]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/build.c
mtd: ubi: Fix worker handling
[people/ms/u-boot.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 *
7 * Author: Artem Bityutskiy (Битюцкий Артём),
8 * Frank Haverkamp
9 */
10
11 /*
12 * This file includes UBI initialization and building of UBI devices.
13 *
14 * When UBI is initialized, it attaches all the MTD devices specified as the
15 * module load parameters or the kernel boot parameters. If MTD devices were
16 * specified, UBI does not attach any MTD device, but it is possible to do
17 * later using the "UBI control device".
18 */
19
20 #ifndef __UBOOT__
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/stringify.h>
24 #include <linux/namei.h>
25 #include <linux/stat.h>
26 #include <linux/miscdevice.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #else
33 #include <linux/bug.h>
34 #include <linux/log2.h>
35 #endif
36 #include <linux/err.h>
37 #include <ubi_uboot.h>
38 #include <linux/mtd/partitions.h>
39
40 #include "ubi.h"
41
42 /* Maximum length of the 'mtd=' parameter */
43 #define MTD_PARAM_LEN_MAX 64
44
45 /* Maximum number of comma-separated items in the 'mtd=' parameter */
46 #define MTD_PARAM_MAX_COUNT 4
47
48 /* Maximum value for the number of bad PEBs per 1024 PEBs */
49 #define MAX_MTD_UBI_BEB_LIMIT 768
50
51 #ifdef CONFIG_MTD_UBI_MODULE
52 #define ubi_is_module() 1
53 #else
54 #define ubi_is_module() 0
55 #endif
56
57 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
58 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
59 #endif
60
61 /**
62 * struct mtd_dev_param - MTD device parameter description data structure.
63 * @name: MTD character device node path, MTD device name, or MTD device number
64 * string
65 * @vid_hdr_offs: VID header offset
66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67 */
68 struct mtd_dev_param {
69 char name[MTD_PARAM_LEN_MAX];
70 int ubi_num;
71 int vid_hdr_offs;
72 int max_beb_per1024;
73 };
74
75 /* Numbers of elements set in the @mtd_dev_param array */
76 static int __initdata mtd_devs;
77
78 /* MTD devices specification parameters */
79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
80 #ifndef __UBOOT__
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
86 #else
87 #ifdef CONFIG_MTD_UBI_FASTMAP
88 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
89 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
90 #endif
91 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
92 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
93 #define CONFIG_MTD_UBI_FM_DEBUG 0
94 #endif
95 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
96 #endif
97 #endif
98
99 /* Slab cache for wear-leveling entries */
100 struct kmem_cache *ubi_wl_entry_slab;
101
102 #ifndef __UBOOT__
103 /* UBI control character device */
104 static struct miscdevice ubi_ctrl_cdev = {
105 .minor = MISC_DYNAMIC_MINOR,
106 .name = "ubi_ctrl",
107 .fops = &ubi_ctrl_cdev_operations,
108 };
109 #endif
110
111 /* All UBI devices in system */
112 #ifndef __UBOOT__
113 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
114 #else
115 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
116 #endif
117
118 #ifndef __UBOOT__
119 /* Serializes UBI devices creations and removals */
120 DEFINE_MUTEX(ubi_devices_mutex);
121
122 /* Protects @ubi_devices and @ubi->ref_count */
123 static DEFINE_SPINLOCK(ubi_devices_lock);
124
125 /* "Show" method for files in '/<sysfs>/class/ubi/' */
126 static ssize_t ubi_version_show(struct class *class,
127 struct class_attribute *attr, char *buf)
128 {
129 return sprintf(buf, "%d\n", UBI_VERSION);
130 }
131
132 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
133 static struct class_attribute ubi_class_attrs[] = {
134 __ATTR(version, S_IRUGO, ubi_version_show, NULL),
135 __ATTR_NULL
136 };
137
138 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
139 struct class ubi_class = {
140 .name = UBI_NAME_STR,
141 .owner = THIS_MODULE,
142 .class_attrs = ubi_class_attrs,
143 };
144
145 static ssize_t dev_attribute_show(struct device *dev,
146 struct device_attribute *attr, char *buf);
147
148 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
149 static struct device_attribute dev_eraseblock_size =
150 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
151 static struct device_attribute dev_avail_eraseblocks =
152 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
153 static struct device_attribute dev_total_eraseblocks =
154 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
155 static struct device_attribute dev_volumes_count =
156 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
157 static struct device_attribute dev_max_ec =
158 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
159 static struct device_attribute dev_reserved_for_bad =
160 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
161 static struct device_attribute dev_bad_peb_count =
162 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
163 static struct device_attribute dev_max_vol_count =
164 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
165 static struct device_attribute dev_min_io_size =
166 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
167 static struct device_attribute dev_bgt_enabled =
168 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
169 static struct device_attribute dev_mtd_num =
170 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
171 #endif
172
173 /**
174 * ubi_volume_notify - send a volume change notification.
175 * @ubi: UBI device description object
176 * @vol: volume description object of the changed volume
177 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
178 *
179 * This is a helper function which notifies all subscribers about a volume
180 * change event (creation, removal, re-sizing, re-naming, updating). Returns
181 * zero in case of success and a negative error code in case of failure.
182 */
183 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
184 {
185 int ret;
186 struct ubi_notification nt;
187
188 ubi_do_get_device_info(ubi, &nt.di);
189 ubi_do_get_volume_info(ubi, vol, &nt.vi);
190
191 switch (ntype) {
192 case UBI_VOLUME_ADDED:
193 case UBI_VOLUME_REMOVED:
194 case UBI_VOLUME_RESIZED:
195 case UBI_VOLUME_RENAMED:
196 ret = ubi_update_fastmap(ubi);
197 if (ret)
198 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
199 }
200
201 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
202 }
203
204 /**
205 * ubi_notify_all - send a notification to all volumes.
