]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/wl.c
Merge branch 'master' of git://git.denx.de/u-boot-nds32
[people/ms/u-boot.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 *
6 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7 */
8
9 /*
10 * UBI wear-leveling unit.
11 *
12 * This unit is responsible for wear-leveling. It works in terms of physical
13 * eraseblocks and erase counters and knows nothing about logical eraseblocks,
14 * volumes, etc. From this unit's perspective all physical eraseblocks are of
15 * two types - used and free. Used physical eraseblocks are those that were
16 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
17 * those that were put by the 'ubi_wl_put_peb()' function.
18 *
19 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20 * header. The rest of the physical eraseblock contains only 0xFF bytes.
21 *
22 * When physical eraseblocks are returned to the WL unit by means of the
23 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24 * done asynchronously in context of the per-UBI device background thread,
25 * which is also managed by the WL unit.
26 *
27 * The wear-leveling is ensured by means of moving the contents of used
28 * physical eraseblocks with low erase counter to free physical eraseblocks
29 * with high erase counter.
30 *
31 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
32 * an "optimal" physical eraseblock. For example, when it is known that the
33 * physical eraseblock will be "put" soon because it contains short-term data,
34 * the WL unit may pick a free physical eraseblock with low erase counter, and
35 * so forth.
36 *
37 * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
38 *
39 * This unit is also responsible for scrubbing. If a bit-flip is detected in a
40 * physical eraseblock, it has to be moved. Technically this is the same as
41 * moving it for wear-leveling reasons.
42 *
43 * As it was said, for the UBI unit all physical eraseblocks are either "free"
44 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
45 * eraseblocks are kept in a set of different RB-trees: @wl->used,
46 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
47 *
48 * Note, in this implementation, we keep a small in-RAM object for each physical
49 * eraseblock. This is surely not a scalable solution. But it appears to be good
50 * enough for moderately large flashes and it is simple. In future, one may
51 * re-work this unit and make it more scalable.
52 *
53 * At the moment this unit does not utilize the sequence number, which was
54 * introduced relatively recently. But it would be wise to do this because the
55 * sequence number of a logical eraseblock characterizes how old is it. For
56 * example, when we move a PEB with low erase counter, and we need to pick the
57 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
58 * pick target PEB with an average EC if our PEB is not very "old". This is a
59 * room for future re-works of the WL unit.
60 *
61 * FIXME: looks too complex, should be simplified (later).
62 */
63
64 #ifdef UBI_LINUX
65 #include <linux/slab.h>
66 #include <linux/crc32.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #endif
70
71 #include <ubi_uboot.h>
72 #include "ubi.h"
73
74 /* Number of physical eraseblocks reserved for wear-leveling purposes */
75 #define WL_RESERVED_PEBS 1
76
77 /*
78 * How many erase cycles are short term, unknown, and long term physical
79 * eraseblocks protected.
80 */
81 #define ST_PROTECTION 16
82 #define U_PROTECTION 10
83 #define LT_PROTECTION 4
84
85 /*
86 * Maximum difference between two erase counters. If this threshold is
87 * exceeded, the WL unit starts moving data from used physical eraseblocks with
88 * low erase counter to free physical eraseblocks with high erase counter.
89 */
90 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
91
92 /*
93 * When a physical eraseblock is moved, the WL unit has to pick the target
94 * physical eraseblock to move to. The simplest way would be just to pick the
95 * one with the highest erase counter. But in certain workloads this could lead
96 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
97 * situation when the picked physical eraseblock is constantly erased after the
98 * data is written to it. So, we have a constant which limits the highest erase
99 * counter of the free physical eraseblock to pick. Namely, the WL unit does
100 * not pick eraseblocks with erase counter greater then the lowest erase
101 * counter plus %WL_FREE_MAX_DIFF.
102 */
103 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
104
105 /*
106 * Maximum number of consecutive background thread failures which is enough to
107 * switch to read-only mode.
108 */
109 #define WL_MAX_FAILURES 32
110
111 /**
112 * struct ubi_wl_prot_entry - PEB protection entry.
113 * @rb_pnum: link in the @wl->prot.pnum RB-tree
114 * @rb_aec: link in the @wl->prot.aec RB-tree
115 * @abs_ec: the absolute erase counter value when the protection ends
116 * @e: the wear-leveling entry of the physical eraseblock under protection
117 *
118 * When the WL unit returns a physical eraseblock, the physical eraseblock is
119 * protected from being moved for some "time". For this reason, the physical
120 * eraseblock is not directly moved from the @wl->free tree to the @wl->used
121 * tree. There is one more tree in between where this physical eraseblock is
122 * temporarily stored (@wl->prot).
123 *
124 * All this protection stuff is needed because:
125 * o we don't want to move physical eraseblocks just after we have given them
126 * to the user; instead, we first want to let users fill them up with data;
127 *
128 * o there is a chance that the user will put the physical eraseblock very
129 * soon, so it makes sense not to move it for some time, but wait; this is
130 * especially important in case of "short term" physical eraseblocks.
131 *
132 * Physical eraseblocks stay protected only for limited time. But the "time" is
133 * measured in erase cycles in this case. This is implemented with help of the
134 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
135 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
136 * the @wl->used tree.
137 *
138 * Protected physical eraseblocks are searched by physical eraseblock number
139 * (when they are put) and by the absolute erase counter (to check if it is
140 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
141 * storing the protected physical eraseblocks: @wl->prot.pnum and
142 * @wl->prot.aec. They are referred to as the "protection" trees. The
143 * first one is indexed by the physical eraseblock number. The second one is
144 * indexed by the absolute erase counter. Both trees store
145 * &struct ubi_wl_prot_entry objects.
146 *
147 * Each physical eraseblock has 2 main states: free and used. The former state
148 * corresponds to the @wl->free tree. The latter state is split up on several
149 * sub-states:
150 * o the WL movement is allowed (@wl->used tree);
151 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
152 * @wl->prot.aec trees);
153 * o scrubbing is needed (@wl->scrub tree).
154 *
155 * Depending on the sub-state, wear-leveling entries of the used physical
156 * eraseblocks may be kept in one of those trees.
157 */
158 struct ubi_wl_prot_entry {
159 struct rb_node rb_pnum;
160 struct rb_node rb_aec;
161 unsigned long long abs_ec;
162 struct ubi_wl_entry *e;
163 };
164
165 /**
166 * struct ubi_work - UBI work description data structure.
