]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/wl.c
Merge branch 'master' of git://git.denx.de/u-boot-ti
[people/ms/u-boot.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 *
6 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7 */
8
9 /*
10 * UBI wear-leveling sub-system.
11 *
12 * This sub-system is responsible for wear-leveling. It works in terms of
13 * physical eraseblocks and erase counters and knows nothing about logical
14 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15 * eraseblocks are of two types - used and free. Used physical eraseblocks are
16 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 *
19 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 *
22 * When physical eraseblocks are returned to the WL sub-system by means of the
23 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24 * done asynchronously in context of the per-UBI device background thread,
25 * which is also managed by the WL sub-system.
26 *
27 * The wear-leveling is ensured by means of moving the contents of used
28 * physical eraseblocks with low erase counter to free physical eraseblocks
29 * with high erase counter.
30 *
31 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32 * bad.
33 *
34 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35 * in a physical eraseblock, it has to be moved. Technically this is the same
36 * as moving it for wear-leveling reasons.
37 *
38 * As it was said, for the UBI sub-system all physical eraseblocks are either
39 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 *
43 * When the WL sub-system returns a physical eraseblock, the physical
44 * eraseblock is protected from being moved for some "time". For this reason,
45 * the physical eraseblock is not directly moved from the @wl->free tree to the
46 * @wl->used tree. There is a protection queue in between where this
47 * physical eraseblock is temporarily stored (@wl->pq).
48 *
49 * All this protection stuff is needed because:
50 * o we don't want to move physical eraseblocks just after we have given them
51 * to the user; instead, we first want to let users fill them up with data;
52 *
53 * o there is a chance that the user will put the physical eraseblock very
54 * soon, so it makes sense not to move it for some time, but wait.
55 *
56 * Physical eraseblocks stay protected only for limited time. But the "time" is
57 * measured in erase cycles in this case. This is implemented with help of the
58 * protection queue. Eraseblocks are put to the tail of this queue when they
59 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60 * head of the queue on each erase operation (for any eraseblock). So the
61 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 *
63 * To put it differently, each physical eraseblock has 2 main states: free and
64 * used. The former state corresponds to the @wl->free tree. The latter state
65 * is split up on several sub-states:
66 * o the WL movement is allowed (@wl->used tree);
67 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68 * erroneous - e.g., there was a read error;
69 * o the WL movement is temporarily prohibited (@wl->pq queue);
70 * o scrubbing is needed (@wl->scrub tree).
71 *
72 * Depending on the sub-state, wear-leveling entries of the used physical
73 * eraseblocks may be kept in one of those structures.
74 *
75 * Note, in this implementation, we keep a small in-RAM object for each physical
76 * eraseblock. This is surely not a scalable solution. But it appears to be good
77 * enough for moderately large flashes and it is simple. In future, one may
78 * re-work this sub-system and make it more scalable.
79 *
80 * At the moment this sub-system does not utilize the sequence number, which
81 * was introduced relatively recently. But it would be wise to do this because
82 * the sequence number of a logical eraseblock characterizes how old is it. For
83 * example, when we move a PEB with low erase counter, and we need to pick the
84 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85 * pick target PEB with an average EC if our PEB is not very "old". This is a
86 * room for future re-works of the WL sub-system.
87 */
88
89 #define __UBOOT__
90 #ifndef __UBOOT__
91 #include <linux/slab.h>
92 #include <linux/crc32.h>
93 #include <linux/freezer.h>
94 #include <linux/kthread.h>
95 #else
96 #include <ubi_uboot.h>
97 #endif
98
99 #include "ubi.h"
100
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103
104 /*
105 * Maximum difference between two erase counters. If this threshold is
106 * exceeded, the WL sub-system starts moving data from used physical
107 * eraseblocks with low erase counter to free physical eraseblocks with high
108 * erase counter.
109 */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111
112 /*
113 * When a physical eraseblock is moved, the WL sub-system has to pick the target
114 * physical eraseblock to move to. The simplest way would be just to pick the
115 * one with the highest erase counter. But in certain workloads this could lead
116 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117 * situation when the picked physical eraseblock is constantly erased after the
118 * data is written to it. So, we have a constant which limits the highest erase
119 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120 * does not pick eraseblocks with erase counter greater than the lowest erase
121 * counter plus %WL_FREE_MAX_DIFF.
122 */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124
125 /*
126 * Maximum number of consecutive background thread failures which is enough to
127 * switch to read-only mode.
128 */
129 #define WL_MAX_FAILURES 32
130
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133 struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135 struct ubi_wl_entry *e);
136
137 #ifdef CONFIG_MTD_UBI_FASTMAP
138 #ifndef __UBOOT__
139 /**
140 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
141 * @wrk: the work description object
142 */
143 static void update_fastmap_work_fn(struct work_struct *wrk)
144 {
145 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
146 ubi_update_fastmap(ubi);
147 }
148 #endif
149
150 /**
151 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
152 * @ubi: UBI device description object
153 * @pnum: the to be checked PEB
154 */
155 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
156 {
157 int i;
158
159 if (!ubi->fm)
160 return 0;
161
162 for (i = 0; i < ubi->fm->used_blocks; i++)
163 if (ubi->fm->e[i]->pnum == pnum)
164 return 1;
165
166 return 0;
167 }
168 #else
169 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
170 {
171 return 0;
172 }
173 #endif
174
175 /**
176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177 * @e: the wear-leveling entry to add
178 * @root: the root of the tree
179 *
180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181 * the @ubi->used and @ubi->free RB-trees.
182 */
183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
184 {
185 struct rb_node **p, *parent = NULL;
186
187 p = &root->rb_node;
188 while (*p) {
189 struct ubi_wl_entry *e1;
190
191 parent = *p;
192 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
193
194 if (e->ec < e1->ec)
195 p = &(*p)->rb_left;
196 else if (e->ec > e1->ec)
197 p = &(*p)->rb_right;
198 else {
199 ubi_assert(e->pnum != e1->pnum);
200 if (e->pnum < e1->pnum)
201 p = &(*p)->rb_left;
202 else
203 p = &(*p)->rb_right;
204 }
205 }
206
207 rb_link_node(&e->u.rb, parent, p);
208 rb_insert_color(&e->u.rb, root);
209 }
210
211 /**
212 * do_work - do one pending work.
213 * @ubi: UBI device description object
214 *
215 * This function returns zero in case of success and a negative error code in
216 * case of failure.
217 */
218 static int do_work(struct ubi_device *ubi)
219 {
220 int err;
221 struct ubi_work *wrk;
222
223 cond_resched();
224
225 /*
226 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 * it in read mode, so many of them may be doing works at a time. But
228 * the queue flush code has to be sure the whole queue of works is
229 * done, and it takes the mutex in write mode.
230 */
231 down_read(&ubi->work_sem);
232 spin_lock(&ubi->wl_lock);
233 if (list_empty(&ubi->works)) {
234 spin_unlock(&ubi->wl_lock);
235 up_read(&ubi->work_sem);
236 return 0;
237 }
238
239 wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 list_del(&wrk->list);
241 ubi->works_count -= 1;
242 ubi_assert(ubi->works_count >= 0);
243 spin_unlock(&ubi->wl_lock);
244
245 /*
246 * Call the worker function. Do not touch the work structure
247 * after this call as it will have been freed or reused by that
248 * time by the worker function.
249 */
250 err = wrk->func(ubi, wrk, 0);
251 if (err)
252 ubi_err("work failed with error code %d", err);
253 up_read(&ubi->work_sem);
254
255 return err;
256 }
257
258 /**
259 * produce_free_peb - produce a free physical eraseblock.
260 * @ubi: UBI device description object
261 *
262 * This function tries to make a free PEB by means of synchronous execution of
263 * pending works. This may be needed if, for example the background thread is
264 * disabled. Returns zero in case of success and a negative error code in case
265 * of failure.
