]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/vtbl.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / mtd / ubi / vtbl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 *
7 * Author: Artem Bityutskiy (Битюцкий Артём)
8 */
9
10 /*
11 * This file includes volume table manipulation code. The volume table is an
12 * on-flash table containing volume meta-data like name, number of reserved
13 * physical eraseblocks, type, etc. The volume table is stored in the so-called
14 * "layout volume".
15 *
16 * The layout volume is an internal volume which is organized as follows. It
17 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
18 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
19 * other. This redundancy guarantees robustness to unclean reboots. The volume
20 * table is basically an array of volume table records. Each record contains
21 * full information about the volume and protected by a CRC checksum.
22 *
23 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
24 * erased, and the updated volume table is written back to LEB 0. Then same for
25 * LEB 1. This scheme guarantees recoverability from unclean reboots.
26 *
27 * In this UBI implementation the on-flash volume table does not contain any
28 * information about how many data static volumes contain. This information may
29 * be found from the scanning data.
30 *
31 * But it would still be beneficial to store this information in the volume
32 * table. For example, suppose we have a static volume X, and all its physical
33 * eraseblocks became bad for some reasons. Suppose we are attaching the
34 * corresponding MTD device, the scanning has found no logical eraseblocks
35 * corresponding to the volume X. According to the volume table volume X does
36 * exist. So we don't know whether it is just empty or all its physical
37 * eraseblocks went bad. So we cannot alarm the user about this corruption.
38 *
39 * The volume table also stores so-called "update marker", which is used for
40 * volume updates. Before updating the volume, the update marker is set, and
41 * after the update operation is finished, the update marker is cleared. So if
42 * the update operation was interrupted (e.g. by an unclean reboot) - the
43 * update marker is still there and we know that the volume's contents is
44 * damaged.
45 */
46
47 #ifdef UBI_LINUX
48 #include <linux/crc32.h>
49 #include <linux/err.h>
50 #include <asm/div64.h>
51 #endif
52
53 #include <ubi_uboot.h>
54 #include "ubi.h"
55
56 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
57 static void paranoid_vtbl_check(const struct ubi_device *ubi);
58 #else
59 #define paranoid_vtbl_check(ubi)
60 #endif
61
62 /* Empty volume table record */
63 static struct ubi_vtbl_record empty_vtbl_record;
64
65 /**
66 * ubi_change_vtbl_record - change volume table record.
67 * @ubi: UBI device description object
68 * @idx: table index to change
69 * @vtbl_rec: new volume table record
70 *
71 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
72 * volume table record is written. The caller does not have to calculate CRC of
73 * the record as it is done by this function. Returns zero in case of success
74 * and a negative error code in case of failure.
75 */
76 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
77 struct ubi_vtbl_record *vtbl_rec)
78 {
79 int i, err;
80 uint32_t crc;
81 struct ubi_volume *layout_vol;
82
83 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
84 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
85
86 if (!vtbl_rec)
87 vtbl_rec = &empty_vtbl_record;
88 else {
89 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
90 vtbl_rec->crc = cpu_to_be32(crc);
91 }
92
93 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
94 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
95 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
96 if (err)
97 return err;
98
99 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
100 ubi->vtbl_size, UBI_LONGTERM);
101 if (err)
102 return err;
103 }
104
105 paranoid_vtbl_check(ubi);
106 return 0;
107 }
108
109 /**
110 * vtbl_check - check if volume table is not corrupted and contains sensible
111 * data.
112 * @ubi: UBI device description object
113 * @vtbl: volume table
114 *
115 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
116 * and %-EINVAL if it contains inconsistent data.