167 * @list: a link in the list of pending works
168 * @func: worker function
169 * @priv: private data of the worker function
170 *
171 * @e: physical eraseblock to erase
172 * @torture: if the physical eraseblock has to be tortured
173 *
174 * The @func pointer points to the worker function. If the @cancel argument is
175 * not zero, the worker has to free the resources and exit immediately. The
176 * worker has to return zero in case of success and a negative error code in
177 * case of failure.
178 */
179 struct ubi_work {
180 struct list_head list;
181 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
182 /* The below fields are only relevant to erasure works */
183 struct ubi_wl_entry *e;
184 int torture;
185 };
186
187 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
188 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
189 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
190 struct rb_root *root);
191 #else
192 #define paranoid_check_ec(ubi, pnum, ec) 0
193 #define paranoid_check_in_wl_tree(e, root)
194 #endif
195
196 /**
197 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
198 * @e: the wear-leveling entry to add
199 * @root: the root of the tree
200 *
201 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
202 * the @ubi->used and @ubi->free RB-trees.
203 */
204 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
205 {
206 struct rb_node **p, *parent = NULL;
207
208 p = &root->rb_node;
209 while (*p) {
210 struct ubi_wl_entry *e1;
211
212 parent = *p;
213 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
214
215 if (e->ec < e1->ec)
216 p = &(*p)->rb_left;
217 else if (e->ec > e1->ec)
218 p = &(*p)->rb_right;
219 else {
220 ubi_assert(e->pnum != e1->pnum);
221 if (e->pnum < e1->pnum)
222 p = &(*p)->rb_left;
223 else
224 p = &(*p)->rb_right;
225 }
226 }
227
228 rb_link_node(&e->rb, parent, p);
229 rb_insert_color(&e->rb, root);
230 }
231
232 /**
233 * do_work - do one pending work.
234 * @ubi: UBI device description object
235 *
236 * This function returns zero in case of success and a negative error code in
237 * case of failure.
238 */
239 static int do_work(struct ubi_device *ubi)
240 {
241 int err;
242 struct ubi_work *wrk;
243
244 cond_resched();
245
246 /*
247 * @ubi->work_sem is used to synchronize with the workers. Workers take
248 * it in read mode, so many of them may be doing works at a time. But
249 * the queue flush code has to be sure the whole queue of works is
250 * done, and it takes the mutex in write mode.
251 */
252 down_read(&ubi->work_sem);
253 spin_lock(&ubi->wl_lock);
254 if (list_empty(&ubi->works)) {
255 spin_unlock(&ubi->wl_lock);
256 up_read(&ubi->work_sem);
257 return 0;
258 }
259
260 wrk = list_entry(ubi->works.next, struct ubi_work, list);
261 list_del(&wrk->list);
262 ubi->works_count -= 1;
263 ubi_assert(ubi->works_count >= 0);
264 spin_unlock(&ubi->wl_lock);
265
266 /*
267 * Call the worker function. Do not touch the work structure
268 * after this call as it will have been freed or reused by that
269 * time by the worker function.
270 */
271 err = wrk->func(ubi, wrk, 0);
272 if (err)
273 ubi_err("work failed with error code %d", err);
274 up_read(&ubi->work_sem);
275
276 return err;
277 }
278
279 /**
280 * produce_free_peb - produce a free physical eraseblock.
281 * @ubi: UBI device description object
282 *
283 * This function tries to make a free PEB by means of synchronous execution of
284 * pending works. This may be needed if, for example the background thread is
285 * disabled. Returns zero in case of success and a negative error code in case
286 * of failure.
287 */
288 static int produce_free_peb(struct ubi_device *ubi)
289 {
290 int err;
291
292 spin_lock(&ubi->wl_lock);
293 while (!ubi->free.rb_node) {
294 spin_unlock(&ubi->wl_lock);
295
296 dbg_wl("do one work synchronously");
297 err = do_work(ubi);
298 if (err)
299 return err;
300
301 spin_lock(&ubi->wl_lock);
302 }
303 spin_unlock(&ubi->wl_lock);
304
305 return 0;
306 }
307
308 /**
309 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
310 * @e: the wear-leveling entry to check
311 * @root: the root of the tree
312 *
313 * This function returns non-zero if @e is in the @root RB-tree and zero if it
314 * is not.
315 */
316 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
317 {
318 struct rb_node *p;
319
320 p = root->rb_node;
321 while (p) {
322 struct ubi_wl_entry *e1;
323
324 e1 = rb_entry(p, struct ubi_wl_entry, rb);
325
326 if (e->pnum == e1->pnum) {
327 ubi_assert(e == e1);
328 return 1;
329 }
330
331 if (e->ec < e1->ec)
332 p = p->rb_left;
333 else if (e->ec > e1->ec)
334 p = p->rb_right;
335 else {
336 ubi_assert(e->pnum != e1->pnum);
337 if (e->pnum < e1->pnum)
338 p = p->rb_left;
339 else
340 p = p->rb_right;
341 }
342 }
343
344 return 0;
345 }
346
347 /**
348 * prot_tree_add - add physical eraseblock to protection trees.
349 * @ubi: UBI device description object
350 * @e: the physical eraseblock to add
351 * @pe: protection entry object to use
352 * @abs_ec: absolute erase counter value when this physical eraseblock has
353 * to be removed from the protection trees.
354 *
355 * @wl->lock has to be locked.
356 */
357 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
358 struct ubi_wl_prot_entry *pe, int abs_ec)
359 {
360 struct rb_node **p, *parent = NULL;
361 struct ubi_wl_prot_entry *pe1;
362
363 pe->e = e;
364 pe->abs_ec = ubi->abs_ec + abs_ec;
365
366 p = &ubi->prot.pnum.rb_node;
367 while (*p) {
368 parent = *p;
369 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
370
371 if (e->pnum < pe1->e->pnum)
372 p = &(*p)->rb_left;
373 else
374 p = &(*p)->rb_right;
375 }
376 rb_link_node(&pe->rb_pnum, parent, p);
377 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
378
379 p = &ubi->prot.aec.rb_node;
380 parent = NULL;
381 while (*p) {
382 parent = *p;
383 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
384
385 if (pe->abs_ec < pe1->abs_ec)
386 p = &(*p)->rb_left;
387 else
388 p = &(*p)->rb_right;
389 }
390 rb_link_node(&pe->rb_aec, parent, p);
391 rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
392 }
393
394 /**
395 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
396 * @root: the RB-tree where to look for
397 * @max: highest possible erase counter
398 *
399 * This function looks for a wear leveling entry with erase counter closest to
400 * @max and less then @max.