266 */
267 static int produce_free_peb(struct ubi_device *ubi)
268 {
269 int err;
270
271 while (!ubi->free.rb_node) {
272 spin_unlock(&ubi->wl_lock);
273
274 dbg_wl("do one work synchronously");
275 err = do_work(ubi);
276
277 spin_lock(&ubi->wl_lock);
278 if (err)
279 return err;
280 }
281
282 return 0;
283 }
284
285 /**
286 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287 * @e: the wear-leveling entry to check
288 * @root: the root of the tree
289 *
290 * This function returns non-zero if @e is in the @root RB-tree and zero if it
291 * is not.
292 */
293 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
294 {
295 struct rb_node *p;
296
297 p = root->rb_node;
298 while (p) {
299 struct ubi_wl_entry *e1;
300
301 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
302
303 if (e->pnum == e1->pnum) {
304 ubi_assert(e == e1);
305 return 1;
306 }
307
308 if (e->ec < e1->ec)
309 p = p->rb_left;
310 else if (e->ec > e1->ec)
311 p = p->rb_right;
312 else {
313 ubi_assert(e->pnum != e1->pnum);
314 if (e->pnum < e1->pnum)
315 p = p->rb_left;
316 else
317 p = p->rb_right;
318 }
319 }
320
321 return 0;
322 }
323
324 /**
325 * prot_queue_add - add physical eraseblock to the protection queue.
326 * @ubi: UBI device description object
327 * @e: the physical eraseblock to add
328 *
329 * This function adds @e to the tail of the protection queue @ubi->pq, where
330 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
332 * be locked.
333 */
334 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
335 {
336 int pq_tail = ubi->pq_head - 1;
337
338 if (pq_tail < 0)
339 pq_tail = UBI_PROT_QUEUE_LEN - 1;
340 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
341 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
342 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
343 }
344
345 /**
346 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347 * @ubi: UBI device description object
348 * @root: the RB-tree where to look for
349 * @diff: maximum possible difference from the smallest erase counter
350 *
351 * This function looks for a wear leveling entry with erase counter closest to
352 * min + @diff, where min is the smallest erase counter.
353 */
354 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
355 struct rb_root *root, int diff)
356 {
357 struct rb_node *p;
358 struct ubi_wl_entry *e, *prev_e = NULL;
359 int max;
360
361 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
362 max = e->ec + diff;
363
364 p = root->rb_node;
365 while (p) {
366 struct ubi_wl_entry *e1;
367
368 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
369 if (e1->ec >= max)
370 p = p->rb_left;
371 else {
372 p = p->rb_right;
373 prev_e = e;
374 e = e1;
375 }
376 }
377
378 /* If no fastmap has been written and this WL entry can be used
379 * as anchor PEB, hold it back and return the second best WL entry
380 * such that fastmap can use the anchor PEB later. */
381 if (prev_e && !ubi->fm_disabled &&
382 !ubi->fm && e->pnum < UBI_FM_MAX_START)
383 return prev_e;
384
385 return e;
386 }
387
388 /**
389 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
390 * @ubi: UBI device description object
391 * @root: the RB-tree where to look for
392 *
393 * This function looks for a wear leveling entry with medium erase counter,
394 * but not greater or equivalent than the lowest erase counter plus
395 * %WL_FREE_MAX_DIFF/2.
396 */
397 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
398 struct rb_root *root)
399 {
400 struct ubi_wl_entry *e, *first, *last;
401
402 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
403 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
404
405 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
406 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
407
408 #ifdef CONFIG_MTD_UBI_FASTMAP
409 /* If no fastmap has been written and this WL entry can be used
410 * as anchor PEB, hold it back and return the second best
411 * WL entry such that fastmap can use the anchor PEB later. */
412 if (e && !ubi->fm_disabled && !ubi->fm &&
413 e->pnum < UBI_FM_MAX_START)
414 e = rb_entry(rb_next(root->rb_node),
415 struct ubi_wl_entry, u.rb);
416 #endif
417 } else
418 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
419
420 return e;
421 }
422
423 #ifdef CONFIG_MTD_UBI_FASTMAP
424 /**
425 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
426 * @root: the RB-tree where to look for
427 */
428 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
429 {
430 struct rb_node *p;
431 struct ubi_wl_entry *e, *victim = NULL;
432 int max_ec = UBI_MAX_ERASECOUNTER;
433
434 ubi_rb_for_each_entry(p, e, root, u.rb) {
435 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
436 victim = e;
437 max_ec = e->ec;
438 }
439 }
440
441 return victim;
442 }
443
444 static int anchor_pebs_avalible(struct rb_root *root)
445 {
446 struct rb_node *p;
447 struct ubi_wl_entry *e;
448
449 ubi_rb_for_each_entry(p, e, root, u.rb)
450 if (e->pnum < UBI_FM_MAX_START)
451 return 1;
452
453 return 0;
454 }
455
456 /**
457 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
458 * @ubi: UBI device description object
459 * @anchor: This PEB will be used as anchor PEB by fastmap
460 *
461 * The function returns a physical erase block with a given maximal number
462 * and removes it from the wl subsystem.
463 * Must be called with wl_lock held!
464 */
465 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
466 {
467 struct ubi_wl_entry *e = NULL;
468
469 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
470 goto out;
471
472 if (anchor)
473 e = find_anchor_wl_entry(&ubi->free);
474 else
475 e = find_mean_wl_entry(ubi, &ubi->free);
476
477 if (!e)
478 goto out;
479
480 self_check_in_wl_tree(ubi, e, &ubi->free);
481
482 /* remove it from the free list,
483 * the wl subsystem does no longer know this erase block */
484 rb_erase(&e->u.rb, &ubi->free);
485 ubi->free_count--;
486 out:
487 return e;
488 }
489 #endif
490
491 /**
492 * __wl_get_peb - get a physical eraseblock.
493 * @ubi: UBI device description object
494 *
495 * This function returns a physical eraseblock in case of success and a
496 * negative error code in case of failure.
497 */
498 static int __wl_get_peb(struct ubi_device *ubi)
499 {
500 int err;
501 struct ubi_wl_entry *e;
502
503 retry:
504 if (!ubi->free.rb_node) {
505 if (ubi->works_count == 0) {
506 ubi_err("no free eraseblocks");
507 ubi_assert(list_empty(&ubi->works));
508 return -ENOSPC;
509 }
510
511 err = produce_free_peb(ubi);
512 if (err < 0)
513 return err;
514 goto retry;
515 }
516
517 e = find_mean_wl_entry(ubi, &ubi->free);
518 if (!e) {
519 ubi_err("no free eraseblocks");
520 return -ENOSPC;
521 }
522
523 self_check_in_wl_tree(ubi, e, &ubi->free);
524
525 /*
526 * Move the physical eraseblock to the protection queue where it will
527 * be protected from being moved for some time.
528 */
529 rb_erase(&e->u.rb, &ubi->free);
530 ubi->free_count--;
531 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
532 #ifndef CONFIG_MTD_UBI_FASTMAP
533 /* We have to enqueue e only if fastmap is disabled,
534 * is fastmap enabled prot_queue_add() will be called by
535 * ubi_wl_get_peb() after removing e from the pool. */
536 prot_queue_add(ubi, e);
537 #endif
538 return e->pnum;
539 }
540
541 #ifdef CONFIG_MTD_UBI_FASTMAP
542 /**
543 * return_unused_pool_pebs - returns unused PEB to the free tree.
544 * @ubi: UBI device description object
545 * @pool: fastmap pool description object
546 */
547 static void return_unused_pool_pebs(struct ubi_device *ubi,
548 struct ubi_fm_pool *pool)
549 {
550 int i;
551 struct ubi_wl_entry *e;
552
553 for (i = pool->used; i < pool->size; i++) {
554 e = ubi->lookuptbl[pool->pebs[i]];
555 wl_tree_add(e, &ubi->free);
556 ubi->free_count++;
557 }
558 }
559
560 /**
561 * refill_wl_pool - refills all the fastmap pool used by the
562 * WL sub-system.