117 */
118 static int vtbl_check(const struct ubi_device *ubi,
119 const struct ubi_vtbl_record *vtbl)
120 {
121 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
122 int upd_marker, err;
123 uint32_t crc;
124 const char *name;
125
126 for (i = 0; i < ubi->vtbl_slots; i++) {
127 cond_resched();
128
129 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
130 alignment = be32_to_cpu(vtbl[i].alignment);
131 data_pad = be32_to_cpu(vtbl[i].data_pad);
132 upd_marker = vtbl[i].upd_marker;
133 vol_type = vtbl[i].vol_type;
134 name_len = be16_to_cpu(vtbl[i].name_len);
135 name = (const char *) &vtbl[i].name[0];
136
137 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
138 if (be32_to_cpu(vtbl[i].crc) != crc) {
139 ubi_err("bad CRC at record %u: %#08x, not %#08x",
140 i, crc, be32_to_cpu(vtbl[i].crc));
141 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
142 return 1;
143 }
144
145 if (reserved_pebs == 0) {
146 if (memcmp(&vtbl[i], &empty_vtbl_record,
147 UBI_VTBL_RECORD_SIZE)) {
148 err = 2;
149 goto bad;
150 }
151 continue;
152 }
153
154 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
155 name_len < 0) {
156 err = 3;
157 goto bad;
158 }
159
160 if (alignment > ubi->leb_size || alignment == 0) {
161 err = 4;
162 goto bad;
163 }
164
165 n = alignment & (ubi->min_io_size - 1);
166 if (alignment != 1 && n) {
167 err = 5;
168 goto bad;
169 }
170
171 n = ubi->leb_size % alignment;
172 if (data_pad != n) {
173 dbg_err("bad data_pad, has to be %d", n);
174 err = 6;
175 goto bad;
176 }
177
178 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
179 err = 7;
180 goto bad;
181 }
182
183 if (upd_marker != 0 && upd_marker != 1) {
184 err = 8;
185 goto bad;
186 }
187
188 if (reserved_pebs > ubi->good_peb_count) {
189 dbg_err("too large reserved_pebs, good PEBs %d",
190 ubi->good_peb_count);
191 err = 9;
192 goto bad;
193 }
194
195 if (name_len > UBI_VOL_NAME_MAX) {
196 err = 10;
197 goto bad;
198 }
199
200 if (name[0] == '\0') {
201 err = 11;
202 goto bad;
203 }
204
205 if (name_len != strnlen(name, name_len + 1)) {
206 err = 12;
207 goto bad;
208 }
209 }
210
211 /* Checks that all names are unique */
212 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
213 for (n = i + 1; n < ubi->vtbl_slots; n++) {
214 int len1 = be16_to_cpu(vtbl[i].name_len);
215 int len2 = be16_to_cpu(vtbl[n].name_len);
216
217 if (len1 > 0 && len1 == len2 &&
218 !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) {
219 ubi_err("volumes %d and %d have the same name"
220 " \"%s\"", i, n, vtbl[i].name);
221 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
222 ubi_dbg_dump_vtbl_record(&vtbl[n], n);
223 return -EINVAL;
224 }
225 }
226 }
227
228 return 0;
229
230 bad:
231 ubi_err("volume table check failed: record %d, error %d", i, err);
232 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
233 return -EINVAL;
234 }
235
236 /**
237 * create_vtbl - create a copy of volume table.
238 * @ubi: UBI device description object
239 * @si: scanning information
240 * @copy: number of the volume table copy
241 * @vtbl: contents of the volume table
242 *
243 * This function returns zero in case of success and a negative error code in
244 * case of failure.
245 */
246 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
247 int copy, void *vtbl)
248 {
249 int err, tries = 0;
250 static struct ubi_vid_hdr *vid_hdr;
251 struct ubi_scan_volume *sv;
252 struct ubi_scan_leb *new_seb, *old_seb = NULL;
253
254 ubi_msg("create volume table (copy #%d)", copy + 1);
255
256 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
257 if (!vid_hdr)
258 return -ENOMEM;
259
260 /*
261 * Check if there is a logical eraseblock which would have to contain
262 * this volume table copy was found during scanning. It has to be wiped
263 * out.