401 */
402 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
403 {
404 struct rb_node *p;
405 struct ubi_wl_entry *e;
406
407 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
408 max += e->ec;
409
410 p = root->rb_node;
411 while (p) {
412 struct ubi_wl_entry *e1;
413
414 e1 = rb_entry(p, struct ubi_wl_entry, rb);
415 if (e1->ec >= max)
416 p = p->rb_left;
417 else {
418 p = p->rb_right;
419 e = e1;
420 }
421 }
422
423 return e;
424 }
425
426 /**
427 * ubi_wl_get_peb - get a physical eraseblock.
428 * @ubi: UBI device description object
429 * @dtype: type of data which will be stored in this physical eraseblock
430 *
431 * This function returns a physical eraseblock in case of success and a
432 * negative error code in case of failure. Might sleep.
433 */
434 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
435 {
436 int err, protect, medium_ec;
437 struct ubi_wl_entry *e, *first, *last;
438 struct ubi_wl_prot_entry *pe;
439
440 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
441 dtype == UBI_UNKNOWN);
442
443 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
444 if (!pe)
445 return -ENOMEM;
446
447 retry:
448 spin_lock(&ubi->wl_lock);
449 if (!ubi->free.rb_node) {
450 if (ubi->works_count == 0) {
451 ubi_assert(list_empty(&ubi->works));
452 ubi_err("no free eraseblocks");
453 spin_unlock(&ubi->wl_lock);
454 kfree(pe);
455 return -ENOSPC;
456 }
457 spin_unlock(&ubi->wl_lock);
458
459 err = produce_free_peb(ubi);
460 if (err < 0) {
461 kfree(pe);
462 return err;
463 }
464 goto retry;
465 }
466
467 switch (dtype) {
468 case UBI_LONGTERM:
469 /*
470 * For long term data we pick a physical eraseblock
471 * with high erase counter. But the highest erase
472 * counter we can pick is bounded by the the lowest
473 * erase counter plus %WL_FREE_MAX_DIFF.
474 */
475 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
476 protect = LT_PROTECTION;
477 break;
478 case UBI_UNKNOWN:
479 /*
480 * For unknown data we pick a physical eraseblock with
481 * medium erase counter. But we by no means can pick a
482 * physical eraseblock with erase counter greater or
483 * equivalent than the lowest erase counter plus
484 * %WL_FREE_MAX_DIFF.
485 */
486 first = rb_entry(rb_first(&ubi->free),
487 struct ubi_wl_entry, rb);
488 last = rb_entry(rb_last(&ubi->free),
489 struct ubi_wl_entry, rb);
490
491 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
492 e = rb_entry(ubi->free.rb_node,
493 struct ubi_wl_entry, rb);
494 else {
495 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
496 e = find_wl_entry(&ubi->free, medium_ec);
497 }
498 protect = U_PROTECTION;
499 break;
500 case UBI_SHORTTERM:
501 /*
502 * For short term data we pick a physical eraseblock
503 * with the lowest erase counter as we expect it will
504 * be erased soon.
505 */
506 e = rb_entry(rb_first(&ubi->free),
507 struct ubi_wl_entry, rb);
508 protect = ST_PROTECTION;
509 break;
510 default:
511 protect = 0;
512 e = NULL;
513 BUG();
514 }
515
516 /*
517 * Move the physical eraseblock to the protection trees where it will
518 * be protected from being moved for some time.
519 */
520 paranoid_check_in_wl_tree(e, &ubi->free);
521 rb_erase(&e->rb, &ubi->free);
522 prot_tree_add(ubi, e, pe, protect);
523
524 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
525 spin_unlock(&ubi->wl_lock);
526
527 return e->pnum;
528 }
529
530 /**
531 * prot_tree_del - remove a physical eraseblock from the protection trees
532 * @ubi: UBI device description object
533 * @pnum: the physical eraseblock to remove
534 *
535 * This function returns PEB @pnum from the protection trees and returns zero
536 * in case of success and %-ENODEV if the PEB was not found in the protection
537 * trees.
538 */
539 static int prot_tree_del(struct ubi_device *ubi, int pnum)
540 {
541 struct rb_node *p;
542 struct ubi_wl_prot_entry *pe = NULL;
543
544 p = ubi->prot.pnum.rb_node;
545 while (p) {
546
547 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
548
549 if (pnum == pe->e->pnum)
550 goto found;
551
552 if (pnum < pe->e->pnum)
553 p = p->rb_left;
554 else
555 p = p->rb_right;
556 }
557
558 return -ENODEV;
559
560 found:
561 ubi_assert(pe->e->pnum == pnum);
562 rb_erase(&pe->rb_aec, &ubi->prot.aec);
563 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
564 kfree(pe);
565 return 0;
566 }
567
568 /**
569 * sync_erase - synchronously erase a physical eraseblock.
570 * @ubi: UBI device description object
571 * @e: the the physical eraseblock to erase
572 * @torture: if the physical eraseblock has to be tortured
573 *
574 * This function returns zero in case of success and a negative error code in
575 * case of failure.
576 */
577 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
578 {
579 int err;
580 struct ubi_ec_hdr *ec_hdr;
581 unsigned long long ec = e->ec;
582
583 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
584
585 err = paranoid_check_ec(ubi, e->pnum, e->ec);
586 if (err > 0)
587 return -EINVAL;
588
589 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
590 if (!ec_hdr)
591 return -ENOMEM;
592
593 err = ubi_io_sync_erase(ubi, e->pnum, torture);
594 if (err < 0)
595 goto out_free;
596
597 ec += err;
598 if (ec > UBI_MAX_ERASECOUNTER) {
599 /*
600 * Erase counter overflow. Upgrade UBI and use 64-bit
601 * erase counters internally.
602 */
603 ubi_err("erase counter overflow at PEB %d, EC %llu",
604 e->pnum, ec);
605 err = -EINVAL;
606 goto out_free;
607 }
608
609 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
610
611 ec_hdr->ec = cpu_to_be64(ec);
612
613 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
614 if (err)
615 goto out_free;
616
617 e->ec = ec;
618 spin_lock(&ubi->wl_lock);
619 if (e->ec > ubi->max_ec)
620 ubi->max_ec = e->ec;
621 spin_unlock(&ubi->wl_lock);
622
623 out_free:
624 kfree(ec_hdr);
625 return err;
626 }
627
628 /**
629 * check_protection_over - check if it is time to stop protecting some
630 * physical eraseblocks.