563 * @ubi: UBI device description object
564 */
565 static void refill_wl_pool(struct ubi_device *ubi)
566 {
567 struct ubi_wl_entry *e;
568 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
569
570 return_unused_pool_pebs(ubi, pool);
571
572 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
573 if (!ubi->free.rb_node ||
574 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
575 break;
576
577 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
578 self_check_in_wl_tree(ubi, e, &ubi->free);
579 rb_erase(&e->u.rb, &ubi->free);
580 ubi->free_count--;
581
582 pool->pebs[pool->size] = e->pnum;
583 }
584 pool->used = 0;
585 }
586
587 /**
588 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
589 * @ubi: UBI device description object
590 */
591 static void refill_wl_user_pool(struct ubi_device *ubi)
592 {
593 struct ubi_fm_pool *pool = &ubi->fm_pool;
594
595 return_unused_pool_pebs(ubi, pool);
596
597 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
598 pool->pebs[pool->size] = __wl_get_peb(ubi);
599 if (pool->pebs[pool->size] < 0)
600 break;
601 }
602 pool->used = 0;
603 }
604
605 /**
606 * ubi_refill_pools - refills all fastmap PEB pools.
607 * @ubi: UBI device description object
608 */
609 void ubi_refill_pools(struct ubi_device *ubi)
610 {
611 spin_lock(&ubi->wl_lock);
612 refill_wl_pool(ubi);
613 refill_wl_user_pool(ubi);
614 spin_unlock(&ubi->wl_lock);
615 }
616
617 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
618 * the fastmap pool.
619 */
620 int ubi_wl_get_peb(struct ubi_device *ubi)
621 {
622 int ret;
623 struct ubi_fm_pool *pool = &ubi->fm_pool;
624 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
625
626 if (!pool->size || !wl_pool->size || pool->used == pool->size ||
627 wl_pool->used == wl_pool->size)
628 ubi_update_fastmap(ubi);
629
630 /* we got not a single free PEB */
631 if (!pool->size)
632 ret = -ENOSPC;
633 else {
634 spin_lock(&ubi->wl_lock);
635 ret = pool->pebs[pool->used++];
636 prot_queue_add(ubi, ubi->lookuptbl[ret]);
637 spin_unlock(&ubi->wl_lock);
638 }
639
640 return ret;
641 }
642
643 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
644 *
645 * @ubi: UBI device description object
646 */
647 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
648 {
649 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
650 int pnum;
651
652 if (pool->used == pool->size || !pool->size) {
653 /* We cannot update the fastmap here because this
654 * function is called in atomic context.
655 * Let's fail here and refill/update it as soon as possible. */
656 #ifndef __UBOOT__
657 schedule_work(&ubi->fm_work);
658 #else
659 /* In U-Boot we must call this directly */
660 ubi_update_fastmap(ubi);
661 #endif
662 return NULL;
663 } else {
664 pnum = pool->pebs[pool->used++];
665 return ubi->lookuptbl[pnum];
666 }
667 }
668 #else
669 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
670 {
671 struct ubi_wl_entry *e;
672
673 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
674 self_check_in_wl_tree(ubi, e, &ubi->free);
675 ubi->free_count--;
676 ubi_assert(ubi->free_count >= 0);
677 rb_erase(&e->u.rb, &ubi->free);
678
679 return e;
680 }
681
682 int ubi_wl_get_peb(struct ubi_device *ubi)
683 {
684 int peb, err;
685
686 spin_lock(&ubi->wl_lock);
687 peb = __wl_get_peb(ubi);
688 spin_unlock(&ubi->wl_lock);
689
690 if (peb < 0)
691 return peb;
692
693 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
694 ubi->peb_size - ubi->vid_hdr_aloffset);
695 if (err) {
696 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
697 return err;
698 }
699
700 return peb;
701 }
702 #endif
703
704 /**
705 * prot_queue_del - remove a physical eraseblock from the protection queue.
706 * @ubi: UBI device description object
707 * @pnum: the physical eraseblock to remove
708 *
709 * This function deletes PEB @pnum from the protection queue and returns zero
710 * in case of success and %-ENODEV if the PEB was not found.
711 */
712 static int prot_queue_del(struct ubi_device *ubi, int pnum)
713 {
714 struct ubi_wl_entry *e;
715
716 e = ubi->lookuptbl[pnum];
717 if (!e)
718 return -ENODEV;
719
720 if (self_check_in_pq(ubi, e))
721 return -ENODEV;
722
723 list_del(&e->u.list);
724 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
725 return 0;
726 }
727
728 /**
729 * sync_erase - synchronously erase a physical eraseblock.
730 * @ubi: UBI device description object
731 * @e: the the physical eraseblock to erase
732 * @torture: if the physical eraseblock has to be tortured
733 *
734 * This function returns zero in case of success and a negative error code in
735 * case of failure.
736 */
737 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
738 int torture)
739 {
740 int err;
741 struct ubi_ec_hdr *ec_hdr;
742 unsigned long long ec = e->ec;
743
744 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
745
746 err = self_check_ec(ubi, e->pnum, e->ec);
747 if (err)
748 return -EINVAL;
749
750 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
751 if (!ec_hdr)
752 return -ENOMEM;
753
754 err = ubi_io_sync_erase(ubi, e->pnum, torture);
755 if (err < 0)
756 goto out_free;
757
758 ec += err;
759 if (ec > UBI_MAX_ERASECOUNTER) {
760 /*
761 * Erase counter overflow. Upgrade UBI and use 64-bit
762 * erase counters internally.
763 */
764 ubi_err("erase counter overflow at PEB %d, EC %llu",
765 e->pnum, ec);
766 err = -EINVAL;
767 goto out_free;
768 }
769
770 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
771
772 ec_hdr->ec = cpu_to_be64(ec);
773
774 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
775 if (err)
776 goto out_free;
777
778 e->ec = ec;
779 spin_lock(&ubi->wl_lock);
780 if (e->ec > ubi->max_ec)
781 ubi->max_ec = e->ec;
782 spin_unlock(&ubi->wl_lock);
783
784 out_free:
785 kfree(ec_hdr);
786 return err;
787 }
788
789 /**
790 * serve_prot_queue - check if it is time to stop protecting PEBs.
791 * @ubi: UBI device description object
792 *
793 * This function is called after each erase operation and removes PEBs from the
794 * tail of the protection queue. These PEBs have been protected for long enough
795 * and should be moved to the used tree.
796 */
797 static void serve_prot_queue(struct ubi_device *ubi)
798 {
799 struct ubi_wl_entry *e, *tmp;
800 int count;
801
802 /*
803 * There may be several protected physical eraseblock to remove,
804 * process them all.
805 */
806 repeat:
807 count = 0;
808 spin_lock(&ubi->wl_lock);
809 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
810 dbg_wl("PEB %d EC %d protection over, move to used tree",
811 e->pnum, e->ec);
812
813 list_del(&e->u.list);
814 wl_tree_add(e, &ubi->used);
815 if (count++ > 32) {
816 /*
817 * Let's be nice and avoid holding the spinlock for
818 * too long.
819 */
820 spin_unlock(&ubi->wl_lock);
821 cond_resched();
822 goto repeat;
823 }
824 }
825
826 ubi->pq_head += 1;
827 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
828 ubi->pq_head = 0;
829 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
830 spin_unlock(&ubi->wl_lock);
831 }
832
833 /**
834 * __schedule_ubi_work - schedule a work.
835 * @ubi: UBI device description object
836 * @wrk: the work to schedule
837 *
838 * This function adds a work defined by @wrk to the tail of the pending works
839 * list. Can only be used of ubi->work_sem is already held in read mode!
840 */
841 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
842 {
843 spin_lock(&ubi->wl_lock);
844 list_add_tail(&wrk->list, &ubi->works);
845 ubi_assert(ubi->works_count >= 0);
846 ubi->works_count += 1;
847 #ifndef __UBOOT__
848 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
849 wake_up_process(ubi->bgt_thread);
850 #else
851 /*
852 * U-Boot special: We have no bgt_thread in U-Boot!
853 * So just call do_work() here directly.
854 */
855 do_work(ubi);
856 #endif
857 spin_unlock(&ubi->wl_lock);
858 }
859
860 /**
861 * schedule_ubi_work - schedule a work.
862 * @ubi: UBI device description object
863 * @wrk: the work to schedule
864 *
865 * This function adds a work defined by @wrk to the tail of the pending works
866 * list.
867 */
868 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
869 {
870 down_read(&ubi->work_sem);
871 __schedule_ubi_work(ubi, wrk);
872 up_read(&ubi->work_sem);
873 }
874
875 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
876 int cancel);
877
878 #ifdef CONFIG_MTD_UBI_FASTMAP
879 /**
880 * ubi_is_erase_work - checks whether a work is erase work.
881 * @wrk: The work object to be checked
882 */
883 int ubi_is_erase_work(struct ubi_work *wrk)
884 {
885 return wrk->func == erase_worker;
886 }
887 #endif
888
889 /**
890 * schedule_erase - schedule an erase work.
891 * @ubi: UBI device description object
892 * @e: the WL entry of the physical eraseblock to erase
893 * @vol_id: the volume ID that last used this PEB
894 * @lnum: the last used logical eraseblock number for the PEB
895 * @torture: if the physical eraseblock has to be tortured
896 *
897 * This function returns zero in case of success and a %-ENOMEM in case of
898 * failure.
899 */
900 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
901 int vol_id, int lnum, int torture)
902 {
903 struct ubi_work *wl_wrk;
904
905 ubi_assert(e);
906 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
907
908 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
909 e->pnum, e->ec, torture);
910
911 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
912 if (!wl_wrk)
913 return -ENOMEM;
914
915 wl_wrk->func = &erase_worker;
916 wl_wrk->e = e;
917 wl_wrk->vol_id = vol_id;
918 wl_wrk->lnum = lnum;
919 wl_wrk->torture = torture;
920
921 schedule_ubi_work(ubi, wl_wrk);
922 return 0;
923 }
924
925 /**
926 * do_sync_erase - run the erase worker synchronously.
927 * @ubi: UBI device description object
928 * @e: the WL entry of the physical eraseblock to erase
929 * @vol_id: the volume ID that last used this PEB
930 * @lnum: the last used logical eraseblock number for the PEB
931 * @torture: if the physical eraseblock has to be tortured
932 *
933 */
934 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
935 int vol_id, int lnum, int torture)
936 {
937 struct ubi_work *wl_wrk;
938
939 dbg_wl("sync erase of PEB %i", e->pnum);
940
941 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
942 if (!wl_wrk)
943 return -ENOMEM;
944
945 wl_wrk->e = e;
946 wl_wrk->vol_id = vol_id;
947 wl_wrk->lnum = lnum;
948 wl_wrk->torture = torture;
949
950 return erase_worker(ubi, wl_wrk, 0);
951 }
952
953 #ifdef CONFIG_MTD_UBI_FASTMAP
954 /**
955 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
956 * sub-system.
957 * see: ubi_wl_put_peb()
958 *
959 * @ubi: UBI device description object
960 * @fm_e: physical eraseblock to return
961 * @lnum: the last used logical eraseblock number for the PEB
962 * @torture: if this physical eraseblock has to be tortured
963 */
964 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
965 int lnum, int torture)
966 {
967 struct ubi_wl_entry *e;
968 int vol_id, pnum = fm_e->pnum;
969
970 dbg_wl("PEB %d", pnum);
971
972 ubi_assert(pnum >= 0);
973 ubi_assert(pnum < ubi->peb_count);
974
975 spin_lock(&ubi->wl_lock);
976 e = ubi->lookuptbl[pnum];
977
978 /* This can happen if we recovered from a fastmap the very
979 * first time and writing now a new one. In this case the wl system
980 * has never seen any PEB used by the original fastmap.
981 */
982 if (!e) {
983 e = fm_e;
984 ubi_assert(e->ec >= 0);
985 ubi->lookuptbl[pnum] = e;
986 } else {
987 e->ec = fm_e->ec;
988 kfree(fm_e);
989 }
990
991 spin_unlock(&ubi->wl_lock);
992
993 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
994 return schedule_erase(ubi, e, vol_id, lnum, torture);
995 }
996 #endif
997
998 /**
999 * wear_leveling_worker - wear-leveling worker function.
1000 * @ubi: UBI device description object
1001 * @wrk: the work object
1002 * @cancel: non-zero if the worker has to free memory and exit
1003 *
1004 * This function copies a more worn out physical eraseblock to a less worn out
1005 * one. Returns zero in case of success and a negative error code in case of
1006 * failure.
1007 */
1008 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1009 int cancel)
1010 {
1011 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1012 int vol_id = -1, uninitialized_var(lnum);
1013 #ifdef CONFIG_MTD_UBI_FASTMAP
1014 int anchor = wrk->anchor;
1015 #endif
1016 struct ubi_wl_entry *e1, *e2;
1017 struct ubi_vid_hdr *vid_hdr;
1018
1019 kfree(wrk);
1020 if (cancel)
1021 return 0;
1022
1023 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1024 if (!vid_hdr)
1025 return -ENOMEM;
1026
1027 mutex_lock(&ubi->move_mutex);
1028 spin_lock(&ubi->wl_lock);
1029 ubi_assert(!ubi->move_from && !ubi->move_to);
1030 ubi_assert(!ubi->move_to_put);
1031
1032 if (!ubi->free.rb_node ||
1033 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1034 /*
1035 * No free physical eraseblocks? Well, they must be waiting in
1036 * the queue to be erased. Cancel movement - it will be
1037 * triggered again when a free physical eraseblock appears.
1038 *
1039 * No used physical eraseblocks? They must be temporarily
1040 * protected from being moved. They will be moved to the
1041 * @ubi->used tree later and the wear-leveling will be
1042 * triggered again.
1043 */
1044 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1045 !ubi->free.rb_node, !ubi->used.rb_node);
1046 goto out_cancel;
1047 }
1048
1049 #ifdef CONFIG_MTD_UBI_FASTMAP
1050 /* Check whether we need to produce an anchor PEB */
1051 if (!anchor)
1052 anchor = !anchor_pebs_avalible(&ubi->free);
1053
1054 if (anchor) {
1055 e1 = find_anchor_wl_entry(&ubi->used);
1056 if (!e1)
1057 goto out_cancel;
1058 e2 = get_peb_for_wl(ubi);
1059 if (!e2)
1060 goto out_cancel;
1061
1062 self_check_in_wl_tree(ubi, e1, &ubi->used);
1063 rb_erase(&e1->u.rb, &ubi->used);
1064 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1065 } else if (!ubi->scrub.rb_node) {
1066 #else
1067 if (!ubi->scrub.rb_node) {
1068 #endif
1069 /*
1070 * Now pick the least worn-out used physical eraseblock and a
1071 * highly worn-out free physical eraseblock. If the erase
1072 * counters differ much enough, start wear-leveling.
1073 */
1074 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1075 e2 = get_peb_for_wl(ubi);
1076 if (!e2)
1077 goto out_cancel;
1078
1079 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1080 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1081 e1->ec, e2->ec);
1082
1083 /* Give the unused PEB back */
1084 wl_tree_add(e2, &ubi->free);
1085 ubi->free_count++;
1086 goto out_cancel;
1087 }
1088 self_check_in_wl_tree(ubi, e1, &ubi->used);
1089 rb_erase(&e1->u.rb, &ubi->used);
1090 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1091 e1->pnum, e1->ec, e2->pnum, e2->ec);
1092 } else {
1093 /* Perform scrubbing */
1094 scrubbing = 1;
1095 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1096 e2 = get_peb_for_wl(ubi);
1097 if (!e2)
1098 goto out_cancel;
1099
1100 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1101 rb_erase(&e1->u.rb, &ubi->scrub);
1102 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1103 }
1104
1105 ubi->move_from = e1;
1106 ubi->move_to = e2;
1107 spin_unlock(&ubi->wl_lock);
1108
1109 /*
1110 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1111 * We so far do not know which logical eraseblock our physical
1112 * eraseblock (@e1) belongs to. We have to read the volume identifier
1113 * header first.
1114 *
1115 * Note, we are protected from this PEB being unmapped and erased. The
1116 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1117 * which is being moved was unmapped.
1118 */
1119
1120 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1121 if (err && err != UBI_IO_BITFLIPS) {
1122 if (err == UBI_IO_FF) {
1123 /*
1124 * We are trying to move PEB without a VID header. UBI
1125 * always write VID headers shortly after the PEB was
1126 * given, so we have a situation when it has not yet
1127 * had a chance to write it, because it was preempted.