264 */
265 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
266 if (sv)
267 old_seb = ubi_scan_find_seb(sv, copy);
268
269 retry:
270 new_seb = ubi_scan_get_free_peb(ubi, si);
271 if (IS_ERR(new_seb)) {
272 err = PTR_ERR(new_seb);
273 goto out_free;
274 }
275
276 vid_hdr->vol_type = UBI_VID_DYNAMIC;
277 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
278 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
279 vid_hdr->data_size = vid_hdr->used_ebs =
280 vid_hdr->data_pad = cpu_to_be32(0);
281 vid_hdr->lnum = cpu_to_be32(copy);
282 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
283 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
284
285 /* The EC header is already there, write the VID header */
286 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
287 if (err)
288 goto write_error;
289
290 /* Write the layout volume contents */
291 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
292 if (err)
293 goto write_error;
294
295 /*
296 * And add it to the scanning information. Don't delete the old
297 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
298 */
299 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
300 vid_hdr, 0);
301 kfree(new_seb);
302 ubi_free_vid_hdr(ubi, vid_hdr);
303 return err;
304
305 write_error:
306 if (err == -EIO && ++tries <= 5) {
307 /*
308 * Probably this physical eraseblock went bad, try to pick
309 * another one.
310 */
311 list_add_tail(&new_seb->u.list, &si->corr);
312 goto retry;
313 }
314 kfree(new_seb);
315 out_free:
316 ubi_free_vid_hdr(ubi, vid_hdr);
317 return err;
318
319 }
320
321 /**
322 * process_lvol - process the layout volume.
323 * @ubi: UBI device description object
324 * @si: scanning information
325 * @sv: layout volume scanning information
326 *
327 * This function is responsible for reading the layout volume, ensuring it is
328 * not corrupted, and recovering from corruptions if needed. Returns volume
329 * table in case of success and a negative error code in case of failure.
330 */
331 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
332 struct ubi_scan_info *si,
333 struct ubi_scan_volume *sv)
334 {
335 int err;
336 struct rb_node *rb;
337 struct ubi_scan_leb *seb;
338 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
339 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
340
341 /*
342 * UBI goes through the following steps when it changes the layout
343 * volume:
344 * a. erase LEB 0;
345 * b. write new data to LEB 0;
346 * c. erase LEB 1;
347 * d. write new data to LEB 1.
348 *
349 * Before the change, both LEBs contain the same data.
350 *
351 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
352 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
353 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
354 * finally, unclean reboots may result in a situation when neither LEB
355 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
356 * 0 contains more recent information.
357 *
358 * So the plan is to first check LEB 0. Then
359 * a. if LEB 0 is OK, it must be containing the most resent data; then
360 * we compare it with LEB 1, and if they are different, we copy LEB
361 * 0 to LEB 1;
362 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
363 * to LEB 0.
364 */
365
366 dbg_msg("check layout volume");
367
368 /* Read both LEB 0 and LEB 1 into memory */
369 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
370 leb[seb->lnum] = vmalloc(ubi->vtbl_size);
371 if (!leb[seb->lnum]) {
372 err = -ENOMEM;
373 goto out_free;
374 }
375 memset(leb[seb->lnum], 0, ubi->vtbl_size);
376
377 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
378 ubi->vtbl_size);
379 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
380 /*
381 * Scrub the PEB later. Note, -EBADMSG indicates an
382 * uncorrectable ECC error, but we have our own CRC and
383 * the data will be checked later. If the data is OK,
384 * the PEB will be scrubbed (because we set
385 * seb->scrub). If the data is not OK, the contents of
386 * the PEB will be recovered from the second copy, and
387 * seb->scrub will be cleared in
388 * 'ubi_scan_add_used()'.