206 * @ubi: UBI device description object
207 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
208 * @nb: the notifier to call
209 *
210 * This function walks all volumes of UBI device @ubi and sends the @ntype
211 * notification for each volume. If @nb is %NULL, then all registered notifiers
212 * are called, otherwise only the @nb notifier is called. Returns the number of
213 * sent notifications.
214 */
215 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
216 {
217 struct ubi_notification nt;
218 int i, count = 0;
219 #ifndef __UBOOT__
220 int ret;
221 #endif
222
223 ubi_do_get_device_info(ubi, &nt.di);
224
225 mutex_lock(&ubi->device_mutex);
226 for (i = 0; i < ubi->vtbl_slots; i++) {
227 /*
228 * Since the @ubi->device is locked, and we are not going to
229 * change @ubi->volumes, we do not have to lock
230 * @ubi->volumes_lock.
231 */
232 if (!ubi->volumes[i])
233 continue;
234
235 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
236 #ifndef __UBOOT__
237 if (nb)
238 nb->notifier_call(nb, ntype, &nt);
239 else
240 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
241 &nt);
242 #endif
243 count += 1;
244 }
245 mutex_unlock(&ubi->device_mutex);
246
247 return count;
248 }
249
250 /**
251 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
252 * @nb: the notifier to call
253 *
254 * This function walks all UBI devices and volumes and sends the
255 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
256 * registered notifiers are called, otherwise only the @nb notifier is called.
257 * Returns the number of sent notifications.
258 */
259 int ubi_enumerate_volumes(struct notifier_block *nb)
260 {
261 int i, count = 0;
262
263 /*
264 * Since the @ubi_devices_mutex is locked, and we are not going to
265 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
266 */
267 for (i = 0; i < UBI_MAX_DEVICES; i++) {
268 struct ubi_device *ubi = ubi_devices[i];
269
270 if (!ubi)
271 continue;
272 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
273 }
274
275 return count;
276 }
277
278 /**
279 * ubi_get_device - get UBI device.
280 * @ubi_num: UBI device number
281 *
282 * This function returns UBI device description object for UBI device number
283 * @ubi_num, or %NULL if the device does not exist. This function increases the
284 * device reference count to prevent removal of the device. In other words, the
285 * device cannot be removed if its reference count is not zero.
286 */
287 struct ubi_device *ubi_get_device(int ubi_num)
288 {
289 struct ubi_device *ubi;
290
291 spin_lock(&ubi_devices_lock);
292 ubi = ubi_devices[ubi_num];
293 if (ubi) {
294 ubi_assert(ubi->ref_count >= 0);
295 ubi->ref_count += 1;
296 get_device(&ubi->dev);
297 }
298 spin_unlock(&ubi_devices_lock);
299
300 return ubi;
301 }
302
303 /**
304 * ubi_put_device - drop an UBI device reference.
305 * @ubi: UBI device description object
306 */
307 void ubi_put_device(struct ubi_device *ubi)
308 {
309 spin_lock(&ubi_devices_lock);
310 ubi->ref_count -= 1;
311 put_device(&ubi->dev);
312 spin_unlock(&ubi_devices_lock);
313 }
314
315 /**
316 * ubi_get_by_major - get UBI device by character device major number.
317 * @major: major number
318 *
319 * This function is similar to 'ubi_get_device()', but it searches the device
320 * by its major number.
321 */
322 struct ubi_device *ubi_get_by_major(int major)
323 {
324 int i;
325 struct ubi_device *ubi;
326
327 spin_lock(&ubi_devices_lock);
328 for (i = 0; i < UBI_MAX_DEVICES; i++) {
329 ubi = ubi_devices[i];
330 if (ubi && MAJOR(ubi->cdev.dev) == major) {
331 ubi_assert(ubi->ref_count >= 0);
332 ubi->ref_count += 1;
333 get_device(&ubi->dev);
334 spin_unlock(&ubi_devices_lock);
335 return ubi;
336 }
337 }
338 spin_unlock(&ubi_devices_lock);
339
340 return NULL;
341 }
342
343 /**
344 * ubi_major2num - get UBI device number by character device major number.
345 * @major: major number
346 *
347 * This function searches UBI device number object by its major number. If UBI
348 * device was not found, this function returns -ENODEV, otherwise the UBI device
349 * number is returned.
350 */
351 int ubi_major2num(int major)
352 {
353 int i, ubi_num = -ENODEV;
354
355 spin_lock(&ubi_devices_lock);
356 for (i = 0; i < UBI_MAX_DEVICES; i++) {
357 struct ubi_device *ubi = ubi_devices[i];
358
359 if (ubi && MAJOR(ubi->cdev.dev) == major) {
360 ubi_num = ubi->ubi_num;
361 break;
362 }
363 }
364 spin_unlock(&ubi_devices_lock);
365
366 return ubi_num;
367 }
368
369 #ifndef __UBOOT__
370 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
371 static ssize_t dev_attribute_show(struct device *dev,
372 struct device_attribute *attr, char *buf)
373 {
374 ssize_t ret;
375 struct ubi_device *ubi;
376
377 /*
378 * The below code looks weird, but it actually makes sense. We get the
379 * UBI device reference from the contained 'struct ubi_device'. But it
380 * is unclear if the device was removed or not yet. Indeed, if the
381 * device was removed before we increased its reference count,
382 * 'ubi_get_device()' will return -ENODEV and we fail.
383 *
384 * Remember, 'struct ubi_device' is freed in the release function, so
385 * we still can use 'ubi->ubi_num'.