631 * @ubi: UBI device description object
632 *
633 * This function is called after each erase operation, when the absolute erase
634 * counter is incremented, to check if some physical eraseblock have not to be
635 * protected any longer. These physical eraseblocks are moved from the
636 * protection trees to the used tree.
637 */
638 static void check_protection_over(struct ubi_device *ubi)
639 {
640 struct ubi_wl_prot_entry *pe;
641
642 /*
643 * There may be several protected physical eraseblock to remove,
644 * process them all.
645 */
646 while (1) {
647 spin_lock(&ubi->wl_lock);
648 if (!ubi->prot.aec.rb_node) {
649 spin_unlock(&ubi->wl_lock);
650 break;
651 }
652
653 pe = rb_entry(rb_first(&ubi->prot.aec),
654 struct ubi_wl_prot_entry, rb_aec);
655
656 if (pe->abs_ec > ubi->abs_ec) {
657 spin_unlock(&ubi->wl_lock);
658 break;
659 }
660
661 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
662 pe->e->pnum, ubi->abs_ec, pe->abs_ec);
663 rb_erase(&pe->rb_aec, &ubi->prot.aec);
664 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
665 wl_tree_add(pe->e, &ubi->used);
666 spin_unlock(&ubi->wl_lock);
667
668 kfree(pe);
669 cond_resched();
670 }
671 }
672
673 /**
674 * schedule_ubi_work - schedule a work.
675 * @ubi: UBI device description object
676 * @wrk: the work to schedule
677 *
678 * This function enqueues a work defined by @wrk to the tail of the pending
679 * works list.
680 */
681 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
682 {
683 spin_lock(&ubi->wl_lock);
684 list_add_tail(&wrk->list, &ubi->works);
685 ubi_assert(ubi->works_count >= 0);
686 ubi->works_count += 1;
687
688 /*
689 * U-Boot special: We have no bgt_thread in U-Boot!
690 * So just call do_work() here directly.
691 */
692 do_work(ubi);
693
694 spin_unlock(&ubi->wl_lock);
695 }
696
697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
698 int cancel);
699
700 /**
701 * schedule_erase - schedule an erase work.
702 * @ubi: UBI device description object
703 * @e: the WL entry of the physical eraseblock to erase
704 * @torture: if the physical eraseblock has to be tortured
705 *
706 * This function returns zero in case of success and a %-ENOMEM in case of
707 * failure.
708 */
709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
710 int torture)
711 {
712 struct ubi_work *wl_wrk;
713
714 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
715 e->pnum, e->ec, torture);
716
717 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
718 if (!wl_wrk)
719 return -ENOMEM;
720
721 wl_wrk->func = &erase_worker;
722 wl_wrk->e = e;
723 wl_wrk->torture = torture;
724
725 schedule_ubi_work(ubi, wl_wrk);
726 return 0;
727 }
728
729 /**
730 * wear_leveling_worker - wear-leveling worker function.
731 * @ubi: UBI device description object
732 * @wrk: the work object
733 * @cancel: non-zero if the worker has to free memory and exit
734 *
735 * This function copies a more worn out physical eraseblock to a less worn out
736 * one. Returns zero in case of success and a negative error code in case of
737 * failure.
738 */
739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
740 int cancel)
741 {
742 int err, put = 0, scrubbing = 0, protect = 0;
743 struct ubi_wl_prot_entry *uninitialized_var(pe);
744 struct ubi_wl_entry *e1, *e2;
745 struct ubi_vid_hdr *vid_hdr;
746
747 kfree(wrk);
748
749 if (cancel)
750 return 0;
751
752 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
753 if (!vid_hdr)
754 return -ENOMEM;
755
756 mutex_lock(&ubi->move_mutex);
757 spin_lock(&ubi->wl_lock);
758 ubi_assert(!ubi->move_from && !ubi->move_to);
759 ubi_assert(!ubi->move_to_put);
760
761 if (!ubi->free.rb_node ||
762 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
763 /*
764 * No free physical eraseblocks? Well, they must be waiting in
765 * the queue to be erased. Cancel movement - it will be
766 * triggered again when a free physical eraseblock appears.
767 *
768 * No used physical eraseblocks? They must be temporarily
769 * protected from being moved. They will be moved to the
770 * @ubi->used tree later and the wear-leveling will be
771 * triggered again.
772 */
773 dbg_wl("cancel WL, a list is empty: free %d, used %d",
774 !ubi->free.rb_node, !ubi->used.rb_node);
775 goto out_cancel;
776 }
777
778 if (!ubi->scrub.rb_node) {
779 /*
780 * Now pick the least worn-out used physical eraseblock and a
781 * highly worn-out free physical eraseblock. If the erase
782 * counters differ much enough, start wear-leveling.
783 */
784 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
785 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
786
787 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
788 dbg_wl("no WL needed: min used EC %d, max free EC %d",
789 e1->ec, e2->ec);
790 goto out_cancel;
791 }
792 paranoid_check_in_wl_tree(e1, &ubi->used);
793 rb_erase(&e1->rb, &ubi->used);
794 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
795 e1->pnum, e1->ec, e2->pnum, e2->ec);
796 } else {
797 /* Perform scrubbing */
798 scrubbing = 1;
799 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
800 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
801 paranoid_check_in_wl_tree(e1, &ubi->scrub);
802 rb_erase(&e1->rb, &ubi->scrub);
803 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
804 }
805
806 paranoid_check_in_wl_tree(e2, &ubi->free);
807 rb_erase(&e2->rb, &ubi->free);
808 ubi->move_from = e1;
809 ubi->move_to = e2;
810 spin_unlock(&ubi->wl_lock);
811
812 /*
813 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
814 * We so far do not know which logical eraseblock our physical
815 * eraseblock (@e1) belongs to. We have to read the volume identifier
816 * header first.
817 *
818 * Note, we are protected from this PEB being unmapped and erased. The
819 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
820 * which is being moved was unmapped.
821 */
822
823 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
824 if (err && err != UBI_IO_BITFLIPS) {
825 if (err == UBI_IO_PEB_FREE) {
826 /*
827 * We are trying to move PEB without a VID header. UBI
828 * always write VID headers shortly after the PEB was
829 * given, so we have a situation when it did not have
830 * chance to write it down because it was preempted.
831 * Just re-schedule the work, so that next time it will
832 * likely have the VID header in place.