1128 * So add this PEB to the protection queue so far,
1129 * because presumably more data will be written there
1130 * (including the missing VID header), and then we'll
1131 * move it.
1132 */
1133 dbg_wl("PEB %d has no VID header", e1->pnum);
1134 protect = 1;
1135 goto out_not_moved;
1136 } else if (err == UBI_IO_FF_BITFLIPS) {
1137 /*
1138 * The same situation as %UBI_IO_FF, but bit-flips were
1139 * detected. It is better to schedule this PEB for
1140 * scrubbing.
1141 */
1142 dbg_wl("PEB %d has no VID header but has bit-flips",
1143 e1->pnum);
1144 scrubbing = 1;
1145 goto out_not_moved;
1146 }
1147
1148 ubi_err("error %d while reading VID header from PEB %d",
1149 err, e1->pnum);
1150 goto out_error;
1151 }
1152
1153 vol_id = be32_to_cpu(vid_hdr->vol_id);
1154 lnum = be32_to_cpu(vid_hdr->lnum);
1155
1156 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1157 if (err) {
1158 if (err == MOVE_CANCEL_RACE) {
1159 /*
1160 * The LEB has not been moved because the volume is
1161 * being deleted or the PEB has been put meanwhile. We
1162 * should prevent this PEB from being selected for
1163 * wear-leveling movement again, so put it to the
1164 * protection queue.
1165 */
1166 protect = 1;
1167 goto out_not_moved;
1168 }
1169 if (err == MOVE_RETRY) {
1170 scrubbing = 1;
1171 goto out_not_moved;
1172 }
1173 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1174 err == MOVE_TARGET_RD_ERR) {
1175 /*
1176 * Target PEB had bit-flips or write error - torture it.
1177 */
1178 torture = 1;
1179 goto out_not_moved;
1180 }
1181
1182 if (err == MOVE_SOURCE_RD_ERR) {
1183 /*
1184 * An error happened while reading the source PEB. Do
1185 * not switch to R/O mode in this case, and give the
1186 * upper layers a possibility to recover from this,
1187 * e.g. by unmapping corresponding LEB. Instead, just
1188 * put this PEB to the @ubi->erroneous list to prevent
1189 * UBI from trying to move it over and over again.
1190 */
1191 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1192 ubi_err("too many erroneous eraseblocks (%d)",
1193 ubi->erroneous_peb_count);
1194 goto out_error;
1195 }
1196 erroneous = 1;
1197 goto out_not_moved;
1198 }
1199
1200 if (err < 0)
1201 goto out_error;
1202
1203 ubi_assert(0);
1204 }
1205
1206 /* The PEB has been successfully moved */
1207 if (scrubbing)
1208 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1209 e1->pnum, vol_id, lnum, e2->pnum);
1210 ubi_free_vid_hdr(ubi, vid_hdr);
1211
1212 spin_lock(&ubi->wl_lock);
1213 if (!ubi->move_to_put) {
1214 wl_tree_add(e2, &ubi->used);
1215 e2 = NULL;
1216 }
1217 ubi->move_from = ubi->move_to = NULL;
1218 ubi->move_to_put = ubi->wl_scheduled = 0;
1219 spin_unlock(&ubi->wl_lock);
1220
1221 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1222 if (err) {
1223 kmem_cache_free(ubi_wl_entry_slab, e1);
1224 if (e2)
1225 kmem_cache_free(ubi_wl_entry_slab, e2);
1226 goto out_ro;
1227 }
1228
1229 if (e2) {
1230 /*
1231 * Well, the target PEB was put meanwhile, schedule it for
1232 * erasure.
1233 */
1234 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1235 e2->pnum, vol_id, lnum);
1236 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1237 if (err) {
1238 kmem_cache_free(ubi_wl_entry_slab, e2);
1239 goto out_ro;
1240 }
1241 }
1242
1243 dbg_wl("done");
1244 mutex_unlock(&ubi->move_mutex);
1245 return 0;
1246
1247 /*
1248 * For some reasons the LEB was not moved, might be an error, might be
1249 * something else. @e1 was not changed, so return it back. @e2 might
1250 * have been changed, schedule it for erasure.
1251 */
1252 out_not_moved:
1253 if (vol_id != -1)
1254 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1255 e1->pnum, vol_id, lnum, e2->pnum, err);
1256 else
1257 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1258 e1->pnum, e2->pnum, err);
1259 spin_lock(&ubi->wl_lock);
1260 if (protect)
1261 prot_queue_add(ubi, e1);
1262 else if (erroneous) {
1263 wl_tree_add(e1, &ubi->erroneous);
1264 ubi->erroneous_peb_count += 1;
1265 } else if (scrubbing)
1266 wl_tree_add(e1, &ubi->scrub);
1267 else
1268 wl_tree_add(e1, &ubi->used);
1269 ubi_assert(!ubi->move_to_put);
1270 ubi->move_from = ubi->move_to = NULL;
1271 ubi->wl_scheduled = 0;
1272 spin_unlock(&ubi->wl_lock);
1273
1274 ubi_free_vid_hdr(ubi, vid_hdr);
1275 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1276 if (err) {
1277 kmem_cache_free(ubi_wl_entry_slab, e2);
1278 goto out_ro;
1279 }
1280 mutex_unlock(&ubi->move_mutex);
1281 return 0;
1282
1283 out_error:
1284 if (vol_id != -1)
1285 ubi_err("error %d while moving PEB %d to PEB %d",
1286 err, e1->pnum, e2->pnum);
1287 else
1288 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1289 err, e1->pnum, vol_id, lnum, e2->pnum);
1290 spin_lock(&ubi->wl_lock);
1291 ubi->move_from = ubi->move_to = NULL;
1292 ubi->move_to_put = ubi->wl_scheduled = 0;
1293 spin_unlock(&ubi->wl_lock);
1294
1295 ubi_free_vid_hdr(ubi, vid_hdr);
1296 kmem_cache_free(ubi_wl_entry_slab, e1);
1297 kmem_cache_free(ubi_wl_entry_slab, e2);
1298
1299 out_ro:
1300 ubi_ro_mode(ubi);
1301 mutex_unlock(&ubi->move_mutex);
1302 ubi_assert(err != 0);
1303 return err < 0 ? err : -EIO;
1304
1305 out_cancel:
1306 ubi->wl_scheduled = 0;
1307 spin_unlock(&ubi->wl_lock);
1308 mutex_unlock(&ubi->move_mutex);
1309 ubi_free_vid_hdr(ubi, vid_hdr);
1310 return 0;
1311 }
1312
1313 /**
1314 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1315 * @ubi: UBI device description object
1316 * @nested: set to non-zero if this function is called from UBI worker
1317 *
1318 * This function checks if it is time to start wear-leveling and schedules it
1319 * if yes. This function returns zero in case of success and a negative error
1320 * code in case of failure.
1321 */
1322 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1323 {
1324 int err = 0;
1325 struct ubi_wl_entry *e1;
1326 struct ubi_wl_entry *e2;
1327 struct ubi_work *wrk;
1328
1329 spin_lock(&ubi->wl_lock);
1330 if (ubi->wl_scheduled)
1331 /* Wear-leveling is already in the work queue */
1332 goto out_unlock;
1333
1334 /*
1335 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1336 * the WL worker has to be scheduled anyway.
1337 */
1338 if (!ubi->scrub.rb_node) {
1339 if (!ubi->used.rb_node || !ubi->free.rb_node)
1340 /* No physical eraseblocks - no deal */
1341 goto out_unlock;
1342
1343 /*
1344 * We schedule wear-leveling only if the difference between the
1345 * lowest erase counter of used physical eraseblocks and a high
1346 * erase counter of free physical eraseblocks is greater than
1347 * %UBI_WL_THRESHOLD.