386 */
387 ubi = container_of(dev, struct ubi_device, dev);
388 ubi = ubi_get_device(ubi->ubi_num);
389 if (!ubi)
390 return -ENODEV;
391
392 if (attr == &dev_eraseblock_size)
393 ret = sprintf(buf, "%d\n", ubi->leb_size);
394 else if (attr == &dev_avail_eraseblocks)
395 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
396 else if (attr == &dev_total_eraseblocks)
397 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
398 else if (attr == &dev_volumes_count)
399 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
400 else if (attr == &dev_max_ec)
401 ret = sprintf(buf, "%d\n", ubi->max_ec);
402 else if (attr == &dev_reserved_for_bad)
403 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
404 else if (attr == &dev_bad_peb_count)
405 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
406 else if (attr == &dev_max_vol_count)
407 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
408 else if (attr == &dev_min_io_size)
409 ret = sprintf(buf, "%d\n", ubi->min_io_size);
410 else if (attr == &dev_bgt_enabled)
411 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
412 else if (attr == &dev_mtd_num)
413 ret = sprintf(buf, "%d\n", ubi->mtd->index);
414 else
415 ret = -EINVAL;
416
417 ubi_put_device(ubi);
418 return ret;
419 }
420
421 static struct attribute *ubi_dev_attrs[] = {
422 &dev_eraseblock_size.attr,
423 &dev_avail_eraseblocks.attr,
424 &dev_total_eraseblocks.attr,
425 &dev_volumes_count.attr,
426 &dev_max_ec.attr,
427 &dev_reserved_for_bad.attr,
428 &dev_bad_peb_count.attr,
429 &dev_max_vol_count.attr,
430 &dev_min_io_size.attr,
431 &dev_bgt_enabled.attr,
432 &dev_mtd_num.attr,
433 NULL
434 };
435 ATTRIBUTE_GROUPS(ubi_dev);
436
437 static void dev_release(struct device *dev)
438 {
439 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
440
441 kfree(ubi);
442 }
443
444 /**
445 * ubi_sysfs_init - initialize sysfs for an UBI device.
446 * @ubi: UBI device description object
447 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
448 * taken
449 *
450 * This function returns zero in case of success and a negative error code in
451 * case of failure.
452 */
453 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
454 {
455 int err;
456
457 ubi->dev.release = dev_release;
458 ubi->dev.devt = ubi->cdev.dev;
459 ubi->dev.class = &ubi_class;
460 ubi->dev.groups = ubi_dev_groups;
461 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
462 err = device_register(&ubi->dev);
463 if (err)
464 return err;
465
466 *ref = 1;
467 return 0;
468 }
469
470 /**
471 * ubi_sysfs_close - close sysfs for an UBI device.
472 * @ubi: UBI device description object
473 */
474 static void ubi_sysfs_close(struct ubi_device *ubi)
475 {
476 device_unregister(&ubi->dev);
477 }
478 #endif
479
480 /**
481 * kill_volumes - destroy all user volumes.
482 * @ubi: UBI device description object
483 */
484 static void kill_volumes(struct ubi_device *ubi)
485 {
486 int i;
487
488 for (i = 0; i < ubi->vtbl_slots; i++)
489 if (ubi->volumes[i])
490 ubi_free_volume(ubi, ubi->volumes[i]);
491 }
492
493 /**
494 * uif_init - initialize user interfaces for an UBI device.
495 * @ubi: UBI device description object
496 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
497 * taken, otherwise set to %0
498 *
499 * This function initializes various user interfaces for an UBI device. If the
500 * initialization fails at an early stage, this function frees all the
501 * resources it allocated, returns an error, and @ref is set to %0. However,
502 * if the initialization fails after the UBI device was registered in the
503 * driver core subsystem, this function takes a reference to @ubi->dev, because
504 * otherwise the release function ('dev_release()') would free whole @ubi
505 * object. The @ref argument is set to %1 in this case. The caller has to put
506 * this reference.
507 *
508 * This function returns zero in case of success and a negative error code in
509 * case of failure.
510 */
511 static int uif_init(struct ubi_device *ubi, int *ref)
512 {
513 int i, err;
514 #ifndef __UBOOT__
515 dev_t dev;
516 #endif
517
518 *ref = 0;
519 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
520
521 /*
522 * Major numbers for the UBI character devices are allocated
523 * dynamically. Major numbers of volume character devices are
524 * equivalent to ones of the corresponding UBI character device. Minor
525 * numbers of UBI character devices are 0, while minor numbers of
526 * volume character devices start from 1. Thus, we allocate one major
527 * number and ubi->vtbl_slots + 1 minor numbers.
528 */
529 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
530 if (err) {
531 ubi_err(ubi, "cannot register UBI character devices");
532 return err;
533 }
534
535 ubi_assert(MINOR(dev) == 0);
536 cdev_init(&ubi->cdev, &ubi_cdev_operations);
537 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
538 ubi->cdev.owner = THIS_MODULE;
539
540 err = cdev_add(&ubi->cdev, dev, 1);
541 if (err) {
542 ubi_err(ubi, "cannot add character device");
543 goto out_unreg;
544 }
545
546 err = ubi_sysfs_init(ubi, ref);
547 if (err)
548 goto out_sysfs;
549
550 for (i = 0; i < ubi->vtbl_slots; i++)
551 if (ubi->volumes[i]) {
552 err = ubi_add_volume(ubi, ubi->volumes[i]);
553 if (err) {
554 ubi_err(ubi, "cannot add volume %d", i);
555 goto out_volumes;
556 }
557 }
558
559 return 0;
560
561 out_volumes:
562 kill_volumes(ubi);
563 out_sysfs:
564 if (*ref)
565 get_device(&ubi->dev);
566 ubi_sysfs_close(ubi);
567 cdev_del(&ubi->cdev);
568 out_unreg:
569 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
570 ubi_err(ubi, "cannot initialize UBI %s, error %d",
571 ubi->ubi_name, err);
572 return err;
573 }
574
575 /**
576 * uif_close - close user interfaces for an UBI device.
577 * @ubi: UBI device description object
578 *
579 * Note, since this function un-registers UBI volume device objects (@vol->dev),
580 * the memory allocated voe the volumes is freed as well (in the release
581 * function).