833 */
834 dbg_wl("PEB %d has no VID header", e1->pnum);
835 goto out_not_moved;
836 }
837
838 ubi_err("error %d while reading VID header from PEB %d",
839 err, e1->pnum);
840 if (err > 0)
841 err = -EIO;
842 goto out_error;
843 }
844
845 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
846 if (err) {
847
848 if (err < 0)
849 goto out_error;
850 if (err == 1)
851 goto out_not_moved;
852
853 /*
854 * For some reason the LEB was not moved - it might be because
855 * the volume is being deleted. We should prevent this PEB from
856 * being selected for wear-levelling movement for some "time",
857 * so put it to the protection tree.
858 */
859
860 dbg_wl("cancelled moving PEB %d", e1->pnum);
861 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
862 if (!pe) {
863 err = -ENOMEM;
864 goto out_error;
865 }
866
867 protect = 1;
868 }
869
870 ubi_free_vid_hdr(ubi, vid_hdr);
871 spin_lock(&ubi->wl_lock);
872 if (protect)
873 prot_tree_add(ubi, e1, pe, protect);
874 if (!ubi->move_to_put)
875 wl_tree_add(e2, &ubi->used);
876 else
877 put = 1;
878 ubi->move_from = ubi->move_to = NULL;
879 ubi->move_to_put = ubi->wl_scheduled = 0;
880 spin_unlock(&ubi->wl_lock);
881
882 if (put) {
883 /*
884 * Well, the target PEB was put meanwhile, schedule it for
885 * erasure.
886 */
887 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
888 err = schedule_erase(ubi, e2, 0);
889 if (err)
890 goto out_error;
891 }
892
893 if (!protect) {
894 err = schedule_erase(ubi, e1, 0);
895 if (err)
896 goto out_error;
897 }
898
899
900 dbg_wl("done");
901 mutex_unlock(&ubi->move_mutex);
902 return 0;
903
904 /*
905 * For some reasons the LEB was not moved, might be an error, might be
906 * something else. @e1 was not changed, so return it back. @e2 might
907 * be changed, schedule it for erasure.
908 */
909 out_not_moved:
910 ubi_free_vid_hdr(ubi, vid_hdr);
911 spin_lock(&ubi->wl_lock);
912 if (scrubbing)
913 wl_tree_add(e1, &ubi->scrub);
914 else
915 wl_tree_add(e1, &ubi->used);
916 ubi->move_from = ubi->move_to = NULL;
917 ubi->move_to_put = ubi->wl_scheduled = 0;
918 spin_unlock(&ubi->wl_lock);
919
920 err = schedule_erase(ubi, e2, 0);
921 if (err)
922 goto out_error;
923
924 mutex_unlock(&ubi->move_mutex);
925 return 0;
926
927 out_error:
928 ubi_err("error %d while moving PEB %d to PEB %d",
929 err, e1->pnum, e2->pnum);
930
931 ubi_free_vid_hdr(ubi, vid_hdr);
932 spin_lock(&ubi->wl_lock);
933 ubi->move_from = ubi->move_to = NULL;
934 ubi->move_to_put = ubi->wl_scheduled = 0;
935 spin_unlock(&ubi->wl_lock);
936
937 kmem_cache_free(ubi_wl_entry_slab, e1);
938 kmem_cache_free(ubi_wl_entry_slab, e2);
939 ubi_ro_mode(ubi);
940
941 mutex_unlock(&ubi->move_mutex);
942 return err;
943
944 out_cancel:
945 ubi->wl_scheduled = 0;
946 spin_unlock(&ubi->wl_lock);
947 mutex_unlock(&ubi->move_mutex);
948 ubi_free_vid_hdr(ubi, vid_hdr);
949 return 0;
950 }
951
952 /**
953 * ensure_wear_leveling - schedule wear-leveling if it is needed.
954 * @ubi: UBI device description object
955 *
956 * This function checks if it is time to start wear-leveling and schedules it
957 * if yes. This function returns zero in case of success and a negative error
958 * code in case of failure.
959 */
960 static int ensure_wear_leveling(struct ubi_device *ubi)
961 {
962 int err = 0;
963 struct ubi_wl_entry *e1;
964 struct ubi_wl_entry *e2;
965 struct ubi_work *wrk;
966
967 spin_lock(&ubi->wl_lock);
968 if (ubi->wl_scheduled)
969 /* Wear-leveling is already in the work queue */
970 goto out_unlock;
971
972 /*
973 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
974 * the WL worker has to be scheduled anyway.
975 */
976 if (!ubi->scrub.rb_node) {
977 if (!ubi->used.rb_node || !ubi->free.rb_node)
978 /* No physical eraseblocks - no deal */
979 goto out_unlock;
980
981 /*
982 * We schedule wear-leveling only if the difference between the
983 * lowest erase counter of used physical eraseblocks and a high
984 * erase counter of free physical eraseblocks is greater then
985 * %UBI_WL_THRESHOLD.
986 */
987 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
988 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
989
990 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
991 goto out_unlock;
992 dbg_wl("schedule wear-leveling");
993 } else
994 dbg_wl("schedule scrubbing");
995
996 ubi->wl_scheduled = 1;
997 spin_unlock(&ubi->wl_lock);
998
999 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1000 if (!wrk) {
1001 err = -ENOMEM;
1002 goto out_cancel;
1003 }
1004
1005 wrk->func = &wear_leveling_worker;
1006 schedule_ubi_work(ubi, wrk);
1007 return err;
1008
1009 out_cancel:
1010 spin_lock(&ubi->wl_lock);
1011 ubi->wl_scheduled = 0;
1012 out_unlock:
1013 spin_unlock(&ubi->wl_lock);
1014 return err;
1015 }
1016
1017 /**
1018 * erase_worker - physical eraseblock erase worker function.
1019 * @ubi: UBI device description object
1020 * @wl_wrk: the work object
1021 * @cancel: non-zero if the worker has to free memory and exit
1022 *
1023 * This function erases a physical eraseblock and perform torture testing if
1024 * needed. It also takes care about marking the physical eraseblock bad if
1025 * needed. Returns zero in case of success and a negative error code in case of
1026 * failure.