389 */
390 seb->scrub = 1;
391 else if (err)
392 goto out_free;
393 }
394
395 err = -EINVAL;
396 if (leb[0]) {
397 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
398 if (leb_corrupted[0] < 0)
399 goto out_free;
400 }
401
402 if (!leb_corrupted[0]) {
403 /* LEB 0 is OK */
404 if (leb[1])
405 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
406 if (leb_corrupted[1]) {
407 ubi_warn("volume table copy #2 is corrupted");
408 err = create_vtbl(ubi, si, 1, leb[0]);
409 if (err)
410 goto out_free;
411 ubi_msg("volume table was restored");
412 }
413
414 /* Both LEB 1 and LEB 2 are OK and consistent */
415 vfree(leb[1]);
416 return leb[0];
417 } else {
418 /* LEB 0 is corrupted or does not exist */
419 if (leb[1]) {
420 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
421 if (leb_corrupted[1] < 0)
422 goto out_free;
423 }
424 if (leb_corrupted[1]) {
425 /* Both LEB 0 and LEB 1 are corrupted */
426 ubi_err("both volume tables are corrupted");
427 goto out_free;
428 }
429
430 ubi_warn("volume table copy #1 is corrupted");
431 err = create_vtbl(ubi, si, 0, leb[1]);
432 if (err)
433 goto out_free;
434 ubi_msg("volume table was restored");
435
436 vfree(leb[0]);
437 return leb[1];
438 }
439
440 out_free:
441 vfree(leb[0]);
442 vfree(leb[1]);
443 return ERR_PTR(err);
444 }
445
446 /**
447 * create_empty_lvol - create empty layout volume.
448 * @ubi: UBI device description object
449 * @si: scanning information
450 *
451 * This function returns volume table contents in case of success and a
452 * negative error code in case of failure.
453 */
454 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
455 struct ubi_scan_info *si)
456 {
457 int i;
458 struct ubi_vtbl_record *vtbl;
459
460 vtbl = vmalloc(ubi->vtbl_size);
461 if (!vtbl)
462 return ERR_PTR(-ENOMEM);
463 memset(vtbl, 0, ubi->vtbl_size);
464
465 for (i = 0; i < ubi->vtbl_slots; i++)
466 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
467
468 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
469 int err;
470
471 err = create_vtbl(ubi, si, i, vtbl);
472 if (err) {
473 vfree(vtbl);
474 return ERR_PTR(err);
475 }
476 }
477
478 return vtbl;
479 }
480
481 /**
482 * init_volumes - initialize volume information for existing volumes.
483 * @ubi: UBI device description object
484 * @si: scanning information
485 * @vtbl: volume table
486 *
487 * This function allocates volume description objects for existing volumes.
488 * Returns zero in case of success and a negative error code in case of
489 * failure.
490 */
491 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
492 const struct ubi_vtbl_record *vtbl)
493 {
494 int i, reserved_pebs = 0;
495 struct ubi_scan_volume *sv;
496 struct ubi_volume *vol;
497
498 for (i = 0; i < ubi->vtbl_slots; i++) {
499 cond_resched();
500
501 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
502 continue; /* Empty record */
503
504 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
505 if (!vol)
506 return -ENOMEM;
507
508 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
509 vol->alignment = be32_to_cpu(vtbl[i].alignment);
510 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
511 vol->upd_marker = vtbl[i].upd_marker;
512 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
513 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
514 vol->name_len = be16_to_cpu(vtbl[i].name_len);
515 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
516 memcpy(vol->name, vtbl[i].name, vol->name_len);
517 vol->name[vol->name_len] = '\0';
518 vol->vol_id = i;
519
520 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
521 /* Auto re-size flag may be set only for one volume */
522 if (ubi->autoresize_vol_id != -1) {
523 ubi_err("more then one auto-resize volume (%d "
524 "and %d)", ubi->autoresize_vol_id, i);
525 kfree(vol);
526 return -EINVAL;
527 }
528
529 ubi->autoresize_vol_id = i;
530 }
531
532 ubi_assert(!ubi->volumes[i]);
533 ubi->volumes[i] = vol;
534 ubi->vol_count += 1;
535 vol->ubi = ubi;
536 reserved_pebs += vol->reserved_pebs;
537
538 /*
539 * In case of dynamic volume UBI knows nothing about how many
540 * data is stored there. So assume the whole volume is used.
541 */
542 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
543 vol->used_ebs = vol->reserved_pebs;
544 vol->last_eb_bytes = vol->usable_leb_size;
545 vol->used_bytes =
546 (long long)vol->used_ebs * vol->usable_leb_size;
547 continue;
548 }
549
550 /* Static volumes only */
551 sv = ubi_scan_find_sv(si, i);
552 if (!sv) {
553 /*
554 * No eraseblocks belonging to this volume found. We
555 * don't actually know whether this static volume is
556 * completely corrupted or just contains no data. And
557 * we cannot know this as long as data size is not
558 * stored on flash. So we just assume the volume is
559 * empty. FIXME: this should be handled.
560 */
561 continue;
562 }
563
564 if (sv->leb_count != sv->used_ebs) {
565 /*
566 * We found a static volume which misses several
567 * eraseblocks. Treat it as corrupted.
568 */
569 ubi_warn("static volume %d misses %d LEBs - corrupted",
570 sv->vol_id, sv->used_ebs - sv->leb_count);
571 vol->corrupted = 1;
572 continue;
573 }
574
575 vol->used_ebs = sv->used_ebs;
576 vol->used_bytes =
577 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
578 vol->used_bytes += sv->last_data_size;
579 vol->last_eb_bytes = sv->last_data_size;
580 }
581
582 /* And add the layout volume */
583 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
584 if (!vol)
585 return -ENOMEM;
586
587 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
588 vol->alignment = 1;
589 vol->vol_type = UBI_DYNAMIC_VOLUME;
590 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
591 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
592 vol->usable_leb_size = ubi->leb_size;
593 vol->used_ebs = vol->reserved_pebs;
594 vol->last_eb_bytes = vol->reserved_pebs;
595 vol->used_bytes =
596 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
597 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
598 vol->ref_count = 1;
599
600 ubi_assert(!ubi->volumes[i]);
601 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
602 reserved_pebs += vol->reserved_pebs;
603 ubi->vol_count += 1;
604 vol->ubi = ubi;
605
606 if (reserved_pebs > ubi->avail_pebs)
607 ubi_err("not enough PEBs, required %d, available %d",
608 reserved_pebs, ubi->avail_pebs);
609 ubi->rsvd_pebs += reserved_pebs;
610 ubi->avail_pebs -= reserved_pebs;
611
612 return 0;
613 }
614
615 /**
616 * check_sv - check volume scanning information.
617 * @vol: UBI volume description object
618 * @sv: volume scanning information
619 *
620 * This function returns zero if the volume scanning information is consistent
621 * to the data read from the volume tabla, and %-EINVAL if not.
622 */
623 static int check_sv(const struct ubi_volume *vol,
624 const struct ubi_scan_volume *sv)
625 {
626 int err;
627
628 if (sv->highest_lnum >= vol->reserved_pebs) {
629 err = 1;
630 goto bad;
631 }
632 if (sv->leb_count > vol->reserved_pebs) {
633 err = 2;
634 goto bad;
635 }
636 if (sv->vol_type != vol->vol_type) {
637 err = 3;
638 goto bad;
639 }
640 if (sv->used_ebs > vol->reserved_pebs) {
641 err = 4;
642 goto bad;
643 }
644 if (sv->data_pad != vol->data_pad) {
645 err = 5;
646 goto bad;
647 }
648 return 0;
649
650 bad:
651 ubi_err("bad scanning information, error %d", err);
652 ubi_dbg_dump_sv(sv);
653 ubi_dbg_dump_vol_info(vol);
654 return -EINVAL;
655 }
656
657 /**
658 * check_scanning_info - check that scanning information.
659 * @ubi: UBI device description object
660 * @si: scanning information
661 *
662 * Even though we protect on-flash data by CRC checksums, we still don't trust
663 * the media. This function ensures that scanning information is consistent to
664 * the information read from the volume table. Returns zero if the scanning
665 * information is OK and %-EINVAL if it is not.