582 */
583 static void uif_close(struct ubi_device *ubi)
584 {
585 kill_volumes(ubi);
586 ubi_sysfs_close(ubi);
587 cdev_del(&ubi->cdev);
588 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
589 }
590
591 /**
592 * ubi_free_internal_volumes - free internal volumes.
593 * @ubi: UBI device description object
594 */
595 void ubi_free_internal_volumes(struct ubi_device *ubi)
596 {
597 int i;
598
599 for (i = ubi->vtbl_slots;
600 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
601 kfree(ubi->volumes[i]->eba_tbl);
602 kfree(ubi->volumes[i]);
603 }
604 }
605
606 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
607 {
608 int limit, device_pebs;
609 uint64_t device_size;
610
611 if (!max_beb_per1024)
612 return 0;
613
614 /*
615 * Here we are using size of the entire flash chip and
616 * not just the MTD partition size because the maximum
617 * number of bad eraseblocks is a percentage of the
618 * whole device and bad eraseblocks are not fairly
619 * distributed over the flash chip. So the worst case
620 * is that all the bad eraseblocks of the chip are in
621 * the MTD partition we are attaching (ubi->mtd).
622 */
623 device_size = mtd_get_device_size(ubi->mtd);
624 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
625 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
626
627 /* Round it up */
628 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
629 limit += 1;
630
631 return limit;
632 }
633
634 /**
635 * io_init - initialize I/O sub-system for a given UBI device.
636 * @ubi: UBI device description object
637 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
638 *
639 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
640 * assumed:
641 * o EC header is always at offset zero - this cannot be changed;
642 * o VID header starts just after the EC header at the closest address
643 * aligned to @io->hdrs_min_io_size;
644 * o data starts just after the VID header at the closest address aligned to
645 * @io->min_io_size
646 *
647 * This function returns zero in case of success and a negative error code in
648 * case of failure.
649 */
650 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
651 {
652 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
653 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
654
655 if (ubi->mtd->numeraseregions != 0) {
656 /*
657 * Some flashes have several erase regions. Different regions
658 * may have different eraseblock size and other
659 * characteristics. It looks like mostly multi-region flashes
660 * have one "main" region and one or more small regions to
661 * store boot loader code or boot parameters or whatever. I
662 * guess we should just pick the largest region. But this is
663 * not implemented.
664 */
665 ubi_err(ubi, "multiple regions, not implemented");
666 return -EINVAL;
667 }
668
669 if (ubi->vid_hdr_offset < 0)
670 return -EINVAL;
671
672 /*
673 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
674 * physical eraseblocks maximum.
675 */
676
677 ubi->peb_size = ubi->mtd->erasesize;
678 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
679 ubi->flash_size = ubi->mtd->size;
680
681 if (mtd_can_have_bb(ubi->mtd)) {
682 ubi->bad_allowed = 1;
683 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
684 }
685
686 if (ubi->mtd->type == MTD_NORFLASH) {
687 ubi_assert(ubi->mtd->writesize == 1);
688 ubi->nor_flash = 1;
689 }
690
691 ubi->min_io_size = ubi->mtd->writesize;
692 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
693
694 /*
695 * Make sure minimal I/O unit is power of 2. Note, there is no
696 * fundamental reason for this assumption. It is just an optimization
697 * which allows us to avoid costly division operations.
698 */
699 if (!is_power_of_2(ubi->min_io_size)) {
700 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
701 ubi->min_io_size);
702 return -EINVAL;
703 }
704
705 ubi_assert(ubi->hdrs_min_io_size > 0);
706 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
707 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
708
709 ubi->max_write_size = ubi->mtd->writebufsize;
710 /*
711 * Maximum write size has to be greater or equivalent to min. I/O
712 * size, and be multiple of min. I/O size.
713 */
714 if (ubi->max_write_size < ubi->min_io_size ||
715 ubi->max_write_size % ubi->min_io_size ||
716 !is_power_of_2(ubi->max_write_size)) {
717 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
718 ubi->max_write_size, ubi->min_io_size);
719 return -EINVAL;
720 }
721
722 /* Calculate default aligned sizes of EC and VID headers */
723 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
724 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
725
726 dbg_gen("min_io_size %d", ubi->min_io_size);
727 dbg_gen("max_write_size %d", ubi->max_write_size);
728 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
729 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
730 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
731
732 if (ubi->vid_hdr_offset == 0)
733 /* Default offset */
734 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
735 ubi->ec_hdr_alsize;
736 else {
737 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
738 ~(ubi->hdrs_min_io_size - 1);
739 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
740 ubi->vid_hdr_aloffset;
741 }
742
743 /* Similar for the data offset */
744 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
745 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
746
747 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
748 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
749 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
750 dbg_gen("leb_start %d", ubi->leb_start);
751
752 /* The shift must be aligned to 32-bit boundary */
753 if (ubi->vid_hdr_shift % 4) {
754 ubi_err(ubi, "unaligned VID header shift %d",
755 ubi->vid_hdr_shift);
756 return -EINVAL;
757 }
758
759 /* Check sanity */
760 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
761 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
762 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
763 ubi->leb_start & (ubi->min_io_size - 1)) {
764 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
765 ubi->vid_hdr_offset, ubi->leb_start);
766 return -EINVAL;
767 }
768
769 /*
770 * Set maximum amount of physical erroneous eraseblocks to be 10%.
771 * Erroneous PEB are those which have read errors.
772 */
773 ubi->max_erroneous = ubi->peb_count / 10;
774 if (ubi->max_erroneous < 16)
775 ubi->max_erroneous = 16;
776 dbg_gen("max_erroneous %d", ubi->max_erroneous);
777
778 /*
779 * It may happen that EC and VID headers are situated in one minimal
780 * I/O unit. In this case we can only accept this UBI image in
781 * read-only mode.