1027 */
1028 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1029 int cancel)
1030 {
1031 struct ubi_wl_entry *e = wl_wrk->e;
1032 int pnum = e->pnum, err, need;
1033
1034 if (cancel) {
1035 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1036 kfree(wl_wrk);
1037 kmem_cache_free(ubi_wl_entry_slab, e);
1038 return 0;
1039 }
1040
1041 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1042
1043 err = sync_erase(ubi, e, wl_wrk->torture);
1044 if (!err) {
1045 /* Fine, we've erased it successfully */
1046 kfree(wl_wrk);
1047
1048 spin_lock(&ubi->wl_lock);
1049 ubi->abs_ec += 1;
1050 wl_tree_add(e, &ubi->free);
1051 spin_unlock(&ubi->wl_lock);
1052
1053 /*
1054 * One more erase operation has happened, take care about protected
1055 * physical eraseblocks.
1056 */
1057 check_protection_over(ubi);
1058
1059 /* And take care about wear-leveling */
1060 err = ensure_wear_leveling(ubi);
1061 return err;
1062 }
1063
1064 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1065 kfree(wl_wrk);
1066 kmem_cache_free(ubi_wl_entry_slab, e);
1067
1068 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1069 err == -EBUSY) {
1070 int err1;
1071
1072 /* Re-schedule the LEB for erasure */
1073 err1 = schedule_erase(ubi, e, 0);
1074 if (err1) {
1075 err = err1;
1076 goto out_ro;
1077 }
1078 return err;
1079 } else if (err != -EIO) {
1080 /*
1081 * If this is not %-EIO, we have no idea what to do. Scheduling
1082 * this physical eraseblock for erasure again would cause
1083 * errors again and again. Well, lets switch to RO mode.
1084 */
1085 goto out_ro;
1086 }
1087
1088 /* It is %-EIO, the PEB went bad */
1089
1090 if (!ubi->bad_allowed) {
1091 ubi_err("bad physical eraseblock %d detected", pnum);
1092 goto out_ro;
1093 }
1094
1095 spin_lock(&ubi->volumes_lock);
1096 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1097 if (need > 0) {
1098 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1099 ubi->avail_pebs -= need;
1100 ubi->rsvd_pebs += need;
1101 ubi->beb_rsvd_pebs += need;
1102 if (need > 0)
1103 ubi_msg("reserve more %d PEBs", need);
1104 }
1105
1106 if (ubi->beb_rsvd_pebs == 0) {
1107 spin_unlock(&ubi->volumes_lock);
1108 ubi_err("no reserved physical eraseblocks");
1109 goto out_ro;
1110 }
1111
1112 spin_unlock(&ubi->volumes_lock);
1113 ubi_msg("mark PEB %d as bad", pnum);
1114
1115 err = ubi_io_mark_bad(ubi, pnum);
1116 if (err)
1117 goto out_ro;
1118
1119 spin_lock(&ubi->volumes_lock);
1120 ubi->beb_rsvd_pebs -= 1;
1121 ubi->bad_peb_count += 1;
1122 ubi->good_peb_count -= 1;
1123 ubi_calculate_reserved(ubi);
1124 if (ubi->beb_rsvd_pebs == 0)
1125 ubi_warn("last PEB from the reserved pool was used");
1126 spin_unlock(&ubi->volumes_lock);
1127
1128 return err;
1129
1130 out_ro:
1131 ubi_ro_mode(ubi);
1132 return err;
1133 }
1134
1135 /**
1136 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1137 * @ubi: UBI device description object
1138 * @pnum: physical eraseblock to return
1139 * @torture: if this physical eraseblock has to be tortured
1140 *
1141 * This function is called to return physical eraseblock @pnum to the pool of
1142 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1143 * occurred to this @pnum and it has to be tested. This function returns zero
1144 * in case of success, and a negative error code in case of failure.
1145 */
1146 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1147 {
1148 int err;
1149 struct ubi_wl_entry *e;
1150
1151 dbg_wl("PEB %d", pnum);
1152 ubi_assert(pnum >= 0);
1153 ubi_assert(pnum < ubi->peb_count);
1154
1155 retry:
1156 spin_lock(&ubi->wl_lock);
1157 e = ubi->lookuptbl[pnum];
1158 if (e == ubi->move_from) {
1159 /*
1160 * User is putting the physical eraseblock which was selected to
1161 * be moved. It will be scheduled for erasure in the
1162 * wear-leveling worker.
1163 */
1164 dbg_wl("PEB %d is being moved, wait", pnum);
1165 spin_unlock(&ubi->wl_lock);
1166
1167 /* Wait for the WL worker by taking the @ubi->move_mutex */
1168 mutex_lock(&ubi->move_mutex);
1169 mutex_unlock(&ubi->move_mutex);
1170 goto retry;
1171 } else if (e == ubi->move_to) {
1172 /*
1173 * User is putting the physical eraseblock which was selected
1174 * as the target the data is moved to. It may happen if the EBA
1175 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1176 * the WL unit has not put the PEB to the "used" tree yet, but
1177 * it is about to do this. So we just set a flag which will
1178 * tell the WL worker that the PEB is not needed anymore and
1179 * should be scheduled for erasure.
1180 */
1181 dbg_wl("PEB %d is the target of data moving", pnum);
1182 ubi_assert(!ubi->move_to_put);
1183 ubi->move_to_put = 1;
1184 spin_unlock(&ubi->wl_lock);
1185 return 0;
1186 } else {
1187 if (in_wl_tree(e, &ubi->used)) {
1188 paranoid_check_in_wl_tree(e, &ubi->used);
1189 rb_erase(&e->rb, &ubi->used);
1190 } else if (in_wl_tree(e, &ubi->scrub)) {
1191 paranoid_check_in_wl_tree(e, &ubi->scrub);
1192 rb_erase(&e->rb, &ubi->scrub);
1193 } else {
1194 err = prot_tree_del(ubi, e->pnum);
1195 if (err) {
1196 ubi_err("PEB %d not found", pnum);
1197 ubi_ro_mode(ubi);
1198 spin_unlock(&ubi->wl_lock);
1199 return err;
1200 }
1201 }
1202 }
1203 spin_unlock(&ubi->wl_lock);
1204
1205 err = schedule_erase(ubi, e, torture);
1206 if (err) {
1207 spin_lock(&ubi->wl_lock);
1208 wl_tree_add(e, &ubi->used);
1209 spin_unlock(&ubi->wl_lock);
1210 }
1211
1212 return err;
1213 }
1214
1215 /**
1216 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1217 * @ubi: UBI device description object
1218 * @pnum: the physical eraseblock to schedule
1219 *
1220 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1221 * needs scrubbing. This function schedules a physical eraseblock for
1222 * scrubbing which is done in background. This function returns zero in case of
1223 * success and a negative error code in case of failure.