1348 */
1349 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1350 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1351
1352 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1353 goto out_unlock;
1354 dbg_wl("schedule wear-leveling");
1355 } else
1356 dbg_wl("schedule scrubbing");
1357
1358 ubi->wl_scheduled = 1;
1359 spin_unlock(&ubi->wl_lock);
1360
1361 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1362 if (!wrk) {
1363 err = -ENOMEM;
1364 goto out_cancel;
1365 }
1366
1367 wrk->anchor = 0;
1368 wrk->func = &wear_leveling_worker;
1369 if (nested)
1370 __schedule_ubi_work(ubi, wrk);
1371 else
1372 schedule_ubi_work(ubi, wrk);
1373 return err;
1374
1375 out_cancel:
1376 spin_lock(&ubi->wl_lock);
1377 ubi->wl_scheduled = 0;
1378 out_unlock:
1379 spin_unlock(&ubi->wl_lock);
1380 return err;
1381 }
1382
1383 #ifdef CONFIG_MTD_UBI_FASTMAP
1384 /**
1385 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1386 * @ubi: UBI device description object
1387 */
1388 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1389 {
1390 struct ubi_work *wrk;
1391
1392 spin_lock(&ubi->wl_lock);
1393 if (ubi->wl_scheduled) {
1394 spin_unlock(&ubi->wl_lock);
1395 return 0;
1396 }
1397 ubi->wl_scheduled = 1;
1398 spin_unlock(&ubi->wl_lock);
1399
1400 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1401 if (!wrk) {
1402 spin_lock(&ubi->wl_lock);
1403 ubi->wl_scheduled = 0;
1404 spin_unlock(&ubi->wl_lock);
1405 return -ENOMEM;
1406 }
1407
1408 wrk->anchor = 1;
1409 wrk->func = &wear_leveling_worker;
1410 schedule_ubi_work(ubi, wrk);
1411 return 0;
1412 }
1413 #endif
1414
1415 /**
1416 * erase_worker - physical eraseblock erase worker function.
1417 * @ubi: UBI device description object
1418 * @wl_wrk: the work object
1419 * @cancel: non-zero if the worker has to free memory and exit
1420 *
1421 * This function erases a physical eraseblock and perform torture testing if
1422 * needed. It also takes care about marking the physical eraseblock bad if
1423 * needed. Returns zero in case of success and a negative error code in case of
1424 * failure.
1425 */
1426 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1427 int cancel)
1428 {
1429 struct ubi_wl_entry *e = wl_wrk->e;
1430 int pnum = e->pnum;
1431 int vol_id = wl_wrk->vol_id;
1432 int lnum = wl_wrk->lnum;
1433 int err, available_consumed = 0;
1434
1435 if (cancel) {
1436 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1437 kfree(wl_wrk);
1438 kmem_cache_free(ubi_wl_entry_slab, e);
1439 return 0;
1440 }
1441
1442 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1443 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1444
1445 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1446
1447 err = sync_erase(ubi, e, wl_wrk->torture);
1448 if (!err) {
1449 /* Fine, we've erased it successfully */
1450 kfree(wl_wrk);
1451
1452 spin_lock(&ubi->wl_lock);
1453 wl_tree_add(e, &ubi->free);
1454 ubi->free_count++;
1455 spin_unlock(&ubi->wl_lock);
1456
1457 /*
1458 * One more erase operation has happened, take care about
1459 * protected physical eraseblocks.
1460 */
1461 serve_prot_queue(ubi);
1462
1463 /* And take care about wear-leveling */
1464 err = ensure_wear_leveling(ubi, 1);
1465 return err;
1466 }
1467
1468 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1469 kfree(wl_wrk);
1470
1471 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1472 err == -EBUSY) {
1473 int err1;
1474
1475 /* Re-schedule the LEB for erasure */
1476 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1477 if (err1) {
1478 err = err1;
1479 goto out_ro;
1480 }
1481 return err;
1482 }
1483
1484 kmem_cache_free(ubi_wl_entry_slab, e);
1485 if (err != -EIO)
1486 /*
1487 * If this is not %-EIO, we have no idea what to do. Scheduling
1488 * this physical eraseblock for erasure again would cause
1489 * errors again and again. Well, lets switch to R/O mode.
1490 */
1491 goto out_ro;
1492
1493 /* It is %-EIO, the PEB went bad */
1494
1495 if (!ubi->bad_allowed) {
1496 ubi_err("bad physical eraseblock %d detected", pnum);
1497 goto out_ro;
1498 }
1499
1500 spin_lock(&ubi->volumes_lock);
1501 if (ubi->beb_rsvd_pebs == 0) {
1502 if (ubi->avail_pebs == 0) {
1503 spin_unlock(&ubi->volumes_lock);
1504 ubi_err("no reserved/available physical eraseblocks");
1505 goto out_ro;
1506 }
1507 ubi->avail_pebs -= 1;
1508 available_consumed = 1;
1509 }
1510 spin_unlock(&ubi->volumes_lock);
1511
1512 ubi_msg("mark PEB %d as bad", pnum);
1513 err = ubi_io_mark_bad(ubi, pnum);
1514 if (err)
1515 goto out_ro;
1516
1517 spin_lock(&ubi->volumes_lock);
1518 if (ubi->beb_rsvd_pebs > 0) {
1519 if (available_consumed) {
1520 /*
1521 * The amount of reserved PEBs increased since we last
1522 * checked.
1523 */
1524 ubi->avail_pebs += 1;
1525 available_consumed = 0;
1526 }
1527 ubi->beb_rsvd_pebs -= 1;
1528 }
1529 ubi->bad_peb_count += 1;
1530 ubi->good_peb_count -= 1;
1531 ubi_calculate_reserved(ubi);
1532 if (available_consumed)
1533 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1534 else if (ubi->beb_rsvd_pebs)
1535 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1536 else
1537 ubi_warn("last PEB from the reserve was used");
1538 spin_unlock(&ubi->volumes_lock);
1539
1540 return err;
1541
1542 out_ro:
1543 if (available_consumed) {
1544 spin_lock(&ubi->volumes_lock);
1545 ubi->avail_pebs += 1;
1546 spin_unlock(&ubi->volumes_lock);
1547 }
1548 ubi_ro_mode(ubi);
1549 return err;
1550 }
1551
1552 /**
1553 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1554 * @ubi: UBI device description object
1555 * @vol_id: the volume ID that last used this PEB
1556 * @lnum: the last used logical eraseblock number for the PEB
1557 * @pnum: physical eraseblock to return
1558 * @torture: if this physical eraseblock has to be tortured
1559 *
1560 * This function is called to return physical eraseblock @pnum to the pool of
1561 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1562 * occurred to this @pnum and it has to be tested. This function returns zero
1563 * in case of success, and a negative error code in case of failure.
1564 */
1565 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1566 int pnum, int torture)
1567 {
1568 int err;
1569 struct ubi_wl_entry *e;
1570
1571 dbg_wl("PEB %d", pnum);
1572 ubi_assert(pnum >= 0);
1573 ubi_assert(pnum < ubi->peb_count);
1574
1575 retry:
1576 spin_lock(&ubi->wl_lock);
1577 e = ubi->lookuptbl[pnum];
1578 if (e == ubi->move_from) {
1579 /*
1580 * User is putting the physical eraseblock which was selected to
1581 * be moved. It will be scheduled for erasure in the
1582 * wear-leveling worker.
1583 */
1584 dbg_wl("PEB %d is being moved, wait", pnum);
1585 spin_unlock(&ubi->wl_lock);
1586
1587 /* Wait for the WL worker by taking the @ubi->move_mutex */
1588 mutex_lock(&ubi->move_mutex);
1589 mutex_unlock(&ubi->move_mutex);
1590 goto retry;
1591 } else if (e == ubi->move_to) {
1592 /*
1593 * User is putting the physical eraseblock which was selected
1594 * as the target the data is moved to. It may happen if the EBA
1595 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1596 * but the WL sub-system has not put the PEB to the "used" tree
1597 * yet, but it is about to do this. So we just set a flag which
1598 * will tell the WL worker that the PEB is not needed anymore
1599 * and should be scheduled for erasure.