782 */
783 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
784 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
785 ubi->ro_mode = 1;
786 }
787
788 ubi->leb_size = ubi->peb_size - ubi->leb_start;
789
790 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
791 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
792 ubi->mtd->index);
793 ubi->ro_mode = 1;
794 }
795
796 /*
797 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
798 * unfortunately, MTD does not provide this information. We should loop
799 * over all physical eraseblocks and invoke mtd->block_is_bad() for
800 * each physical eraseblock. So, we leave @ubi->bad_peb_count
801 * uninitialized so far.
802 */
803
804 return 0;
805 }
806
807 /**
808 * autoresize - re-size the volume which has the "auto-resize" flag set.
809 * @ubi: UBI device description object
810 * @vol_id: ID of the volume to re-size
811 *
812 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
813 * the volume table to the largest possible size. See comments in ubi-header.h
814 * for more description of the flag. Returns zero in case of success and a
815 * negative error code in case of failure.
816 */
817 static int autoresize(struct ubi_device *ubi, int vol_id)
818 {
819 struct ubi_volume_desc desc;
820 struct ubi_volume *vol = ubi->volumes[vol_id];
821 int err, old_reserved_pebs = vol->reserved_pebs;
822
823 if (ubi->ro_mode) {
824 ubi_warn(ubi, "skip auto-resize because of R/O mode");
825 return 0;
826 }
827
828 /*
829 * Clear the auto-resize flag in the volume in-memory copy of the
830 * volume table, and 'ubi_resize_volume()' will propagate this change
831 * to the flash.
832 */
833 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
834
835 if (ubi->avail_pebs == 0) {
836 struct ubi_vtbl_record vtbl_rec;
837
838 /*
839 * No available PEBs to re-size the volume, clear the flag on
840 * flash and exit.
841 */
842 vtbl_rec = ubi->vtbl[vol_id];
843 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
844 if (err)
845 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
846 vol_id);
847 } else {
848 desc.vol = vol;
849 err = ubi_resize_volume(&desc,
850 old_reserved_pebs + ubi->avail_pebs);
851 if (err)
852 ubi_err(ubi, "cannot auto-resize volume %d",
853 vol_id);
854 }
855
856 if (err)
857 return err;
858
859 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
860 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
861 return 0;
862 }
863
864 /**
865 * ubi_attach_mtd_dev - attach an MTD device.
866 * @mtd: MTD device description object
867 * @ubi_num: number to assign to the new UBI device
868 * @vid_hdr_offset: VID header offset
869 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
870 *
871 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
872 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
873 * which case this function finds a vacant device number and assigns it
874 * automatically. Returns the new UBI device number in case of success and a
875 * negative error code in case of failure.
876 *
877 * Note, the invocations of this function has to be serialized by the
878 * @ubi_devices_mutex.
879 */
880 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
881 int vid_hdr_offset, int max_beb_per1024)
882 {
883 struct ubi_device *ubi;
884 int i, err, ref = 0;
885
886 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
887 return -EINVAL;
888
889 if (!max_beb_per1024)
890 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
891
892 /*
893 * Check if we already have the same MTD device attached.
894 *
895 * Note, this function assumes that UBI devices creations and deletions
896 * are serialized, so it does not take the &ubi_devices_lock.
897 */
898 for (i = 0; i < UBI_MAX_DEVICES; i++) {
899 ubi = ubi_devices[i];
900 if (ubi && mtd->index == ubi->mtd->index) {
901 ubi_err(ubi, "mtd%d is already attached to ubi%d",
902 mtd->index, i);
903 return -EEXIST;
904 }
905 }
906
907 /*
908 * Make sure this MTD device is not emulated on top of an UBI volume
909 * already. Well, generally this recursion works fine, but there are
910 * different problems like the UBI module takes a reference to itself
911 * by attaching (and thus, opening) the emulated MTD device. This
912 * results in inability to unload the module. And in general it makes
913 * no sense to attach emulated MTD devices, so we prohibit this.
914 */
915 if (mtd->type == MTD_UBIVOLUME) {
916 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
917 mtd->index);
918 return -EINVAL;
919 }
920
921 if (ubi_num == UBI_DEV_NUM_AUTO) {
922 /* Search for an empty slot in the @ubi_devices array */
923 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
924 if (!ubi_devices[ubi_num])
925 break;
926 if (ubi_num == UBI_MAX_DEVICES) {
927 ubi_err(ubi, "only %d UBI devices may be created",
928 UBI_MAX_DEVICES);
929 return -ENFILE;
930 }
931 } else {
932 if (ubi_num >= UBI_MAX_DEVICES)
933 return -EINVAL;
934
935 /* Make sure ubi_num is not busy */
936 if (ubi_devices[ubi_num]) {
937 ubi_err(ubi, "already exists");
938 return -EEXIST;
939 }
940 }
941
942 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
943 if (!ubi)
944 return -ENOMEM;
945
946 ubi->mtd = mtd;
947 ubi->ubi_num = ubi_num;
948 ubi->vid_hdr_offset = vid_hdr_offset;
949 ubi->autoresize_vol_id = -1;
950
951 #ifdef CONFIG_MTD_UBI_FASTMAP
952 ubi->fm_pool.used = ubi->fm_pool.size = 0;
953 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
954
955 /*
956 * fm_pool.max_size is 5% of the total number of PEBs but it's also
957 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
958 */
959 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
960 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
961 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
962 UBI_FM_MIN_POOL_SIZE);
963
964 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
965 ubi->fm_disabled = !fm_autoconvert;
966 if (fm_debug)
967 ubi_enable_dbg_chk_fastmap(ubi);
968
969 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
970 <= UBI_FM_MAX_START) {