1224 */
1225 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1226 {
1227 struct ubi_wl_entry *e;
1228
1229 ubi_msg("schedule PEB %d for scrubbing", pnum);
1230
1231 retry:
1232 spin_lock(&ubi->wl_lock);
1233 e = ubi->lookuptbl[pnum];
1234 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1235 spin_unlock(&ubi->wl_lock);
1236 return 0;
1237 }
1238
1239 if (e == ubi->move_to) {
1240 /*
1241 * This physical eraseblock was used to move data to. The data
1242 * was moved but the PEB was not yet inserted to the proper
1243 * tree. We should just wait a little and let the WL worker
1244 * proceed.
1245 */
1246 spin_unlock(&ubi->wl_lock);
1247 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1248 yield();
1249 goto retry;
1250 }
1251
1252 if (in_wl_tree(e, &ubi->used)) {
1253 paranoid_check_in_wl_tree(e, &ubi->used);
1254 rb_erase(&e->rb, &ubi->used);
1255 } else {
1256 int err;
1257
1258 err = prot_tree_del(ubi, e->pnum);
1259 if (err) {
1260 ubi_err("PEB %d not found", pnum);
1261 ubi_ro_mode(ubi);
1262 spin_unlock(&ubi->wl_lock);
1263 return err;
1264 }
1265 }
1266
1267 wl_tree_add(e, &ubi->scrub);
1268 spin_unlock(&ubi->wl_lock);
1269
1270 /*
1271 * Technically scrubbing is the same as wear-leveling, so it is done
1272 * by the WL worker.
1273 */
1274 return ensure_wear_leveling(ubi);
1275 }
1276
1277 /**
1278 * ubi_wl_flush - flush all pending works.
1279 * @ubi: UBI device description object
1280 *
1281 * This function returns zero in case of success and a negative error code in
1282 * case of failure.
1283 */
1284 int ubi_wl_flush(struct ubi_device *ubi)
1285 {
1286 int err;
1287
1288 /*
1289 * Erase while the pending works queue is not empty, but not more then
1290 * the number of currently pending works.
1291 */
1292 dbg_wl("flush (%d pending works)", ubi->works_count);
1293 while (ubi->works_count) {
1294 err = do_work(ubi);
1295 if (err)
1296 return err;
1297 }
1298
1299 /*
1300 * Make sure all the works which have been done in parallel are
1301 * finished.
1302 */
1303 down_write(&ubi->work_sem);
1304 up_write(&ubi->work_sem);
1305
1306 /*
1307 * And in case last was the WL worker and it cancelled the LEB
1308 * movement, flush again.
1309 */
1310 while (ubi->works_count) {
1311 dbg_wl("flush more (%d pending works)", ubi->works_count);
1312 err = do_work(ubi);
1313 if (err)
1314 return err;
1315 }
1316
1317 return 0;
1318 }
1319
1320 /**
1321 * tree_destroy - destroy an RB-tree.
1322 * @root: the root of the tree to destroy
1323 */
1324 static void tree_destroy(struct rb_root *root)
1325 {
1326 struct rb_node *rb;
1327 struct ubi_wl_entry *e;
1328
1329 rb = root->rb_node;
1330 while (rb) {
1331 if (rb->rb_left)
1332 rb = rb->rb_left;
1333 else if (rb->rb_right)
1334 rb = rb->rb_right;
1335 else {
1336 e = rb_entry(rb, struct ubi_wl_entry, rb);
1337
1338 rb = rb_parent(rb);
1339 if (rb) {
1340 if (rb->rb_left == &e->rb)
1341 rb->rb_left = NULL;
1342 else
1343 rb->rb_right = NULL;
1344 }
1345
1346 kmem_cache_free(ubi_wl_entry_slab, e);
1347 }
1348 }
1349 }
1350
1351 /**
1352 * ubi_thread - UBI background thread.
1353 * @u: the UBI device description object pointer
1354 */
1355 int ubi_thread(void *u)
1356 {
1357 int failures = 0;
1358 struct ubi_device *ubi = u;
1359
1360 ubi_msg("background thread \"%s\" started, PID %d",
1361 ubi->bgt_name, task_pid_nr(current));
1362
1363 set_freezable();
1364 for (;;) {
1365 int err;
1366
1367 if (kthread_should_stop())
1368 break;
1369
1370 if (try_to_freeze())
1371 continue;
1372
1373 spin_lock(&ubi->wl_lock);
1374 if (list_empty(&ubi->works) || ubi->ro_mode ||
1375 !ubi->thread_enabled) {
1376 set_current_state(TASK_INTERRUPTIBLE);
1377 spin_unlock(&ubi->wl_lock);
1378 schedule();
1379 continue;
1380 }
1381 spin_unlock(&ubi->wl_lock);
1382
1383 err = do_work(ubi);
1384 if (err) {
1385 ubi_err("%s: work failed with error code %d",
1386 ubi->bgt_name, err);
1387 if (failures++ > WL_MAX_FAILURES) {
1388 /*
1389 * Too many failures, disable the thread and
1390 * switch to read-only mode.
1391 */
1392 ubi_msg("%s: %d consecutive failures",
1393 ubi->bgt_name, WL_MAX_FAILURES);
1394 ubi_ro_mode(ubi);
1395 break;
1396 }
1397 } else
1398 failures = 0;
1399
1400 cond_resched();
1401 }
1402
1403 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1404 return 0;
1405 }
1406
1407 /**
1408 * cancel_pending - cancel all pending works.
1409 * @ubi: UBI device description object
1410 */
1411 static void cancel_pending(struct ubi_device *ubi)
1412 {
1413 while (!list_empty(&ubi->works)) {
1414 struct ubi_work *wrk;
1415
1416 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1417 list_del(&wrk->list);
1418 wrk->func(ubi, wrk, 1);
1419 ubi->works_count -= 1;
1420 ubi_assert(ubi->works_count >= 0);
1421 }
1422 }
1423
1424 /**
1425 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1426 * information.
1427 * @ubi: UBI device description object
1428 * @si: scanning information
1429 *
1430 * This function returns zero in case of success, and a negative error code in
1431 * case of failure.
1432 */
1433 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1434 {
1435 int err;
1436 struct rb_node *rb1, *rb2;
1437 struct ubi_scan_volume *sv;
1438 struct ubi_scan_leb *seb, *tmp;
1439 struct ubi_wl_entry *e;
1440
1441
1442 ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1443 ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1444 spin_lock_init(&ubi->wl_lock);
1445 mutex_init(&ubi->move_mutex);
1446 init_rwsem(&ubi->work_sem);
1447 ubi->max_ec = si->max_ec;
1448 INIT_LIST_HEAD(&ubi->works);
1449
1450 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1451
1452 err = -ENOMEM;
1453 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1454 if (!ubi->lookuptbl)
1455 return err;
1456
1457 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458 cond_resched();
1459
1460 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1461 if (!e)
1462 goto out_free;
1463
1464 e->pnum = seb->pnum;
1465 e->ec = seb->ec;
1466 ubi->lookuptbl[e->pnum] = e;
1467 if (schedule_erase(ubi, e, 0)) {
1468 kmem_cache_free(ubi_wl_entry_slab, e);
1469 goto out_free;
1470 }
1471 }
1472
1473 list_for_each_entry(seb, &si->free, u.list) {
1474 cond_resched();
1475
1476 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1477 if (!e)
1478 goto out_free;
1479
1480 e->pnum = seb->pnum;
1481 e->ec = seb->ec;
1482 ubi_assert(e->ec >= 0);
1483 wl_tree_add(e, &ubi->free);
1484 ubi->lookuptbl[e->pnum] = e;
1485 }
1486
1487 list_for_each_entry(seb, &si->corr, u.list) {
1488 cond_resched();
1489
1490 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1491 if (!e)
1492 goto out_free;
1493
1494 e->pnum = seb->pnum;
1495 e->ec = seb->ec;
1496 ubi->lookuptbl[e->pnum] = e;
1497 if (schedule_erase(ubi, e, 0)) {
1498 kmem_cache_free(ubi_wl_entry_slab, e);
1499 goto out_free;
1500 }
1501 }
1502
1503 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1504 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1505 cond_resched();
1506
1507 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1508 if (!e)
1509 goto out_free;
1510
1511 e->pnum = seb->pnum;
1512 e->ec = seb->ec;
1513 ubi->lookuptbl[e->pnum] = e;
1514 if (!seb->scrub) {
1515 dbg_wl("add PEB %d EC %d to the used tree",
1516 e->pnum, e->ec);
1517 wl_tree_add(e, &ubi->used);
1518 } else {
1519 dbg_wl("add PEB %d EC %d to the scrub tree",
1520 e->pnum, e->ec);
1521 wl_tree_add(e, &ubi->scrub);
1522 }
1523 }
1524 }
1525
1526 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1527 ubi_err("no enough physical eraseblocks (%d, need %d)",
1528 ubi->avail_pebs, WL_RESERVED_PEBS);
1529 err = -ENOSPC;
1530 goto out_free;
1531 }
1532 ubi->avail_pebs -= WL_RESERVED_PEBS;
1533 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1534
1535 /* Schedule wear-leveling if needed */
1536 err = ensure_wear_leveling(ubi);
1537 if (err)
1538 goto out_free;
1539
1540 return 0;
1541
1542 out_free:
1543 cancel_pending(ubi);
1544 tree_destroy(&ubi->used);
1545 tree_destroy(&ubi->free);
1546 tree_destroy(&ubi->scrub);
1547 kfree(ubi->lookuptbl);
1548 return err;
1549 }
1550
1551 /**
1552 * protection_trees_destroy - destroy the protection RB-trees.
1553 * @ubi: UBI device description object
1554 */
1555 static void protection_trees_destroy(struct ubi_device *ubi)
1556 {
1557 struct rb_node *rb;
1558 struct ubi_wl_prot_entry *pe;
1559
1560 rb = ubi->prot.aec.rb_node;
1561 while (rb) {
1562 if (rb->rb_left)
1563 rb = rb->rb_left;
1564 else if (rb->rb_right)
1565 rb = rb->rb_right;
1566 else {
1567 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1568
1569 rb = rb_parent(rb);
1570 if (rb) {
1571 if (rb->rb_left == &pe->rb_aec)
1572 rb->rb_left = NULL;
1573 else
1574 rb->rb_right = NULL;
1575 }
1576
1577 kmem_cache_free(ubi_wl_entry_slab, pe->e);
1578 kfree(pe);
1579 }
1580 }
1581 }
1582
1583 /**
1584 * ubi_wl_close - close the wear-leveling unit.
1585 * @ubi: UBI device description object
1586 */
1587 void ubi_wl_close(struct ubi_device *ubi)
1588 {
1589 dbg_wl("close the UBI wear-leveling unit");
1590
1591 cancel_pending(ubi);
1592 protection_trees_destroy(ubi);
1593 tree_destroy(&ubi->used);
1594 tree_destroy(&ubi->free);
1595 tree_destroy(&ubi->scrub);
1596 kfree(ubi->lookuptbl);
1597 }
1598
1599 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1600
1601 /**
1602 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1603 * is correct.
1604 * @ubi: UBI device description object
1605 * @pnum: the physical eraseblock number to check
1606 * @ec: the erase counter to check
1607 *
1608 * This function returns zero if the erase counter of physical eraseblock @pnum
1609 * is equivalent to @ec, %1 if not, and a negative error code if an error
1610 * occurred.
1611 */
1612 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1613 {
1614 int err;
1615 long long read_ec;
1616 struct ubi_ec_hdr *ec_hdr;
1617
1618 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1619 if (!ec_hdr)
1620 return -ENOMEM;
1621
1622 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1623 if (err && err != UBI_IO_BITFLIPS) {
1624 /* The header does not have to exist */
1625 err = 0;
1626 goto out_free;
1627 }
1628
1629 read_ec = be64_to_cpu(ec_hdr->ec);
1630 if (ec != read_ec) {
1631 ubi_err("paranoid check failed for PEB %d", pnum);
1632 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1633 ubi_dbg_dump_stack();
1634 err = 1;
1635 } else
1636 err = 0;
1637
1638 out_free:
1639 kfree(ec_hdr);
1640 return err;
1641 }
1642
1643 /**
1644 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1645 * in a WL RB-tree.
1646 * @e: the wear-leveling entry to check
1647 * @root: the root of the tree
1648 *
1649 * This function returns zero if @e is in the @root RB-tree and %1 if it
1650 * is not.
1651 */
1652 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1653 struct rb_root *root)
1654 {
1655 if (in_wl_tree(e, root))
1656 return 0;
1657
1658 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1659 e->pnum, e->ec, root);
1660 ubi_dbg_dump_stack();
1661 return 1;
1662 }
1663
1664 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */