error code in
251 * case of failure.
252 */
253 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
254 int vol_id, int pnum,
255 const struct ubi_vid_hdr *vid_hdr)
256 {
257 struct ubi_ainf_volume *av;
258 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
259
260 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
261
262 /* Walk the volume RB-tree to look if this volume is already present */
263 while (*p) {
264 parent = *p;
265 av = rb_entry(parent, struct ubi_ainf_volume, rb);
266
267 if (vol_id == av->vol_id)
268 return av;
269
270 if (vol_id > av->vol_id)
271 p = &(*p)->rb_left;
272 else
273 p = &(*p)->rb_right;
274 }
275
276 /* The volume is absent - add it */
277 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
278 if (!av)
279 return ERR_PTR(-ENOMEM);
280
281 av->highest_lnum = av->leb_count = 0;
282 av->vol_id = vol_id;
283 av->root = RB_ROOT;
284 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
285 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
286 av->compat = vid_hdr->compat;
287 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
288 : UBI_STATIC_VOLUME;
289 if (vol_id > ai->highest_vol_id)
290 ai->highest_vol_id = vol_id;
291
292 rb_link_node(&av->rb, parent, p);
293 rb_insert_color(&av->rb, &ai->volumes);
294 ai->vols_found += 1;
295 dbg_bld("added volume %d", vol_id);
296 return av;
297 }
298
299 /**
300 * ubi_compare_lebs - find out which logical eraseblock is newer.
301 * @ubi: UBI device description object
302 * @aeb: first logical eraseblock to compare
303 * @pnum: physical eraseblock number of the second logical eraseblock to
304 * compare
305 * @vid_hdr: volume identifier header of the second logical eraseblock
306 *
307 * This function compares 2 copies of a LEB and informs which one is newer. In
308 * case of success this function returns a positive value, in case of failure, a
309 * negative error code is returned. The success return codes use the following
310 * bits:
311 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
312 * second PEB (described by @pnum and @vid_hdr);
313 * o bit 0 is set: the second PEB is newer;
314 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
315 * o bit 1 is set: bit-flips were detected in the newer LEB;
316 * o bit 2 is cleared: the older LEB is not corrupted;
317 * o bit 2 is set: the older LEB is corrupted.
318 */
319 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
320 int pnum, const struct ubi_vid_hdr *vid_hdr)
321 {
322 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
323 uint32_t data_crc, crc;
324 struct ubi_vid_hdr *vh = NULL;
325 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
326
327 if (sqnum2 == aeb->sqnum) {
328 /*
329 * This must be a really ancient UBI image which has been
330 * created before sequence numbers support has been added. At
331 * that times we used 32-bit LEB versions stored in logical
332 * eraseblocks. That was before UBI got into mainline. We do not
333 * support these images anymore. Well, those images still work,
334 * but only if no unclean reboots happened.
335 */
336 ubi_err("unsupported on-flash UBI format");
337 return -EINVAL;
338 }
339
340 /* Obviously the LEB with lower sequence counter is older */
341 second_is_newer = (sqnum2 > aeb->sqnum);
342
343 /*
344 * Now we know which copy is newer. If the copy flag of the PEB with
345 * newer version is not set, then we just return, otherwise we have to
346 * check data CRC. For the second PEB we already have the VID header,
347 * for the first one - we'll need to re-read it from flash.
348 *
349 * Note: this may be optimized so that we wouldn't read twice.
350 */
351
352 if (second_is_newer) {
353 if (!vid_hdr->copy_flag) {
354 /* It is not a copy, so it is newer */
355 dbg_bld("second PEB %d is newer, copy_flag is unset",
356 pnum);
357 return 1;
358 }
359 } else {
360 if (!aeb->copy_flag) {
361 /* It is not a copy, so it is newer */
362 dbg_bld("first PEB %d is newer, copy_flag is unset",
363 pnum);
364 return bitflips << 1;
365 }
366
367 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
368 if (!vh)
369 return -ENOMEM;
370
371 pnum = aeb->pnum;
372 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
373 if (err) {
374 if (err == UBI_IO_BITFLIPS)
375 bitflips = 1;
376 else {
377 ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
378 pnum, err);
379 if (err > 0)
380 err = -EIO;
381
382 goto out_free_vidh;
383 }
384 }
385
386 vid_hdr = vh;
387 }
388
389 /* Read the data of the copy and check the CRC */
390
391 len = be32_to_cpu(vid_hdr->data_size);
392
393 mutex_lock(&ubi->buf_mutex);
394 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
395 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
396 goto out_unlock;
397
398 data_crc = be32_to_cpu(vid_hdr->data_crc);
399 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
400 if (crc != data_crc) {
401 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
402 pnum, crc, data_crc);
403 corrupted = 1;
404 bitflips = 0;
405 second_is_newer = !second_is_newer;
406 } else {
407 dbg_bld("PEB %d CRC is OK", pnum);
408 bitflips = !!err;
409 }
410 mutex_unlock(&ubi->buf_mutex);
411
412 ubi_free_vid_hdr(ubi, vh);
413
414 if (second_is_newer)
415 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
416 else
417 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
418
419 return second_is_newer | (bitflips << 1) | (corrupted << 2);
420
421 out_unlock:
422 mutex_unlock(&ubi->buf_mutex);
423 out_free_vidh:
424 ubi_free_vid_hdr(ubi, vh);
425 return err;
426 }
427
428 /**
429 * ubi_add_to_av - add used physical eraseblock to the attaching information.
430 * @ubi: UBI device description object
431 * @ai: attaching information
432 * @pnum: the physical eraseblock number
433 * @ec: erase counter
434 * @vid_hdr: the volume identifier header
435 * @bitflips: if bit-flips were detected when this physical eraseblock was read
436 *
437 * This function adds information about a used physical eraseblock to the
438 * 'used' tree of the corresponding volume. The function is rather complex
439 * because it has to handle cases when this is not the first physical
440 * eraseblock belonging to the same logical eraseblock, and the newer one has
441 * to be picked, while the older one has to be dropped. This function returns
442 * zero in case of success and a negative error code in case of failure.
443 */
444 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
445 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
446 {
447 int err, vol_id, lnum;
448 unsigned long long sqnum;
449 struct ubi_ainf_volume *av;
450 struct ubi_ainf_peb *aeb;
451 struct rb_node **p, *parent = NULL;
452
453 vol_id = be32_to_cpu(vid_hdr->vol_id);
454 lnum = be32_to_cpu(vid_hdr->lnum);
455 sqnum = be64_to_cpu(vid_hdr->sqnum);
456
457 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
458 pnum, vol_id, lnum, ec, sqnum, bitflips);
459
460 av = add_volume(ai, vol_id, pnum, vid_hdr);
461 if (IS_ERR(av))
462 return PTR_ERR(av);
463
464 if (ai->max_sqnum < sqnum)
465 ai->max_sqnum = sqnum;
466
467 /*
468 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
469 * if this is the first instance of this logical eraseblock or not.
470 */
471 p = &av->root.rb_node;
472 while (*p) {
473 int cmp_res;
474
475 parent = *p;
476 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
477 if (lnum != aeb->lnum) {
478 if (lnum < aeb->lnum)
479 p = &(*p)->rb_left;
480 else
481 p = &(*p)->rb_right;
482 continue;
483 }
484
485 /*
486 * There is already a physical eraseblock describing the same
487 * logical eraseblock present.
488 */
489
490 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
491 aeb->pnum, aeb->sqnum, aeb->ec);
492
493 /*
494 * Make sure that the logical eraseblocks have different
495 * sequence numbers. Otherwise the image is bad.
496 *
497 * However, if the sequence number is zero, we assume it must
498 * be an ancient UBI image from the era when UBI did not have
499 * sequence numbers. We still can attach these images, unless
500 * there is a need to distinguish between old and new
501 * eraseblocks, in which case we'll refuse the image in
502 * 'ubi_compare_lebs()'. In other words, we attach old clean
503 * images, but refuse attaching old images with duplicated
504 * logical eraseblocks because there was an unclean reboot.
505 */
506 if (aeb->sqnum == sqnum && sqnum != 0) {
507 ubi_err("two LEBs with same sequence number %llu",
508 sqnum);
509 ubi_dump_aeb(aeb, 0);
510 ubi_dump_vid_hdr(vid_hdr);
511 return -EINVAL;
512 }
513
514 /*
515 * Now we have to drop the older one and preserve the newer
516 * one.
517 */
518 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
519 if (cmp_res < 0)
520 return cmp_res;
521
522 if (cmp_res & 1) {
523 /*
524 * This logical eraseblock is newer than the one
525 * found earlier.
526 */
527 err = validate_vid_hdr(vid_hdr, av, pnum);
528 if (err)
529 return err;
530
531 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
532 aeb->lnum, aeb->ec, cmp_res & 4,
533 &ai->erase);
534 if (err)
535 return err;
536
537 aeb->ec = ec;
538 aeb->pnum = pnum;
539 aeb->vol_id = vol_id;
540 aeb->lnum = lnum;
541 aeb->scrub = ((cmp_res & 2) || bitflips);
542 aeb->copy_flag = vid_hdr->copy_flag;
543 aeb->sqnum = sqnum;
544
545 if (av->highest_lnum == lnum)
546 av->last_data_size =
547 be32_to_cpu(vid_hdr->data_size);
548
549 return 0;
550 } else {
551 /*
552 * This logical eraseblock is older than the one found
553 * previously.
554 */
555 return add_to_list(ai, pnum, vol_id, lnum, ec,
556 cmp_res & 4, &ai->erase);
557 }
558 }
559
560 /*
561 * We've met this logical eraseblock for the first time, add it to the
562 * attaching information.
563 */
564
565 err = validate_vid_hdr(vid_hdr, av, pnum);
566 if (err)
567 return err;
568
569 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
570 if (!aeb)
571 return -ENOMEM;
572
573 aeb->ec = ec;
574 aeb->pnum = pnum;
575 aeb->vol_id = vol_id;
576 aeb->lnum = lnum;
577 aeb->scrub = bitflips;
578 aeb->copy_flag = vid_hdr->copy_flag;
579 aeb->sqnum = sqnum;
580
581 if (av->highest_lnum <= lnum) {
582 av->highest_lnum = lnum;
583 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
584 }
585
586 av->leb_count += 1;
587 rb_link_node(&aeb->u.rb, parent, p);
588 rb_insert_color(&aeb->u.rb, &av->root);
589 return 0;
590 }
591
592 /**
593 * ubi_find_av - find volume in the attaching information.
594 * @ai: attaching information
595 * @vol_id: the requested volume ID
596 *
597 * This function returns a pointer to the volume description or %NULL if there
598 * are no data about this volume in the attaching information.
599 */
600 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
601 int vol_id)
602 {
603 struct ubi_ainf_volume *av;
604 struct rb_node *p = ai->volumes.rb_node;
605
606 while (p) {
607 av = rb_entry(p, struct ubi_ainf_volume, rb);
608
609 if (vol_id == av->vol_id)
610 return av;
611
612 if (vol_id > av->vol_id)
613 p = p->rb_left;
614 else
615 p = p->rb_right;
616 }
617
618 return NULL;
619 }
620
621 /**
622 * ubi_remove_av - delete attaching information about a volume.
623 * @ai: attaching information
624 * @av: the volume attaching information to delete
625 */
626 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
627 {
628 struct rb_node *rb;
629 struct ubi_ainf_peb *aeb;
630
631 dbg_bld("remove attaching information about volume %d", av->vol_id);
632
633 while ((rb = rb_first(&av->root))) {
634 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
635 rb_erase(&aeb->u.rb, &av->root);
636 list_add_tail(&aeb->u.list, &ai->erase);
637 }
638
639 rb_erase(&av->rb, &ai->volumes);
640 kfree(av);
641 ai->vols_found -= 1;
642 }
643
644 /**
645 * early_erase_peb - erase a physical eraseblock.
646 * @ubi: UBI device description object
647 * @ai: attaching information
648 * @pnum: physical eraseblock number to erase;
649 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
650 *
651 * This function erases physical eraseblock 'pnum', and writes the erase
652 * counter header to it. This function should only be used on UBI device
653 * initialization stages, when the EBA sub-system had not been yet initialized.
654 * This function returns zero in case of success and a negative error code in
655 * case of failure.
656 */
657 static int early_erase_peb(struct ubi_device *ubi,
658 const struct ubi_attach_info *ai, int pnum, int ec)
659 {
660 int err;
661 struct ubi_ec_hdr *ec_hdr;
662
663 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
664 /*
665 * Erase counter overflow. Upgrade UBI and use 64-bit
666 * erase counters internally.
667 */
668 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
669 return -EINVAL;
670 }
671
672 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
673 if (!ec_hdr)
674 return -ENOMEM;
675
676 ec_hdr->ec = cpu_to_be64(ec);
677
678 err = ubi_io_sync_erase(ubi, pnum, 0);
679 if (err < 0)
680 goto out_free;
681
682 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
683
684 out_free:
685 kfree(ec_hdr);
686 return err;
687 }
688
689 /**
690 * ubi_early_get_peb - get a free physical eraseblock.
691 * @ubi: UBI device description object
692 * @ai: attaching information
693 *
694 * This function returns a free physical eraseblock. It is supposed to be
695 * called on the UBI initialization stages when the wear-leveling sub-system is
696 * not initialized yet. This function picks a physical eraseblocks from one of
697 * the lists, writes the EC header if it is needed, and removes it from the
698 * list.
699 *
700 * This function returns a pointer to the "aeb" of the found free PEB in case
701 * of success and an error code in case of failure.
702 */
703 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
704 struct ubi_attach_info *ai)
705 {
706 int err = 0;
707 struct ubi_ainf_peb *aeb, *tmp_aeb;
708
709 if (!list_empty(&ai->free)) {
710 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
711 list_del(&aeb->u.list);
712 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
713 return aeb;
714 }
715
716 /*
717 * We try to erase the first physical eraseblock from the erase list
718 * and pick it if we succeed, or try to erase the next one if not. And
719 * so forth. We don't want to take care about bad eraseblocks here -
720 * they'll be handled later.
721 */
722 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
723 if (aeb->ec == UBI_UNKNOWN)
724 aeb->ec = ai->mean_ec;
725
726 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
727 if (err)
728 continue;
729
730 aeb->ec += 1;
731 list_del(&aeb->u.list);
732 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
733 return aeb;
734 }
735
736 ubi_err("no free eraseblocks");
737 return ERR_PTR(-ENOSPC);
738 }
739
740 /**
741 * check_corruption - check the data area of PEB.
742 * @ubi: UBI device description object
743 * @vid_hdr: the (corrupted) VID header of this PEB
744 * @pnum: the physical eraseblock number to check
745 *
746 * This is a helper function which is used to distinguish between VID header
747 * corruptions caused by power cuts and other reasons. If the PEB contains only
748 * 0xFF bytes in the data area, the VID header is most probably corrupted
749 * because of a power cut (%0 is returned in this case). Otherwise, it was
750 * probably corrupted for some other reasons (%1 is returned in this case). A
751 * negative error code is returned if a read error occurred.
752 *
753 * If the corruption reason was a power cut, UBI can safely erase this PEB.
754 * Otherwise, it should preserve it to avoid possibly destroying important
755 * information.
756 */
757 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
758 int pnum)
759 {
760 int err;
761
762 mutex_lock(&ubi->buf_mutex);
763 memset(ubi->peb_buf, 0x00, ubi->leb_size);
764
765 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
766 ubi->leb_size);
767 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
768 /*
769 * Bit-flips or integrity errors while reading the data area.
770 * It is difficult to say for sure what type of corruption is
771 * this, but presumably a power cut happened while this PEB was
772 * erased, so it became unstable and corrupted, and should be
773 * erased.
774 */
775 err = 0;
776 goto out_unlock;
777 }
778
779 if (err)
780 goto out_unlock;
781
782 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
783 goto out_unlock;
784
785 ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
786 pnum);
787 ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
788 ubi_dump_vid_hdr(vid_hdr);
789 pr_err("hexdump of PEB %d offset %d, length %d",
790 pnum, ubi->leb_start, ubi->leb_size);
791 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
792 ubi->peb_buf, ubi->leb_size, 1);
793 err = 1;
794
795 out_unlock:
796 mutex_unlock(&ubi->buf_mutex);
797 return err;
798 }
799
800 /**
801 * scan_peb - scan and process UBI headers of a PEB.
802 * @ubi: UBI device description object
803 * @ai: attaching information
804 * @pnum: the physical eraseblock number
805 * @vid: The volume ID of the found volume will be stored in this pointer
806 * @sqnum: The sqnum of the found volume will be stored in this pointer
807 *
808 * This function reads UBI headers of PEB @pnum, checks them, and adds
809 * information about this PEB to the corresponding list or RB-tree in the
810 * "attaching info" structure. Returns zero if the physical eraseblock was
811 * successfully handled and a negative error code in case of failure.
812 */
813 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
814 int pnum, int *vid, unsigned long long *sqnum)
815 {
816 long long uninitialized_var(ec);
817 int err, bitflips = 0, vol_id = -1, ec_err = 0;
818
819 dbg_bld("scan PEB %d", pnum);
820
821 /* Skip bad physical eraseblocks */
822 err = ubi_io_is_bad(ubi, pnum);
823 if (err < 0)
824 return err;
825 else if (err) {
826 ai->bad_peb_count += 1;
827 return 0;
828 }
829
830 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
831 if (err < 0)
832 return err;
833 switch (err) {
834 case 0:
835 break;
836 case UBI_IO_BITFLIPS:
837 bitflips = 1;
838 break;
839 case UBI_IO_FF:
840 ai->empty_peb_count += 1;
841 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
842 UBI_UNKNOWN, 0, &ai->erase);
843 case UBI_IO_FF_BITFLIPS:
844 ai->empty_peb_count += 1;
845 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
846 UBI_UNKNOWN, 1, &ai->erase);
847 case UBI_IO_BAD_HDR_EBADMSG:
848 case UBI_IO_BAD_HDR:
849 /*
850 * We have to also look at the VID header, possibly it is not
851 * corrupted. Set %bitflips flag in order to make this PEB be
852 * moved and EC be re-created.
853 */
854 ec_err = err;
855 ec = UBI_UNKNOWN;
856 bitflips = 1;
857 break;
858 default:
859 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
860 return -EINVAL;
861 }
862
863 if (!ec_err) {
864 int image_seq;
865
866 /* Make sure UBI version is OK */
867 if (ech->version != UBI_VERSION) {
868 ubi_err("this UBI version is %d, image version is %d",
869 UBI_VERSION, (int)ech->version);
870 return -EINVAL;
871 }
872
873 ec = be64_to_cpu(ech->ec);
874 if (ec > UBI_MAX_ERASECOUNTER) {
875 /*
876 * Erase counter overflow. The EC headers have 64 bits
877 * reserved, but we anyway make use of only 31 bit
878 * values, as this seems to be enough for any existing
879 * flash. Upgrade UBI and use 64-bit erase counters
880 * internally.
881 */
882 ubi_err("erase counter overflow, max is %d",
883 UBI_MAX_ERASECOUNTER);
884 ubi_dump_ec_hdr(ech);
885 return -EINVAL;
886 }
887
888 /*
889 * Make sure that all PEBs have the same image sequence number.
890 * This allows us to detect situations when users flash UBI
891 * images incorrectly, so that the flash has the new UBI image
892 * and leftovers from the old one. This feature was added
893 * relatively recently, and the sequence number was always
894 * zero, because old UBI implementations always set it to zero.
895 * For this reasons, we do not panic if some PEBs have zero
896 * sequence number, while other PEBs have non-zero sequence
897 * number.
898 */
899 image_seq = be32_to_cpu(ech->image_seq);
900 if (!ubi->image_seq)
901 ubi->image_seq = image_seq;
902 if (image_seq && ubi->image_seq != image_seq) {
903 ubi_err("bad image sequence number %d in PEB %d, expected %d",
904 image_seq, pnum, ubi->image_seq);
905 ubi_dump_ec_hdr(ech);
906 return -EINVAL;
907 }
908 }
909
910 /* OK, we've done with the EC header, let's look at the VID header */
911
912 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
913 if (err < 0)
914 return err;
915 switch (err) {
916 case 0:
917 break;
918 case UBI_IO_BITFLIPS:
919 bitflips = 1;
920 break;
921 case UBI_IO_BAD_HDR_EBADMSG:
922 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
923 /*
924 * Both EC and VID headers are corrupted and were read
925 * with data integrity error, probably this is a bad
926 * PEB, bit it is not marked as bad yet. This may also
927 * be a result of power cut during erasure.
928 */
929 ai->maybe_bad_peb_count += 1;
930 case UBI_IO_BAD_HDR:
931 if (ec_err)
932 /*
933 * Both headers are corrupted. There is a possibility
934 * that this a valid UBI PEB which has corresponding
935 * LEB, but the headers are corrupted. However, it is
936 * impossible to distinguish it from a PEB which just
937 * contains garbage because of a power cut during erase
938 * operation. So we just schedule this PEB for erasure.
939 *
940 * Besides, in case of NOR flash, we deliberately
941 * corrupt both headers because NOR flash erasure is
942 * slow and can start from the end.
943 */
944 err = 0;
945 else
946 /*
947 * The EC was OK, but the VID header is corrupted. We
948 * have to check what is in the data area.
949 */
950 err = check_corruption(ubi, vidh, pnum);
951
952 if (err < 0)
953 return err;
954 else if (!err)
955 /* This corruption is caused by a power cut */
956 err = add_to_list(ai, pnum, UBI_UNKNOWN,
957 UBI_UNKNOWN, ec, 1, &ai->erase);
958 else
959 /* This is an unexpected corruption */
960 err = add_corrupted(ai, pnum, ec);
961 if (err)
962 return err;
963 goto adjust_mean_ec;
964 case UBI_IO_FF_BITFLIPS:
965 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
966 ec, 1, &ai->erase);
967 if (err)
968 return err;
969 goto adjust_mean_ec;
970 case UBI_IO_FF:
971 if (ec_err || bitflips)
972 err = add_to_list(ai, pnum, UBI_UNKNOWN,
973 UBI_UNKNOWN, ec, 1, &ai->erase);
974 else
975 err = add_to_list(ai, pnum, UBI_UNKNOWN,
976 UBI_UNKNOWN, ec, 0, &ai->free);
977 if (err)
978 return err;
979 goto adjust_mean_ec;
980 default:
981 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
982 err);
983 return -EINVAL;
984 }
985
986 vol_id = be32_to_cpu(vidh->vol_id);
987 if (vid)
988 *vid = vol_id;
989 if (sqnum)
990 *sqnum = be64_to_cpu(vidh->sqnum);
991 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
992 int lnum = be32_to_cpu(vidh->lnum);
993
994 /* Unsupported internal volume */
995 switch (vidh->compat) {
996 case UBI_COMPAT_DELETE:
997 if (vol_id != UBI_FM_SB_VOLUME_ID
998 && vol_id != UBI_FM_DATA_VOLUME_ID) {
999 ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1000 vol_id, lnum);
1001 }
1002 err = add_to_list(ai, pnum, vol_id, lnum,
1003 ec, 1, &ai->erase);
1004 if (err)
1005 return err;
1006 return 0;
1007
1008 case UBI_COMPAT_RO:
1009 ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1010 vol_id, lnum);
1011 ubi->ro_mode = 1;
1012 break;
1013
1014 case UBI_COMPAT_PRESERVE:
1015 ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1016 vol_id, lnum);
1017 err = add_to_list(ai, pnum, vol_id, lnum,
1018 ec, 0, &ai->alien);
1019 if (err)
1020 return err;
1021 return 0;
1022
1023 case UBI_COMPAT_REJECT:
1024 ubi_err("incompatible internal volume %d:%d found",
1025 vol_id, lnum);
1026 return -EINVAL;
1027 }
1028 }
1029
1030 if (ec_err)
1031 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1032 pnum);
1033 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1034 if (err)
1035 return err;
1036
1037 adjust_mean_ec:
1038 if (!ec_err) {
1039 ai->ec_sum += ec;
1040 ai->ec_count += 1;
1041 if (ec > ai->max_ec)
1042 ai->max_ec = ec;
1043 if (ec < ai->min_ec)
1044 ai->min_ec = ec;
1045 }
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * late_analysis - analyze the overall situation with PEB.
1052 * @ubi: UBI device description object
1053 * @ai: attaching information
1054 *
1055 * This is a helper function which takes a look what PEBs we have after we
1056 * gather information about all of them ("ai" is compete). It decides whether
1057 * the flash is empty and should be formatted of whether there are too many
1058 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1059 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1060 */
1061 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1062 {
1063 struct ubi_ainf_peb *aeb;
1064 int max_corr, peb_count;
1065
1066 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1067 max_corr = peb_count / 20 ?: 8;
1068
1069 /*
1070 * Few corrupted PEBs is not a problem and may be just a result of
1071 * unclean reboots. However, many of them may indicate some problems
1072 * with the flash HW or driver.
1073 */
1074 if (ai->corr_peb_count) {
1075 ubi_err("%d PEBs are corrupted and preserved",
1076 ai->corr_peb_count);
1077 pr_err("Corrupted PEBs are:");
1078 list_for_each_entry(aeb, &ai->corr, u.list)
1079 pr_cont(" %d", aeb->pnum);
1080 pr_cont("\n");
1081
1082 /*
1083 * If too many PEBs are corrupted, we refuse attaching,
1084 * otherwise, only print a warning.
1085 */
1086 if (ai->corr_peb_count >= max_corr) {
1087 ubi_err("too many corrupted PEBs, refusing");
1088 return -EINVAL;
1089 }
1090 }
1091
1092 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1093 /*
1094 * All PEBs are empty, or almost all - a couple PEBs look like
1095 * they may be bad PEBs which were not marked as bad yet.
1096 *
1097 * This piece of code basically tries to distinguish between
1098 * the following situations:
1099 *
1100 * 1. Flash is empty, but there are few bad PEBs, which are not
1101 * marked as bad so far, and which were read with error. We
1102 * want to go ahead and format this flash. While formatting,
1103 * the faulty PEBs will probably be marked as bad.
1104 *
1105 * 2. Flash contains non-UBI data and we do not want to format
1106 * it and destroy possibly important information.
1107 */
1108 if (ai->maybe_bad_peb_count <= 2) {
1109 ai->is_empty = 1;
1110 ubi_msg("empty MTD device detected");
1111 get_random_bytes(&ubi->image_seq,
1112 sizeof(ubi->image_seq));
1113 } else {
1114 ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1115 return -EINVAL;
1116 }
1117
1118 }
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * destroy_av - free volume attaching information.
1125 * @av: volume attaching information
1126 * @ai: attaching information
1127 *
1128 * This function destroys the volume attaching information.
1129 */
1130 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1131 {
1132 struct ubi_ainf_peb *aeb;
1133 struct rb_node *this = av->root.rb_node;
1134
1135 while (this) {
1136 if (this->rb_left)
1137 this = this->rb_left;
1138 else if (this->rb_right)
1139 this = this->rb_right;
1140 else {
1141 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1142 this = rb_parent(this);
1143 if (this) {
1144 if (this->rb_left == &aeb->u.rb)
1145 this->rb_left = NULL;
1146 else
1147 this->rb_right = NULL;
1148 }
1149
1150 kmem_cache_free(ai->aeb_slab_cache, aeb);
1151 }
1152 }
1153 kfree(av);
1154 }
1155
1156 /**
1157 * destroy_ai - destroy attaching information.
1158 * @ai: attaching information
1159 */
1160 static void destroy_ai(struct ubi_attach_info *ai)
1161 {
1162 struct ubi_ainf_peb *aeb, *aeb_tmp;
1163 struct ubi_ainf_volume *av;
1164 struct rb_node *rb;
1165
1166 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1167 list_del(&aeb->u.list);
1168 kmem_cache_free(ai->aeb_slab_cache, aeb);
1169 }
1170 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1171 list_del(&aeb->u.list);
1172 kmem_cache_free(ai->aeb_slab_cache, aeb);
1173 }
1174 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1175 list_del(&aeb->u.list);
1176 kmem_cache_free(ai->aeb_slab_cache, aeb);
1177 }
1178 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1179 list_del(&aeb->u.list);
1180 kmem_cache_free(ai->aeb_slab_cache, aeb);
1181 }
1182
1183 /* Destroy the volume RB-tree */
1184 rb = ai->volumes.rb_node;
1185 while (rb) {
1186 if (rb->rb_left)
1187 rb = rb->rb_left;
1188 else if (rb->rb_right)
1189 rb = rb->rb_right;
1190 else {
1191 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1192
1193 rb = rb_parent(rb);
1194 if (rb) {
1195 if (rb->rb_left == &av->rb)
1196 rb->rb_left = NULL;
1197 else
1198 rb->rb_right = NULL;
1199 }
1200
1201 destroy_av(ai, av);
1202 }
1203 }
1204
1205 if (ai->aeb_slab_cache)
1206 kmem_cache_destroy(ai->aeb_slab_cache);
1207
1208 kfree(ai);
1209 }
1210
1211 /**
1212 * scan_all - scan entire MTD device.
1213 * @ubi: UBI device description object
1214 * @ai: attach info object
1215 * @start: start scanning at this PEB
1216 *
1217 * This function does full scanning of an MTD device and returns complete
1218 * information about it in form of a "struct ubi_attach_info" object. In case
1219 * of failure, an error code is returned.
1220 */
1221 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1222 int start)
1223 {
1224 int err, pnum;
1225 struct rb_node *rb1, *rb2;
1226 struct ubi_ainf_volume *av;
1227 struct ubi_ainf_peb *aeb;
1228
1229 err = -ENOMEM;
1230
1231 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1232 if (!ech)
1233 return err;
1234
1235 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1236 if (!vidh)
1237 goto out_ech;
1238
1239 for (pnum = start; pnum < ubi->peb_count; pnum++) {
1240 cond_resched();
1241
1242 dbg_gen("process PEB %d", pnum);
1243 err = scan_peb(ubi, ai, pnum, NULL, NULL);
1244 if (err < 0)
1245 goto out_vidh;
1246 }
1247
1248 ubi_msg("scanning is finished");
1249
1250 /* Calculate mean erase counter */
1251 if (ai->ec_count)
1252 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1253
1254 err = late_analysis(ubi, ai);
1255 if (err)
1256 goto out_vidh;
1257
1258 /*
1259 * In case of unknown erase counter we use the mean erase counter
1260 * value.
1261 */
1262 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1263 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1264 if (aeb->ec == UBI_UNKNOWN)
1265 aeb->ec = ai->mean_ec;
1266 }
1267
1268 list_for_each_entry(aeb, &ai->free, u.list) {
1269 if (aeb->ec == UBI_UNKNOWN)
1270 aeb->ec = ai->mean_ec;
1271 }
1272
1273 list_for_each_entry(aeb, &ai->corr, u.list)
1274 if (aeb->ec == UBI_UNKNOWN)
1275 aeb->ec = ai->mean_ec;
1276
1277 list_for_each_entry(aeb, &ai->erase, u.list)
1278 if (aeb->ec == UBI_UNKNOWN)
1279 aeb->ec = ai->mean_ec;
1280
1281 err = self_check_ai(ubi, ai);
1282 if (err)
1283 goto out_vidh;
1284
1285 ubi_free_vid_hdr(ubi, vidh);
1286 kfree(ech);
1287
1288 return 0;
1289
1290 out_vidh:
1291 ubi_free_vid_hdr(ubi, vidh);
1292 out_ech:
1293 kfree(ech);
1294 return err;
1295 }
1296
1297 #ifdef CONFIG_MTD_UBI_FASTMAP
1298
1299 /**
1300 * scan_fastmap - try to find a fastmap and attach from it.
1301 * @ubi: UBI device description object
1302 * @ai: attach info object
1303 *
1304 * Returns 0 on success, negative return values indicate an internal
1305 * error.
1306 * UBI_NO_FASTMAP denotes that no fastmap was found.
1307 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1308 */
1309 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1310 {
1311 int err, pnum, fm_anchor = -1;
1312 unsigned long long max_sqnum = 0;
1313
1314 err = -ENOMEM;
1315
1316 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1317 if (!ech)
1318 goto out;
1319
1320 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1321 if (!vidh)
1322 goto out_ech;
1323
1324 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1325 int vol_id = -1;
1326 unsigned long long sqnum = -1;
1327 cond_resched();
1328
1329 dbg_gen("process PEB %d", pnum);
1330 err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1331 if (err < 0)
1332 goto out_vidh;
1333
1334 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1335 max_sqnum = sqnum;
1336 fm_anchor = pnum;
1337 }
1338 }
1339
1340 ubi_free_vid_hdr(ubi, vidh);
1341 kfree(ech);
1342
1343 if (fm_anchor < 0)
1344 return UBI_NO_FASTMAP;
1345
1346 return ubi_scan_fastmap(ubi, ai, fm_anchor);
1347
1348 out_vidh:
1349 ubi_free_vid_hdr(ubi, vidh);
1350 out_ech:
1351 kfree(ech);
1352 out:
1353 return err;
1354 }
1355
1356 #endif
1357
1358 static struct ubi_attach_info *alloc_ai(const char *slab_name)
1359 {
1360 struct ubi_attach_info *ai;
1361
1362 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1363 if (!ai)
1364 return ai;
1365
1366 INIT_LIST_HEAD(&ai->corr);
1367 INIT_LIST_HEAD(&ai->free);
1368 INIT_LIST_HEAD(&ai->erase);
1369 INIT_LIST_HEAD(&ai->alien);
1370 ai->volumes = RB_ROOT;
1371 ai->aeb_slab_cache = kmem_cache_create(slab_name,
1372 sizeof(struct ubi_ainf_peb),
1373 0, 0, NULL);
1374 if (!ai->aeb_slab_cache) {
1375 kfree(ai);
1376 ai = NULL;
1377 }
1378
1379 return ai;
1380 }
1381
1382 /**
1383 * ubi_attach - attach an MTD device.
1384 * @ubi: UBI device descriptor
1385 * @force_scan: if set to non-zero attach by scanning
1386 *
1387 * This function returns zero in case of success and a negative error code in
1388 * case of failure.
1389 */
1390 int ubi_attach(struct ubi_device *ubi, int force_scan)
1391 {
1392 int err;
1393 struct ubi_attach_info *ai;
1394
1395 ai = alloc_ai("ubi_aeb_slab_cache");
1396 if (!ai)
1397 return -ENOMEM;
1398
1399 #ifdef CONFIG_MTD_UBI_FASTMAP
1400 /* On small flash devices we disable fastmap in any case. */
1401 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1402 ubi->fm_disabled = 1;
1403 force_scan = 1;
1404 }
1405
1406 if (force_scan)
1407 err = scan_all(ubi, ai, 0);
1408 else {
1409 err = scan_fast(ubi, ai);
1410 if (err > 0) {
1411 if (err != UBI_NO_FASTMAP) {
1412 destroy_ai(ai);
1413 ai = alloc_ai("ubi_aeb_slab_cache2");
1414 if (!ai)
1415 return -ENOMEM;
1416
1417 err = scan_all(ubi, ai, 0);
1418 } else {
1419 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1420 }
1421 }
1422 }
1423 #else
1424 err = scan_all(ubi, ai, 0);
1425 #endif
1426 if (err)
1427 goto out_ai;
1428
1429 ubi->bad_peb_count = ai->bad_peb_count;
1430 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1431 ubi->corr_peb_count = ai->corr_peb_count;
1432 ubi->max_ec = ai->max_ec;
1433 ubi->mean_ec = ai->mean_ec;
1434 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
1435
1436 err = ubi_read_volume_table(ubi, ai);
1437 if (err)
1438 goto out_ai;
1439
1440 err = ubi_wl_init(ubi, ai);
1441 if (err)
1442 goto out_vtbl;
1443
1444 err = ubi_eba_init(ubi, ai);
1445 if (err)
1446 goto out_wl;
1447
1448 #ifdef CONFIG_MTD_UBI_FASTMAP
1449 if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1450 struct ubi_attach_info *scan_ai;
1451
1452 scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1453 if (!scan_ai) {
1454 err = -ENOMEM;
1455 goto out_wl;
1456 }
1457
1458 err = scan_all(ubi, scan_ai, 0);
1459 if (err) {
1460 destroy_ai(scan_ai);
1461 goto out_wl;
1462 }
1463
1464 err = self_check_eba(ubi, ai, scan_ai);
1465 destroy_ai(scan_ai);
1466
1467 if (err)
1468 goto out_wl;
1469 }
1470 #endif
1471
1472 destroy_ai(ai);
1473 return 0;
1474
1475 out_wl:
1476 ubi_wl_close(ubi);
1477 out_vtbl:
1478 ubi_free_internal_volumes(ubi);
1479 vfree(ubi->vtbl);
1480 out_ai:
1481 destroy_ai(ai);
1482 return err;
1483 }
1484
1485 /**
1486 * self_check_ai - check the attaching information.
1487 * @ubi: UBI device description object
1488 * @ai: attaching information
1489 *
1490 * This function returns zero if the attaching information is all right, and a
1491 * negative error code if not or if an error occurred.
1492 */
1493 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1494 {
1495 int pnum, err, vols_found = 0;
1496 struct rb_node *rb1, *rb2;
1497 struct ubi_ainf_volume *av;
1498 struct ubi_ainf_peb *aeb, *last_aeb;
1499 uint8_t *buf;
1500
1501 if (!ubi_dbg_chk_gen(ubi))
1502 return 0;
1503
1504 /*
1505 * At first, check that attaching information is OK.
1506 */
1507 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1508 int leb_count = 0;
1509
1510 cond_resched();
1511
1512 vols_found += 1;
1513
1514 if (ai->is_empty) {
1515 ubi_err("bad is_empty flag");
1516 goto bad_av;
1517 }
1518
1519 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1520 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1521 av->data_pad < 0 || av->last_data_size < 0) {
1522 ubi_err("negative values");
1523 goto bad_av;
1524 }
1525
1526 if (av->vol_id >= UBI_MAX_VOLUMES &&
1527 av->vol_id < UBI_INTERNAL_VOL_START) {
1528 ubi_err("bad vol_id");
1529 goto bad_av;
1530 }
1531
1532 if (av->vol_id > ai->highest_vol_id) {
1533 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1534 ai->highest_vol_id, av->vol_id);
1535 goto out;
1536 }
1537
1538 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1539 av->vol_type != UBI_STATIC_VOLUME) {
1540 ubi_err("bad vol_type");
1541 goto bad_av;
1542 }
1543
1544 if (av->data_pad > ubi->leb_size / 2) {
1545 ubi_err("bad data_pad");
1546 goto bad_av;
1547 }
1548
1549 last_aeb = NULL;
1550 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1551 cond_resched();
1552
1553 last_aeb = aeb;
1554 leb_count += 1;
1555
1556 if (aeb->pnum < 0 || aeb->ec < 0) {
1557 ubi_err("negative values");
1558 goto bad_aeb;
1559 }
1560
1561 if (aeb->ec < ai->min_ec) {
1562 ubi_err("bad ai->min_ec (%d), %d found",
1563 ai->min_ec, aeb->ec);
1564 goto bad_aeb;
1565 }
1566
1567 if (aeb->ec > ai->max_ec) {
1568 ubi_err("bad ai->max_ec (%d), %d found",
1569 ai->max_ec, aeb->ec);
1570 goto bad_aeb;
1571 }
1572
1573 if (aeb->pnum >= ubi->peb_count) {
1574 ubi_err("too high PEB number %d, total PEBs %d",
1575 aeb->pnum, ubi->peb_count);
1576 goto bad_aeb;
1577 }
1578
1579 if (av->vol_type == UBI_STATIC_VOLUME) {
1580 if (aeb->lnum >= av->used_ebs) {
1581 ubi_err("bad lnum or used_ebs");
1582 goto bad_aeb;
1583 }
1584 } else {
1585 if (av->used_ebs != 0) {
1586 ubi_err("non-zero used_ebs");
1587 goto bad_aeb;
1588 }
1589 }
1590
1591 if (aeb->lnum > av->highest_lnum) {
1592 ubi_err("incorrect highest_lnum or lnum");
1593 goto bad_aeb;
1594 }
1595 }
1596
1597 if (av->leb_count != leb_count) {
1598 ubi_err("bad leb_count, %d objects in the tree",
1599 leb_count);
1600 goto bad_av;
1601 }
1602
1603 if (!last_aeb)
1604 continue;
1605
1606 aeb = last_aeb;
1607
1608 if (aeb->lnum != av->highest_lnum) {
1609 ubi_err("bad highest_lnum");
1610 goto bad_aeb;
1611 }
1612 }
1613
1614 if (vols_found != ai->vols_found) {
1615 ubi_err("bad ai->vols_found %d, should be %d",
1616 ai->vols_found, vols_found);
1617 goto out;
1618 }
1619
1620 /* Check that attaching information is correct */
1621 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1622 last_aeb = NULL;
1623 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1624 int vol_type;
1625
1626 cond_resched();
1627
1628 last_aeb = aeb;
1629
1630 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1631 if (err && err != UBI_IO_BITFLIPS) {
1632 ubi_err("VID header is not OK (%d)", err);
1633 if (err > 0)
1634 err = -EIO;
1635 return err;
1636 }
1637
1638 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1639 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1640 if (av->vol_type != vol_type) {
1641 ubi_err("bad vol_type");
1642 goto bad_vid_hdr;
1643 }
1644
1645 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1646 ubi_err("bad sqnum %llu", aeb->sqnum);
1647 goto bad_vid_hdr;
1648 }
1649
1650 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1651 ubi_err("bad vol_id %d", av->vol_id);
1652 goto bad_vid_hdr;
1653 }
1654
1655 if (av->compat != vidh->compat) {
1656 ubi_err("bad compat %d", vidh->compat);
1657 goto bad_vid_hdr;
1658 }
1659
1660 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1661 ubi_err("bad lnum %d", aeb->lnum);
1662 goto bad_vid_hdr;
1663 }
1664
1665 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1666 ubi_err("bad used_ebs %d", av->used_ebs);
1667 goto bad_vid_hdr;
1668 }
1669
1670 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1671 ubi_err("bad data_pad %d", av->data_pad);
1672 goto bad_vid_hdr;
1673 }
1674 }
1675
1676 if (!last_aeb)
1677 continue;
1678
1679 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1680 ubi_err("bad highest_lnum %d", av->highest_lnum);
1681 goto bad_vid_hdr;
1682 }
1683
1684 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1685 ubi_err("bad last_data_size %d", av->last_data_size);
1686 goto bad_vid_hdr;
1687 }
1688 }
1689
1690 /*
1691 * Make sure that all the physical eraseblocks are in one of the lists
1692 * or trees.
1693 */
1694 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1695 if (!buf)
1696 return -ENOMEM;
1697
1698 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1699 err = ubi_io_is_bad(ubi, pnum);
1700 if (err < 0) {
1701 kfree(buf);
1702 return err;
1703 } else if (err)
1704 buf[pnum] = 1;
1705 }
1706
1707 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1708 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1709 buf[aeb->pnum] = 1;
1710
1711 list_for_each_entry(aeb, &ai->free, u.list)
1712 buf[aeb->pnum] = 1;
1713
1714 list_for_each_entry(aeb, &ai->corr, u.list)
1715 buf[aeb->pnum] = 1;
1716
1717 list_for_each_entry(aeb, &ai->erase, u.list)
1718 buf[aeb->pnum] = 1;
1719
1720 list_for_each_entry(aeb, &ai->alien, u.list)
1721 buf[aeb->pnum] = 1;
1722
1723 err = 0;
1724 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1725 if (!buf[pnum]) {
1726 ubi_err("PEB %d is not referred", pnum);
1727 err = 1;
1728 }
1729
1730 kfree(buf);
1731 if (err)
1732 goto out;
1733 return 0;
1734
1735 bad_aeb:
1736 ubi_err("bad attaching information about LEB %d", aeb->lnum);
1737 ubi_dump_aeb(aeb, 0);
1738 ubi_dump_av(av);
1739 goto out;
1740
1741 bad_av:
1742 ubi_err("bad attaching information about volume %d", av->vol_id);
1743 ubi_dump_av(av);
1744 goto out;
1745
1746 bad_vid_hdr:
1747 ubi_err("bad attaching information about volume %d", av->vol_id);
1748 ubi_dump_av(av);
1749 ubi_dump_vid_hdr(vidh);
1750
1751 out:
1752 dump_stack();
1753 return -EINVAL;
1754 }