971 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
972 UBI_FM_MAX_START);
973 ubi->fm_disabled = 1;
974 }
975
976 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
977 ubi_msg(ubi, "default fastmap WL pool size: %d",
978 ubi->fm_wl_pool.max_size);
979 #else
980 ubi->fm_disabled = 1;
981 #endif
982 mutex_init(&ubi->buf_mutex);
983 mutex_init(&ubi->ckvol_mutex);
984 mutex_init(&ubi->device_mutex);
985 spin_lock_init(&ubi->volumes_lock);
986 init_rwsem(&ubi->fm_protect);
987 init_rwsem(&ubi->fm_eba_sem);
988
989 ubi_msg(ubi, "attaching mtd%d", mtd->index);
990
991 err = io_init(ubi, max_beb_per1024);
992 if (err)
993 goto out_free;
994
995 err = -ENOMEM;
996 ubi->peb_buf = vmalloc(ubi->peb_size);
997 if (!ubi->peb_buf)
998 goto out_free;
999
1000 #ifdef CONFIG_MTD_UBI_FASTMAP
1001 ubi->fm_size = ubi_calc_fm_size(ubi);
1002 ubi->fm_buf = vzalloc(ubi->fm_size);
1003 if (!ubi->fm_buf)
1004 goto out_free;
1005 #endif
1006 err = ubi_attach(ubi, 0);
1007 if (err) {
1008 ubi_err(ubi, "failed to attach mtd%d, error %d",
1009 mtd->index, err);
1010 goto out_free;
1011 }
1012
1013 if (ubi->autoresize_vol_id != -1) {
1014 err = autoresize(ubi, ubi->autoresize_vol_id);
1015 if (err)
1016 goto out_detach;
1017 }
1018
1019 err = uif_init(ubi, &ref);
1020 if (err)
1021 goto out_detach;
1022
1023 err = ubi_debugfs_init_dev(ubi);
1024 if (err)
1025 goto out_uif;
1026
1027 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1028 if (IS_ERR(ubi->bgt_thread)) {
1029 err = PTR_ERR(ubi->bgt_thread);
1030 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1031 ubi->bgt_name, err);
1032 goto out_debugfs;
1033 }
1034
1035 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1036 mtd->index, mtd->name, ubi->flash_size >> 20);
1037 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1038 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1039 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1040 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1041 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1042 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1043 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1044 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1045 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1046 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1047 ubi->vtbl_slots);
1048 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1049 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1050 ubi->image_seq);
1051 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1052 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1053
1054 /*
1055 * The below lock makes sure we do not race with 'ubi_thread()' which
1056 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1057 */
1058 spin_lock(&ubi->wl_lock);
1059 ubi->thread_enabled = 1;
1060 #ifndef __UBOOT__
1061 wake_up_process(ubi->bgt_thread);
1062 #else
1063 ubi_do_worker(ubi);
1064 #endif
1065
1066 spin_unlock(&ubi->wl_lock);
1067
1068 ubi_devices[ubi_num] = ubi;
1069 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1070 return ubi_num;
1071
1072 out_debugfs:
1073 ubi_debugfs_exit_dev(ubi);
1074 out_uif:
1075 get_device(&ubi->dev);
1076 ubi_assert(ref);
1077 uif_close(ubi);
1078 out_detach:
1079 ubi_wl_close(ubi);
1080 ubi_free_internal_volumes(ubi);
1081 vfree(ubi->vtbl);
1082 out_free:
1083 vfree(ubi->peb_buf);
1084 vfree(ubi->fm_buf);
1085 if (ref)
1086 put_device(&ubi->dev);
1087 else
1088 kfree(ubi);
1089 return err;
1090 }
1091
1092 /**
1093 * ubi_detach_mtd_dev - detach an MTD device.
1094 * @ubi_num: UBI device number to detach from
1095 * @anyway: detach MTD even if device reference count is not zero
1096 *
1097 * This function destroys an UBI device number @ubi_num and detaches the
1098 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1099 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1100 * exist.
1101 *
1102 * Note, the invocations of this function has to be serialized by the
1103 * @ubi_devices_mutex.
1104 */
1105 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1106 {
1107 struct ubi_device *ubi;
1108
1109 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1110 return -EINVAL;
1111
1112 ubi = ubi_get_device(ubi_num);
1113 if (!ubi)
1114 return -EINVAL;
1115
1116 spin_lock(&ubi_devices_lock);
1117 put_device(&ubi->dev);
1118 ubi->ref_count -= 1;
1119 if (ubi->ref_count) {
1120 if (!anyway) {
1121 spin_unlock(&ubi_devices_lock);
1122 return -EBUSY;
1123 }
1124 /* This may only happen if there is a bug */
1125 ubi_err(ubi, "%s reference count %d, destroy anyway",
1126 ubi->ubi_name, ubi->ref_count);
1127 }
1128 ubi_devices[ubi_num] = NULL;
1129 spin_unlock(&ubi_devices_lock);
1130
1131 ubi_assert(ubi_num == ubi->ubi_num);
1132 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1133 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1134 #ifdef CONFIG_MTD_UBI_FASTMAP
1135 /* If we don't write a new fastmap at detach time we lose all
1136 * EC updates that have been made since the last written fastmap.
1137 * In case of fastmap debugging we omit the update to simulate an
1138 * unclean shutdown. */
1139 if (!ubi_dbg_chk_fastmap(ubi))
1140 ubi_update_fastmap(ubi);
1141 #endif
1142 /*
1143 * Before freeing anything, we have to stop the background thread to
1144 * prevent it from doing anything on this device while we are freeing.
1145 */
1146 if (ubi->bgt_thread)
1147 kthread_stop(ubi->bgt_thread);
1148
1149 /*
1150 * Get a reference to the device in order to prevent 'dev_release()'
1151 * from freeing the @ubi object.
1152 */
1153 get_device(&ubi->dev);
1154
1155 ubi_debugfs_exit_dev(ubi);
1156 uif_close(ubi);
1157
1158 ubi_wl_close(ubi);
1159 ubi_free_internal_volumes(ubi);
1160 vfree(ubi->vtbl);
1161 put_mtd_device(ubi->mtd);
1162 vfree(ubi->peb_buf);
1163 vfree(ubi->fm_buf);
1164 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1165 put_device(&ubi->dev);
1166 return 0;
1167 }
1168
1169 #ifndef __UBOOT__
1170 /**
1171 * open_mtd_by_chdev - open an MTD device by its character device node path.
1172 * @mtd_dev: MTD character device node path
1173 *
1174 * This helper function opens an MTD device by its character node device path.
1175 * Returns MTD device description object in case of success and a negative
1176 * error code in case of failure.
1177 */
1178 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1179 {
1180 int err, major, minor, mode;
1181 struct path path;
1182
1183 /* Probably this is an MTD character device node path */
1184 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1185 if (err)
1186 return ERR_PTR(err);
1187
1188 /* MTD device number is defined by the major / minor numbers */
1189 major = imajor(d_backing_inode(path.dentry));
1190 minor = iminor(d_backing_inode(path.dentry));
1191 mode = d_backing_inode(path.dentry)->i_mode;
1192 path_put(&path);
1193 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1194 return ERR_PTR(-EINVAL);
1195
1196 if (minor & 1)
1197 /*
1198 * Just do not think the "/dev/mtdrX" devices support is need,
1199 * so do not support them to avoid doing extra work.
1200 */
1201 return ERR_PTR(-EINVAL);
1202
1203 return get_mtd_device(NULL, minor / 2);
1204 }
1205 #endif
1206
1207 /**
1208 * open_mtd_device - open MTD device by name, character device path, or number.
1209 * @mtd_dev: name, character device node path, or MTD device device number
1210 *
1211 * This function tries to open and MTD device described by @mtd_dev string,
1212 * which is first treated as ASCII MTD device number, and if it is not true, it
1213 * is treated as MTD device name, and if that is also not true, it is treated
1214 * as MTD character device node path. Returns MTD device description object in
1215 * case of success and a negative error code in case of failure.
1216 */
1217 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1218 {
1219 struct mtd_info *mtd;
1220 int mtd_num;
1221 char *endp;
1222
1223 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1224 if (*endp != '\0' || mtd_dev == endp) {
1225 /*
1226 * This does not look like an ASCII integer, probably this is
1227 * MTD device name.
1228 */
1229 mtd = get_mtd_device_nm(mtd_dev);
1230 #ifndef __UBOOT__
1231 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1232 /* Probably this is an MTD character device node path */
1233 mtd = open_mtd_by_chdev(mtd_dev);
1234 #endif
1235 } else
1236 mtd = get_mtd_device(NULL, mtd_num);
1237
1238 return mtd;
1239 }
1240
1241 #ifndef __UBOOT__
1242 static int __init ubi_init(void)
1243 #else
1244 int ubi_init(void)
1245 #endif
1246 {
1247 int err, i, k;
1248
1249 /* Ensure that EC and VID headers have correct size */
1250 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1251 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1252
1253 if (mtd_devs > UBI_MAX_DEVICES) {
1254 pr_err("UBI error: too many MTD devices, maximum is %d",
1255 UBI_MAX_DEVICES);
1256 return -EINVAL;
1257 }
1258
1259 /* Create base sysfs directory and sysfs files */
1260 err = class_register(&ubi_class);
1261 if (err < 0)
1262 return err;
1263
1264 err = misc_register(&ubi_ctrl_cdev);
1265 if (err) {
1266 pr_err("UBI error: cannot register device");
1267 goto out;
1268 }
1269
1270 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1271 sizeof(struct ubi_wl_entry),
1272 0, 0, NULL);
1273 if (!ubi_wl_entry_slab) {
1274 err = -ENOMEM;
1275 goto out_dev_unreg;
1276 }
1277
1278 err = ubi_debugfs_init();
1279 if (err)
1280 goto out_slab;
1281
1282
1283 /* Attach MTD devices */
1284 for (i = 0; i < mtd_devs; i++) {
1285 struct mtd_dev_param *p = &mtd_dev_param[i];
1286 struct mtd_info *mtd;
1287
1288 cond_resched();
1289
1290 mtd = open_mtd_device(p->name);
1291 if (IS_ERR(mtd)) {
1292 err = PTR_ERR(mtd);
1293 pr_err("UBI error: cannot open mtd %s, error %d",
1294 p->name, err);
1295 /* See comment below re-ubi_is_module(). */
1296 if (ubi_is_module())
1297 goto out_detach;
1298 continue;
1299 }
1300
1301 mutex_lock(&ubi_devices_mutex);
1302 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1303 p->vid_hdr_offs, p->max_beb_per1024);
1304 mutex_unlock(&ubi_devices_mutex);
1305 if (err < 0) {
1306 pr_err("UBI error: cannot attach mtd%d",
1307 mtd->index);
1308 put_mtd_device(mtd);
1309
1310 /*
1311 * Originally UBI stopped initializing on any error.
1312 * However, later on it was found out that this
1313 * behavior is not very good when UBI is compiled into
1314 * the kernel and the MTD devices to attach are passed
1315 * through the command line. Indeed, UBI failure
1316 * stopped whole boot sequence.
1317 *
1318 * To fix this, we changed the behavior for the
1319 * non-module case, but preserved the old behavior for
1320 * the module case, just for compatibility. This is a
1321 * little inconsistent, though.
1322 */
1323 if (ubi_is_module())
1324 goto out_detach;
1325 }
1326 }
1327
1328 err = ubiblock_init();
1329 if (err) {
1330 pr_err("UBI error: block: cannot initialize, error %d", err);
1331
1332 /* See comment above re-ubi_is_module(). */
1333 if (ubi_is_module())
1334 goto out_detach;
1335 }
1336
1337 return 0;
1338
1339 out_detach:
1340 for (k = 0; k < i; k++)
1341 if (ubi_devices[k]) {
1342 mutex_lock(&ubi_devices_mutex);
1343 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1344 mutex_unlock(&ubi_devices_mutex);
1345 }
1346 ubi_debugfs_exit();
1347 out_slab:
1348 kmem_cache_destroy(ubi_wl_entry_slab);
1349 out_dev_unreg:
1350 misc_deregister(&ubi_ctrl_cdev);
1351 out:
1352 #ifdef __UBOOT__
1353 /* Reset any globals that the driver depends on being zeroed */
1354 mtd_devs = 0;
1355 #endif
1356 class_unregister(&ubi_class);
1357 pr_err("UBI error: cannot initialize UBI, error %d", err);
1358 return err;
1359 }
1360 late_initcall(ubi_init);
1361
1362 #ifndef __UBOOT__
1363 static void __exit ubi_exit(void)
1364 #else
1365 void ubi_exit(void)
1366 #endif
1367 {
1368 int i;
1369
1370 ubiblock_exit();
1371
1372 for (i = 0; i < UBI_MAX_DEVICES; i++)
1373 if (ubi_devices[i]) {
1374 mutex_lock(&ubi_devices_mutex);
1375 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1376 mutex_unlock(&ubi_devices_mutex);
1377 }
1378 ubi_debugfs_exit();
1379 kmem_cache_destroy(ubi_wl_entry_slab);
1380 misc_deregister(&ubi_ctrl_cdev);
1381 class_unregister(&ubi_class);
1382 #ifdef __UBOOT__
1383 /* Reset any globals that the driver depends on being zeroed */
1384 mtd_devs = 0;
1385 #endif
1386 }
1387 module_exit(ubi_exit);
1388
1389 /**
1390 * bytes_str_to_int - convert a number of bytes string into an integer.
1391 * @str: the string to convert
1392 *
1393 * This function returns positive resulting integer in case of success and a
1394 * negative error code in case of failure.
1395 */
1396 static int __init bytes_str_to_int(const char *str)
1397 {
1398 char *endp;
1399 unsigned long result;
1400
1401 result = simple_strtoul(str, &endp, 0);
1402 if (str == endp || result >= INT_MAX) {
1403 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1404 return -EINVAL;
1405 }
1406
1407 switch (*endp) {
1408 case 'G':
1409 result *= 1024;
1410 case 'M':
1411 result *= 1024;
1412 case 'K':
1413 result *= 1024;
1414 if (endp[1] == 'i' && endp[2] == 'B')
1415 endp += 2;
1416 case '\0':
1417 break;
1418 default:
1419 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1420 return -EINVAL;
1421 }
1422
1423 return result;
1424 }
1425
1426 int kstrtoint(const char *s, unsigned int base, int *res)
1427 {
1428 unsigned long long tmp;
1429
1430 tmp = simple_strtoull(s, NULL, base);
1431 if (tmp != (unsigned long long)(int)tmp)
1432 return -ERANGE;
1433
1434 return (int)tmp;
1435 }
1436
1437 /**
1438 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1439 * @val: the parameter value to parse
1440 * @kp: not used
1441 *
1442 * This function returns zero in case of success and a negative error code in
1443 * case of error.
1444 */
1445 #ifndef __UBOOT__
1446 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1447 #else
1448 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1449 #endif
1450 {
1451 int i, len;
1452 struct mtd_dev_param *p;
1453 char buf[MTD_PARAM_LEN_MAX];
1454 char *pbuf = &buf[0];
1455 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1456
1457 if (!val)
1458 return -EINVAL;
1459
1460 if (mtd_devs == UBI_MAX_DEVICES) {
1461 pr_err("UBI error: too many parameters, max. is %d\n",
1462 UBI_MAX_DEVICES);
1463 return -EINVAL;
1464 }
1465
1466 len = strnlen(val, MTD_PARAM_LEN_MAX);
1467 if (len == MTD_PARAM_LEN_MAX) {
1468 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1469 val, MTD_PARAM_LEN_MAX);
1470 return -EINVAL;
1471 }
1472
1473 if (len == 0) {
1474 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1475 return 0;
1476 }
1477
1478 strcpy(buf, val);
1479
1480 /* Get rid of the final newline */
1481 if (buf[len - 1] == '\n')
1482 buf[len - 1] = '\0';
1483
1484 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1485 tokens[i] = strsep(&pbuf, ",");
1486
1487 if (pbuf) {
1488 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1489 return -EINVAL;
1490 }
1491
1492 p = &mtd_dev_param[mtd_devs];
1493 strcpy(&p->name[0], tokens[0]);
1494
1495 token = tokens[1];
1496 if (token) {
1497 p->vid_hdr_offs = bytes_str_to_int(token);
1498
1499 if (p->vid_hdr_offs < 0)
1500 return p->vid_hdr_offs;
1501 }
1502
1503 token = tokens[2];
1504 if (token) {
1505 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1506
1507 if (err) {
1508 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1509 token);
1510 return -EINVAL;
1511 }
1512 }
1513
1514 token = tokens[3];
1515 if (token) {
1516 int err = kstrtoint(token, 10, &p->ubi_num);
1517
1518 if (err) {
1519 pr_err("UBI error: bad value for ubi_num parameter: %s",
1520 token);
1521 return -EINVAL;
1522 }
1523 } else
1524 p->ubi_num = UBI_DEV_NUM_AUTO;
1525
1526 mtd_devs += 1;
1527 return 0;
1528 }
1529
1530 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1531 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1532 "Multiple \"mtd\" parameters may be specified.\n"
1533 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1534 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1535 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1536 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1537 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1538 "\n"
1539 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1540 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1541 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1542 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1543 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1544 #ifdef CONFIG_MTD_UBI_FASTMAP
1545 module_param(fm_autoconvert, bool, 0644);
1546 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1547 module_param(fm_debug, bool, 0);
1548 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1549 #endif
1550 MODULE_VERSION(__stringify(UBI_VERSION));
1551 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1552 MODULE_AUTHOR("Artem Bityutskiy");
1553 MODULE_LICENSE("GPL");