1600 */
1601 dbg_wl("PEB %d is the target of data moving", pnum);
1602 ubi_assert(!ubi->move_to_put);
1603 ubi->move_to_put = 1;
1604 spin_unlock(&ubi->wl_lock);
1605 return 0;
1606 } else {
1607 if (in_wl_tree(e, &ubi->used)) {
1608 self_check_in_wl_tree(ubi, e, &ubi->used);
1609 rb_erase(&e->u.rb, &ubi->used);
1610 } else if (in_wl_tree(e, &ubi->scrub)) {
1611 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1612 rb_erase(&e->u.rb, &ubi->scrub);
1613 } else if (in_wl_tree(e, &ubi->erroneous)) {
1614 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1615 rb_erase(&e->u.rb, &ubi->erroneous);
1616 ubi->erroneous_peb_count -= 1;
1617 ubi_assert(ubi->erroneous_peb_count >= 0);
1618 /* Erroneous PEBs should be tortured */
1619 torture = 1;
1620 } else {
1621 err = prot_queue_del(ubi, e->pnum);
1622 if (err) {
1623 ubi_err("PEB %d not found", pnum);
1624 ubi_ro_mode(ubi);
1625 spin_unlock(&ubi->wl_lock);
1626 return err;
1627 }
1628 }
1629 }
1630 spin_unlock(&ubi->wl_lock);
1631
1632 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1633 if (err) {
1634 spin_lock(&ubi->wl_lock);
1635 wl_tree_add(e, &ubi->used);
1636 spin_unlock(&ubi->wl_lock);
1637 }
1638
1639 return err;
1640 }
1641
1642 /**
1643 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1644 * @ubi: UBI device description object
1645 * @pnum: the physical eraseblock to schedule
1646 *
1647 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1648 * needs scrubbing. This function schedules a physical eraseblock for
1649 * scrubbing which is done in background. This function returns zero in case of
1650 * success and a negative error code in case of failure.
1651 */
1652 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1653 {
1654 struct ubi_wl_entry *e;
1655
1656 ubi_msg("schedule PEB %d for scrubbing", pnum);
1657
1658 retry:
1659 spin_lock(&ubi->wl_lock);
1660 e = ubi->lookuptbl[pnum];
1661 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1662 in_wl_tree(e, &ubi->erroneous)) {
1663 spin_unlock(&ubi->wl_lock);
1664 return 0;
1665 }
1666
1667 if (e == ubi->move_to) {
1668 /*
1669 * This physical eraseblock was used to move data to. The data
1670 * was moved but the PEB was not yet inserted to the proper
1671 * tree. We should just wait a little and let the WL worker
1672 * proceed.
1673 */
1674 spin_unlock(&ubi->wl_lock);
1675 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1676 yield();
1677 goto retry;
1678 }
1679
1680 if (in_wl_tree(e, &ubi->used)) {
1681 self_check_in_wl_tree(ubi, e, &ubi->used);
1682 rb_erase(&e->u.rb, &ubi->used);
1683 } else {
1684 int err;
1685
1686 err = prot_queue_del(ubi, e->pnum);
1687 if (err) {
1688 ubi_err("PEB %d not found", pnum);
1689 ubi_ro_mode(ubi);
1690 spin_unlock(&ubi->wl_lock);
1691 return err;
1692 }
1693 }
1694
1695 wl_tree_add(e, &ubi->scrub);
1696 spin_unlock(&ubi->wl_lock);
1697
1698 /*
1699 * Technically scrubbing is the same as wear-leveling, so it is done
1700 * by the WL worker.
1701 */
1702 return ensure_wear_leveling(ubi, 0);
1703 }
1704
1705 /**
1706 * ubi_wl_flush - flush all pending works.
1707 * @ubi: UBI device description object
1708 * @vol_id: the volume id to flush for
1709 * @lnum: the logical eraseblock number to flush for
1710 *
1711 * This function executes all pending works for a particular volume id /
1712 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1713 * acts as a wildcard for all of the corresponding volume numbers or logical
1714 * eraseblock numbers. It returns zero in case of success and a negative error
1715 * code in case of failure.
1716 */
1717 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1718 {
1719 int err = 0;
1720 int found = 1;
1721
1722 /*
1723 * Erase while the pending works queue is not empty, but not more than
1724 * the number of currently pending works.
1725 */
1726 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1727 vol_id, lnum, ubi->works_count);
1728
1729 while (found) {
1730 struct ubi_work *wrk;
1731 found = 0;
1732
1733 down_read(&ubi->work_sem);
1734 spin_lock(&ubi->wl_lock);
1735 list_for_each_entry(wrk, &ubi->works, list) {
1736 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1737 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1738 list_del(&wrk->list);
1739 ubi->works_count -= 1;
1740 ubi_assert(ubi->works_count >= 0);
1741 spin_unlock(&ubi->wl_lock);
1742
1743 err = wrk->func(ubi, wrk, 0);
1744 if (err) {
1745 up_read(&ubi->work_sem);
1746 return err;
1747 }
1748
1749 spin_lock(&ubi->wl_lock);
1750 found = 1;
1751 break;
1752 }
1753 }
1754 spin_unlock(&ubi->wl_lock);
1755 up_read(&ubi->work_sem);
1756 }
1757
1758 /*
1759 * Make sure all the works which have been done in parallel are
1760 * finished.
1761 */
1762 down_write(&ubi->work_sem);
1763 up_write(&ubi->work_sem);
1764
1765 return err;
1766 }
1767
1768 /**
1769 * tree_destroy - destroy an RB-tree.
1770 * @root: the root of the tree to destroy
1771 */
1772 static void tree_destroy(struct rb_root *root)
1773 {
1774 struct rb_node *rb;
1775 struct ubi_wl_entry *e;
1776
1777 rb = root->rb_node;
1778 while (rb) {
1779 if (rb->rb_left)
1780 rb = rb->rb_left;
1781 else if (rb->rb_right)
1782 rb = rb->rb_right;
1783 else {
1784 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1785
1786 rb = rb_parent(rb);
1787 if (rb) {
1788 if (rb->rb_left == &e->u.rb)
1789 rb->rb_left = NULL;
1790 else
1791 rb->rb_right = NULL;
1792 }
1793
1794 kmem_cache_free(ubi_wl_entry_slab, e);
1795 }
1796 }
1797 }
1798
1799 /**
1800 * ubi_thread - UBI background thread.
1801 * @u: the UBI device description object pointer
1802 */
1803 int ubi_thread(void *u)
1804 {
1805 int failures = 0;
1806 struct ubi_device *ubi = u;
1807
1808 ubi_msg("background thread \"%s\" started, PID %d",
1809 ubi->bgt_name, task_pid_nr(current));
1810
1811 set_freezable();
1812 for (;;) {
1813 int err;
1814
1815 if (kthread_should_stop())
1816 break;
1817
1818 if (try_to_freeze())
1819 continue;
1820
1821 spin_lock(&ubi->wl_lock);
1822 if (list_empty(&ubi->works) || ubi->ro_mode ||
1823 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1824 set_current_state(TASK_INTERRUPTIBLE);
1825 spin_unlock(&ubi->wl_lock);
1826 schedule();
1827 continue;
1828 }
1829 spin_unlock(&ubi->wl_lock);
1830
1831 err = do_work(ubi);
1832 if (err) {
1833 ubi_err("%s: work failed with error code %d",
1834 ubi->bgt_name, err);
1835 if (failures++ > WL_MAX_FAILURES) {
1836 /*
1837 * Too many failures, disable the thread and
1838 * switch to read-only mode.
1839 */
1840 ubi_msg("%s: %d consecutive failures",
1841 ubi->bgt_name, WL_MAX_FAILURES);
1842 ubi_ro_mode(ubi);
1843 ubi->thread_enabled = 0;
1844 continue;
1845 }
1846 } else
1847 failures = 0;
1848
1849 cond_resched();
1850 }
1851
1852 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1853 return 0;
1854 }
1855
1856 /**
1857 * cancel_pending - cancel all pending works.
1858 * @ubi: UBI device description object
1859 */
1860 static void cancel_pending(struct ubi_device *ubi)
1861 {
1862 while (!list_empty(&ubi->works)) {
1863 struct ubi_work *wrk;
1864
1865 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1866 list_del(&wrk->list);
1867 wrk->func(ubi, wrk, 1);
1868 ubi->works_count -= 1;
1869 ubi_assert(ubi->works_count >= 0);
1870 }
1871 }
1872
1873 /**
1874 * ubi_wl_init - initialize the WL sub-system using attaching information.
1875 * @ubi: UBI device description object
1876 * @ai: attaching information
1877 *
1878 * This function returns zero in case of success, and a negative error code in
1879 * case of failure.
1880 */
1881 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1882 {
1883 int err, i, reserved_pebs, found_pebs = 0;
1884 struct rb_node *rb1, *rb2;
1885 struct ubi_ainf_volume *av;
1886 struct ubi_ainf_peb *aeb, *tmp;
1887 struct ubi_wl_entry *e;
1888
1889 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1890 spin_lock_init(&ubi->wl_lock);
1891 mutex_init(&ubi->move_mutex);
1892 init_rwsem(&ubi->work_sem);
1893 ubi->max_ec = ai->max_ec;
1894 INIT_LIST_HEAD(&ubi->works);
1895 #ifndef __UBOOT__
1896 #ifdef CONFIG_MTD_UBI_FASTMAP
1897 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1898 #endif
1899 #endif
1900
1901 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1902
1903 err = -ENOMEM;
1904 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1905 if (!ubi->lookuptbl)
1906 return err;
1907
1908 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1909 INIT_LIST_HEAD(&ubi->pq[i]);
1910 ubi->pq_head = 0;
1911
1912 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1913 cond_resched();
1914
1915 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1916 if (!e)
1917 goto out_free;
1918
1919 e->pnum = aeb->pnum;
1920 e->ec = aeb->ec;
1921 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1922 ubi->lookuptbl[e->pnum] = e;
1923 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1924 kmem_cache_free(ubi_wl_entry_slab, e);
1925 goto out_free;
1926 }
1927
1928 found_pebs++;
1929 }
1930
1931 ubi->free_count = 0;
1932 list_for_each_entry(aeb, &ai->free, u.list) {
1933 cond_resched();
1934
1935 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1936 if (!e)
1937 goto out_free;
1938
1939 e->pnum = aeb->pnum;
1940 e->ec = aeb->ec;
1941 ubi_assert(e->ec >= 0);
1942 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1943
1944 wl_tree_add(e, &ubi->free);
1945 ubi->free_count++;
1946
1947 ubi->lookuptbl[e->pnum] = e;
1948
1949 found_pebs++;
1950 }
1951
1952 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1953 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1954 cond_resched();
1955
1956 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1957 if (!e)
1958 goto out_free;
1959
1960 e->pnum = aeb->pnum;
1961 e->ec = aeb->ec;
1962 ubi->lookuptbl[e->pnum] = e;
1963
1964 if (!aeb->scrub) {
1965 dbg_wl("add PEB %d EC %d to the used tree",
1966 e->pnum, e->ec);
1967 wl_tree_add(e, &ubi->used);
1968 } else {
1969 dbg_wl("add PEB %d EC %d to the scrub tree",
1970 e->pnum, e->ec);
1971 wl_tree_add(e, &ubi->scrub);
1972 }
1973
1974 found_pebs++;
1975 }
1976 }
1977
1978 dbg_wl("found %i PEBs", found_pebs);
1979
1980 if (ubi->fm)
1981 ubi_assert(ubi->good_peb_count == \
1982 found_pebs + ubi->fm->used_blocks);
1983 else
1984 ubi_assert(ubi->good_peb_count == found_pebs);
1985
1986 reserved_pebs = WL_RESERVED_PEBS;
1987 #ifdef CONFIG_MTD_UBI_FASTMAP
1988 /* Reserve enough LEBs to store two fastmaps. */
1989 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1990 #endif
1991
1992 if (ubi->avail_pebs < reserved_pebs) {
1993 ubi_err("no enough physical eraseblocks (%d, need %d)",
1994 ubi->avail_pebs, reserved_pebs);
1995 if (ubi->corr_peb_count)
1996 ubi_err("%d PEBs are corrupted and not used",
1997 ubi->corr_peb_count);
1998 goto out_free;
1999 }
2000 ubi->avail_pebs -= reserved_pebs;
2001 ubi->rsvd_pebs += reserved_pebs;
2002
2003 /* Schedule wear-leveling if needed */
2004 err = ensure_wear_leveling(ubi, 0);
2005 if (err)
2006 goto out_free;
2007
2008 return 0;
2009
2010 out_free:
2011 cancel_pending(ubi);
2012 tree_destroy(&ubi->used);
2013 tree_destroy(&ubi->free);
2014 tree_destroy(&ubi->scrub);
2015 kfree(ubi->lookuptbl);
2016 return err;
2017 }
2018
2019 /**
2020 * protection_queue_destroy - destroy the protection queue.
2021 * @ubi: UBI device description object
2022 */
2023 static void protection_queue_destroy(struct ubi_device *ubi)
2024 {
2025 int i;
2026 struct ubi_wl_entry *e, *tmp;
2027
2028 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2029 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2030 list_del(&e->u.list);
2031 kmem_cache_free(ubi_wl_entry_slab, e);
2032 }
2033 }
2034 }
2035
2036 /**
2037 * ubi_wl_close - close the wear-leveling sub-system.
2038 * @ubi: UBI device description object
2039 */
2040 void ubi_wl_close(struct ubi_device *ubi)
2041 {
2042 dbg_wl("close the WL sub-system");
2043 cancel_pending(ubi);
2044 protection_queue_destroy(ubi);
2045 tree_destroy(&ubi->used);
2046 tree_destroy(&ubi->erroneous);
2047 tree_destroy(&ubi->free);
2048 tree_destroy(&ubi->scrub);
2049 kfree(ubi->lookuptbl);
2050 }
2051
2052 /**
2053 * self_check_ec - make sure that the erase counter of a PEB is correct.
2054 * @ubi: UBI device description object
2055 * @pnum: the physical eraseblock number to check
2056 * @ec: the erase counter to check
2057 *
2058 * This function returns zero if the erase counter of physical eraseblock @pnum
2059 * is equivalent to @ec, and a negative error code if not or if an error
2060 * occurred.
2061 */
2062 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2063 {
2064 int err;
2065 long long read_ec;
2066 struct ubi_ec_hdr *ec_hdr;
2067
2068 if (!ubi_dbg_chk_gen(ubi))
2069 return 0;
2070
2071 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2072 if (!ec_hdr)
2073 return -ENOMEM;
2074
2075 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2076 if (err && err != UBI_IO_BITFLIPS) {
2077 /* The header does not have to exist */
2078 err = 0;
2079 goto out_free;
2080 }
2081
2082 read_ec = be64_to_cpu(ec_hdr->ec);
2083 if (ec != read_ec && read_ec - ec > 1) {
2084 ubi_err("self-check failed for PEB %d", pnum);
2085 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2086 dump_stack();
2087 err = 1;
2088 } else
2089 err = 0;
2090
2091 out_free:
2092 kfree(ec_hdr);
2093 return err;
2094 }
2095
2096 /**
2097 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2098 * @ubi: UBI device description object
2099 * @e: the wear-leveling entry to check
2100 * @root: the root of the tree
2101 *
2102 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2103 * is not.
2104 */
2105 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2106 struct ubi_wl_entry *e, struct rb_root *root)
2107 {
2108 if (!ubi_dbg_chk_gen(ubi))
2109 return 0;
2110
2111 if (in_wl_tree(e, root))
2112 return 0;
2113
2114 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2115 e->pnum, e->ec, root);
2116 dump_stack();
2117 return -EINVAL;
2118 }
2119
2120 /**
2121 * self_check_in_pq - check if wear-leveling entry is in the protection
2122 * queue.
2123 * @ubi: UBI device description object
2124 * @e: the wear-leveling entry to check
2125 *
2126 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2127 */
2128 static int self_check_in_pq(const struct ubi_device *ubi,
2129 struct ubi_wl_entry *e)
2130 {
2131 struct ubi_wl_entry *p;
2132 int i;
2133
2134 if (!ubi_dbg_chk_gen(ubi))
2135 return 0;
2136
2137 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2138 list_for_each_entry(p, &ubi->pq[i], u.list)
2139 if (p == e)
2140 return 0;
2141
2142 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2143 e->pnum, e->ec);
2144 dump_stack();
2145 return -EINVAL;
2146 }