666 */
667 static int check_scanning_info(const struct ubi_device *ubi,
668 struct ubi_scan_info *si)
669 {
670 int err, i;
671 struct ubi_scan_volume *sv;
672 struct ubi_volume *vol;
673
674 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
675 ubi_err("scanning found %d volumes, maximum is %d + %d",
676 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
677 return -EINVAL;
678 }
679
680 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
681 si->highest_vol_id < UBI_INTERNAL_VOL_START) {
682 ubi_err("too large volume ID %d found by scanning",
683 si->highest_vol_id);
684 return -EINVAL;
685 }
686
687 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
688 cond_resched();
689
690 sv = ubi_scan_find_sv(si, i);
691 vol = ubi->volumes[i];
692 if (!vol) {
693 if (sv)
694 ubi_scan_rm_volume(si, sv);
695 continue;
696 }
697
698 if (vol->reserved_pebs == 0) {
699 ubi_assert(i < ubi->vtbl_slots);
700
701 if (!sv)
702 continue;
703
704 /*
705 * During scanning we found a volume which does not
706 * exist according to the information in the volume
707 * table. This must have happened due to an unclean
708 * reboot while the volume was being removed. Discard
709 * these eraseblocks.
710 */
711 ubi_msg("finish volume %d removal", sv->vol_id);
712 ubi_scan_rm_volume(si, sv);
713 } else if (sv) {
714 err = check_sv(vol, sv);
715 if (err)
716 return err;
717 }
718 }
719
720 return 0;
721 }
722
723 /**
724 * ubi_read_volume_table - read volume table.
725 * information.
726 * @ubi: UBI device description object
727 * @si: scanning information
728 *
729 * This function reads volume table, checks it, recover from errors if needed,
730 * or creates it if needed. Returns zero in case of success and a negative
731 * error code in case of failure.
732 */
733 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
734 {
735 int i, err;
736 struct ubi_scan_volume *sv;
737
738 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
739
740 /*
741 * The number of supported volumes is limited by the eraseblock size
742 * and by the UBI_MAX_VOLUMES constant.
743 */
744 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
745 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
746 ubi->vtbl_slots = UBI_MAX_VOLUMES;
747
748 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
749 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
750
751 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
752 if (!sv) {
753 /*
754 * No logical eraseblocks belonging to the layout volume were
755 * found. This could mean that the flash is just empty. In
756 * this case we create empty layout volume.
757 *
758 * But if flash is not empty this must be a corruption or the
759 * MTD device just contains garbage.
760 */
761 if (si->is_empty) {
762 ubi->vtbl = create_empty_lvol(ubi, si);
763 if (IS_ERR(ubi->vtbl))
764 return PTR_ERR(ubi->vtbl);
765 } else {
766 ubi_err("the layout volume was not found");
767 return -EINVAL;
768 }
769 } else {
770 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
771 /* This must not happen with proper UBI images */
772 dbg_err("too many LEBs (%d) in layout volume",
773 sv->leb_count);
774 return -EINVAL;
775 }
776
777 ubi->vtbl = process_lvol(ubi, si, sv);
778 if (IS_ERR(ubi->vtbl))
779 return PTR_ERR(ubi->vtbl);
780 }
781
782 ubi->avail_pebs = ubi->good_peb_count;
783
784 /*
785 * The layout volume is OK, initialize the corresponding in-RAM data
786 * structures.
787 */
788 err = init_volumes(ubi, si, ubi->vtbl);
789 if (err)
790 goto out_free;
791
792 /*
793 * Get sure that the scanning information is consistent to the
794 * information stored in the volume table.
795 */
796 err = check_scanning_info(ubi, si);
797 if (err)
798 goto out_free;
799
800 return 0;
801
802 out_free:
803 vfree(ubi->vtbl);
804 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
805 if (ubi->volumes[i]) {
806 kfree(ubi->volumes[i]);
807 ubi->volumes[i] = NULL;
808 }
809 return err;
810 }
811
812 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
813
814 /**
815 * paranoid_vtbl_check - check volume table.
816 * @ubi: UBI device description object
817 */
818 static void paranoid_vtbl_check(const struct ubi_device *ubi)
819 {
820 if (vtbl_check(ubi, ubi->vtbl)) {
821 ubi_err("paranoid check failed");
822 BUG();
823 }
824 }
825
826 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */