]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/ubi/wl.c
UBI: Add basic UBI support to U-Boot (Part 5/8)
[people/ms/u-boot.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling unit.
23 *
24 * This unit is responsible for wear-leveling. It works in terms of physical
25 * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26 * volumes, etc. From this unit's perspective all physical eraseblocks are of
27 * two types - used and free. Used physical eraseblocks are those that were
28 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29 * those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only 0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL unit by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL unit.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL unit may pick a free physical eraseblock with low erase counter, and
47 * so forth.
48 *
49 * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50 *
51 * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52 * physical eraseblock, it has to be moved. Technically this is the same as
53 * moving it for wear-leveling reasons.
54 *
55 * As it was said, for the UBI unit all physical eraseblocks are either "free"
56 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57 * eraseblocks are kept in a set of different RB-trees: @wl->used,
58 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59 *
60 * Note, in this implementation, we keep a small in-RAM object for each physical
61 * eraseblock. This is surely not a scalable solution. But it appears to be good
62 * enough for moderately large flashes and it is simple. In future, one may
63 * re-work this unit and make it more scalable.
64 *
65 * At the moment this unit does not utilize the sequence number, which was
66 * introduced relatively recently. But it would be wise to do this because the
67 * sequence number of a logical eraseblock characterizes how old is it. For
68 * example, when we move a PEB with low erase counter, and we need to pick the
69 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70 * pick target PEB with an average EC if our PEB is not very "old". This is a
71 * room for future re-works of the WL unit.
72 *
73 * FIXME: looks too complex, should be simplified (later).
74 */
75
76 #ifdef UBI_LINUX
77 #include <linux/slab.h>
78 #include <linux/crc32.h>
79 #include <linux/freezer.h>
80 #include <linux/kthread.h>
81 #endif
82
83 #include <ubi_uboot.h>
84 #include "ubi.h"
85
86 /* Number of physical eraseblocks reserved for wear-leveling purposes */
87 #define WL_RESERVED_PEBS 1
88
89 /*
90 * How many erase cycles are short term, unknown, and long term physical
91 * eraseblocks protected.
92 */
93 #define ST_PROTECTION 16
94 #define U_PROTECTION 10
95 #define LT_PROTECTION 4
96
97 /*
98 * Maximum difference between two erase counters. If this threshold is
99 * exceeded, the WL unit starts moving data from used physical eraseblocks with
100 * low erase counter to free physical eraseblocks with high erase counter.
101 */
102 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
103
104 /*
105 * When a physical eraseblock is moved, the WL unit has to pick the target
106 * physical eraseblock to move to. The simplest way would be just to pick the
107 * one with the highest erase counter. But in certain workloads this could lead
108 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
109 * situation when the picked physical eraseblock is constantly erased after the
110 * data is written to it. So, we have a constant which limits the highest erase
111 * counter of the free physical eraseblock to pick. Namely, the WL unit does
112 * not pick eraseblocks with erase counter greater then the lowest erase
113 * counter plus %WL_FREE_MAX_DIFF.
114 */
115 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
116
117 /*
118 * Maximum number of consecutive background thread failures which is enough to
119 * switch to read-only mode.
120 */
121 #define WL_MAX_FAILURES 32
122
123 /**
124 * struct ubi_wl_prot_entry - PEB protection entry.
125 * @rb_pnum: link in the @wl->prot.pnum RB-tree
126 * @rb_aec: link in the @wl->prot.aec RB-tree
127 * @abs_ec: the absolute erase counter value when the protection ends
128 * @e: the wear-leveling entry of the physical eraseblock under protection
129 *
130 * When the WL unit returns a physical eraseblock, the physical eraseblock is
131 * protected from being moved for some "time". For this reason, the physical
132 * eraseblock is not directly moved from the @wl->free tree to the @wl->used
133 * tree. There is one more tree in between where this physical eraseblock is
134 * temporarily stored (@wl->prot).
135 *
136 * All this protection stuff is needed because:
137 * o we don't want to move physical eraseblocks just after we have given them
138 * to the user; instead, we first want to let users fill them up with data;
139 *
140 * o there is a chance that the user will put the physical eraseblock very
141 * soon, so it makes sense not to move it for some time, but wait; this is
142 * especially important in case of "short term" physical eraseblocks.
143 *
144 * Physical eraseblocks stay protected only for limited time. But the "time" is
145 * measured in erase cycles in this case. This is implemented with help of the
146 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
147 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
148 * the @wl->used tree.
149 *
150 * Protected physical eraseblocks are searched by physical eraseblock number
151 * (when they are put) and by the absolute erase counter (to check if it is
152 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
153 * storing the protected physical eraseblocks: @wl->prot.pnum and
154 * @wl->prot.aec. They are referred to as the "protection" trees. The
155 * first one is indexed by the physical eraseblock number. The second one is
156 * indexed by the absolute erase counter. Both trees store
157 * &struct ubi_wl_prot_entry objects.
158 *
159 * Each physical eraseblock has 2 main states: free and used. The former state
160 * corresponds to the @wl->free tree. The latter state is split up on several
161 * sub-states:
162 * o the WL movement is allowed (@wl->used tree);
163 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
164 * @wl->prot.aec trees);
165 * o scrubbing is needed (@wl->scrub tree).
166 *
167 * Depending on the sub-state, wear-leveling entries of the used physical
168 * eraseblocks may be kept in one of those trees.
169 */
170 struct ubi_wl_prot_entry {
171 struct rb_node rb_pnum;
172 struct rb_node rb_aec;
173 unsigned long long abs_ec;
174 struct ubi_wl_entry *e;
175 };
176
177 /**
178 * struct ubi_work - UBI work description data structure.
179 * @list: a link in the list of pending works
180 * @func: worker function
181 * @priv: private data of the worker function
182 *
183 * @e: physical eraseblock to erase
184 * @torture: if the physical eraseblock has to be tortured
185 *
186 * The @func pointer points to the worker function. If the @cancel argument is
187 * not zero, the worker has to free the resources and exit immediately. The
188 * worker has to return zero in case of success and a negative error code in
189 * case of failure.
190 */
191 struct ubi_work {
192 struct list_head list;
193 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
194 /* The below fields are only relevant to erasure works */
195 struct ubi_wl_entry *e;
196 int torture;
197 };
198
199 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
200 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
201 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
202 struct rb_root *root);
203 #else
204 #define paranoid_check_ec(ubi, pnum, ec) 0
205 #define paranoid_check_in_wl_tree(e, root)
206 #endif
207
208 /**
209 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
210 * @e: the wear-leveling entry to add
211 * @root: the root of the tree
212 *
213 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
214 * the @ubi->used and @ubi->free RB-trees.
215 */
216 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
217 {
218 struct rb_node **p, *parent = NULL;
219
220 p = &root->rb_node;
221 while (*p) {
222 struct ubi_wl_entry *e1;
223
224 parent = *p;
225 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
226
227 if (e->ec < e1->ec)
228 p = &(*p)->rb_left;
229 else if (e->ec > e1->ec)
230 p = &(*p)->rb_right;
231 else {
232 ubi_assert(e->pnum != e1->pnum);
233 if (e->pnum < e1->pnum)
234 p = &(*p)->rb_left;
235 else
236 p = &(*p)->rb_right;
237 }
238 }
239
240 rb_link_node(&e->rb, parent, p);
241 rb_insert_color(&e->rb, root);
242 }
243
244 /**
245 * do_work - do one pending work.
246 * @ubi: UBI device description object
247 *
248 * This function returns zero in case of success and a negative error code in
249 * case of failure.
250 */
251 static int do_work(struct ubi_device *ubi)
252 {
253 int err;
254 struct ubi_work *wrk;
255
256 cond_resched();
257
258 /*
259 * @ubi->work_sem is used to synchronize with the workers. Workers take
260 * it in read mode, so many of them may be doing works at a time. But
261 * the queue flush code has to be sure the whole queue of works is
262 * done, and it takes the mutex in write mode.
263 */
264 down_read(&ubi->work_sem);
265 spin_lock(&ubi->wl_lock);
266 if (list_empty(&ubi->works)) {
267 spin_unlock(&ubi->wl_lock);
268 up_read(&ubi->work_sem);
269 return 0;
270 }
271
272 wrk = list_entry(ubi->works.next, struct ubi_work, list);
273 list_del(&wrk->list);
274 ubi->works_count -= 1;
275 ubi_assert(ubi->works_count >= 0);
276 spin_unlock(&ubi->wl_lock);
277
278 /*
279 * Call the worker function. Do not touch the work structure
280 * after this call as it will have been freed or reused by that
281 * time by the worker function.
282 */
283 err = wrk->func(ubi, wrk, 0);
284 if (err)
285 ubi_err("work failed with error code %d", err);
286 up_read(&ubi->work_sem);
287
288 return err;
289 }
290
291 /**
292 * produce_free_peb - produce a free physical eraseblock.
293 * @ubi: UBI device description object
294 *
295 * This function tries to make a free PEB by means of synchronous execution of
296 * pending works. This may be needed if, for example the background thread is
297 * disabled. Returns zero in case of success and a negative error code in case
298 * of failure.
299 */
300 static int produce_free_peb(struct ubi_device *ubi)
301 {
302 int err;
303
304 spin_lock(&ubi->wl_lock);
305 while (!ubi->free.rb_node) {
306 spin_unlock(&ubi->wl_lock);
307
308 dbg_wl("do one work synchronously");
309 err = do_work(ubi);
310 if (err)
311 return err;
312
313 spin_lock(&ubi->wl_lock);
314 }
315 spin_unlock(&ubi->wl_lock);
316
317 return 0;
318 }
319
320 /**
321 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
322 * @e: the wear-leveling entry to check
323 * @root: the root of the tree
324 *
325 * This function returns non-zero if @e is in the @root RB-tree and zero if it
326 * is not.
327 */
328 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
329 {
330 struct rb_node *p;
331
332 p = root->rb_node;
333 while (p) {
334 struct ubi_wl_entry *e1;
335
336 e1 = rb_entry(p, struct ubi_wl_entry, rb);
337
338 if (e->pnum == e1->pnum) {
339 ubi_assert(e == e1);
340 return 1;
341 }
342
343 if (e->ec < e1->ec)
344 p = p->rb_left;
345 else if (e->ec > e1->ec)
346 p = p->rb_right;
347 else {
348 ubi_assert(e->pnum != e1->pnum);
349 if (e->pnum < e1->pnum)
350 p = p->rb_left;
351 else
352 p = p->rb_right;
353 }
354 }
355
356 return 0;
357 }
358
359 /**
360 * prot_tree_add - add physical eraseblock to protection trees.
361 * @ubi: UBI device description object
362 * @e: the physical eraseblock to add
363 * @pe: protection entry object to use
364 * @abs_ec: absolute erase counter value when this physical eraseblock has
365 * to be removed from the protection trees.
366 *
367 * @wl->lock has to be locked.
368 */
369 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
370 struct ubi_wl_prot_entry *pe, int abs_ec)
371 {
372 struct rb_node **p, *parent = NULL;
373 struct ubi_wl_prot_entry *pe1;
374
375 pe->e = e;
376 pe->abs_ec = ubi->abs_ec + abs_ec;
377
378 p = &ubi->prot.pnum.rb_node;
379 while (*p) {
380 parent = *p;
381 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
382
383 if (e->pnum < pe1->e->pnum)
384 p = &(*p)->rb_left;
385 else
386 p = &(*p)->rb_right;
387 }
388 rb_link_node(&pe->rb_pnum, parent, p);
389 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
390
391 p = &ubi->prot.aec.rb_node;
392 parent = NULL;
393 while (*p) {
394 parent = *p;
395 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
396
397 if (pe->abs_ec < pe1->abs_ec)
398 p = &(*p)->rb_left;
399 else
400 p = &(*p)->rb_right;
401 }
402 rb_link_node(&pe->rb_aec, parent, p);
403 rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
404 }
405
406 /**
407 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
408 * @root: the RB-tree where to look for
409 * @max: highest possible erase counter
410 *
411 * This function looks for a wear leveling entry with erase counter closest to
412 * @max and less then @max.
413 */
414 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
415 {
416 struct rb_node *p;
417 struct ubi_wl_entry *e;
418
419 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
420 max += e->ec;
421
422 p = root->rb_node;
423 while (p) {
424 struct ubi_wl_entry *e1;
425
426 e1 = rb_entry(p, struct ubi_wl_entry, rb);
427 if (e1->ec >= max)
428 p = p->rb_left;
429 else {
430 p = p->rb_right;
431 e = e1;
432 }
433 }
434
435 return e;
436 }
437
438 /**
439 * ubi_wl_get_peb - get a physical eraseblock.
440 * @ubi: UBI device description object
441 * @dtype: type of data which will be stored in this physical eraseblock
442 *
443 * This function returns a physical eraseblock in case of success and a
444 * negative error code in case of failure. Might sleep.
445 */
446 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
447 {
448 int err, protect, medium_ec;
449 struct ubi_wl_entry *e, *first, *last;
450 struct ubi_wl_prot_entry *pe;
451
452 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
453 dtype == UBI_UNKNOWN);
454
455 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
456 if (!pe)
457 return -ENOMEM;
458
459 retry:
460 spin_lock(&ubi->wl_lock);
461 if (!ubi->free.rb_node) {
462 if (ubi->works_count == 0) {
463 ubi_assert(list_empty(&ubi->works));
464 ubi_err("no free eraseblocks");
465 spin_unlock(&ubi->wl_lock);
466 kfree(pe);
467 return -ENOSPC;
468 }
469 spin_unlock(&ubi->wl_lock);
470
471 err = produce_free_peb(ubi);
472 if (err < 0) {
473 kfree(pe);
474 return err;
475 }
476 goto retry;
477 }
478
479 switch (dtype) {
480 case UBI_LONGTERM:
481 /*
482 * For long term data we pick a physical eraseblock
483 * with high erase counter. But the highest erase
484 * counter we can pick is bounded by the the lowest
485 * erase counter plus %WL_FREE_MAX_DIFF.
486 */
487 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
488 protect = LT_PROTECTION;
489 break;
490 case UBI_UNKNOWN:
491 /*
492 * For unknown data we pick a physical eraseblock with
493 * medium erase counter. But we by no means can pick a
494 * physical eraseblock with erase counter greater or
495 * equivalent than the lowest erase counter plus
496 * %WL_FREE_MAX_DIFF.
497 */
498 first = rb_entry(rb_first(&ubi->free),
499 struct ubi_wl_entry, rb);
500 last = rb_entry(rb_last(&ubi->free),
501 struct ubi_wl_entry, rb);
502
503 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
504 e = rb_entry(ubi->free.rb_node,
505 struct ubi_wl_entry, rb);
506 else {
507 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
508 e = find_wl_entry(&ubi->free, medium_ec);
509 }
510 protect = U_PROTECTION;
511 break;
512 case UBI_SHORTTERM:
513 /*
514 * For short term data we pick a physical eraseblock
515 * with the lowest erase counter as we expect it will
516 * be erased soon.
517 */
518 e = rb_entry(rb_first(&ubi->free),
519 struct ubi_wl_entry, rb);
520 protect = ST_PROTECTION;
521 break;
522 default:
523 protect = 0;
524 e = NULL;
525 BUG();
526 }
527
528 /*
529 * Move the physical eraseblock to the protection trees where it will
530 * be protected from being moved for some time.
531 */
532 paranoid_check_in_wl_tree(e, &ubi->free);
533 rb_erase(&e->rb, &ubi->free);
534 prot_tree_add(ubi, e, pe, protect);
535
536 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
537 spin_unlock(&ubi->wl_lock);
538
539 return e->pnum;
540 }
541
542 /**
543 * prot_tree_del - remove a physical eraseblock from the protection trees
544 * @ubi: UBI device description object
545 * @pnum: the physical eraseblock to remove
546 *
547 * This function returns PEB @pnum from the protection trees and returns zero
548 * in case of success and %-ENODEV if the PEB was not found in the protection
549 * trees.
550 */
551 static int prot_tree_del(struct ubi_device *ubi, int pnum)
552 {
553 struct rb_node *p;
554 struct ubi_wl_prot_entry *pe = NULL;
555
556 p = ubi->prot.pnum.rb_node;
557 while (p) {
558
559 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
560
561 if (pnum == pe->e->pnum)
562 goto found;
563
564 if (pnum < pe->e->pnum)
565 p = p->rb_left;
566 else
567 p = p->rb_right;
568 }
569
570 return -ENODEV;
571
572 found:
573 ubi_assert(pe->e->pnum == pnum);
574 rb_erase(&pe->rb_aec, &ubi->prot.aec);
575 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
576 kfree(pe);
577 return 0;
578 }
579
580 /**
581 * sync_erase - synchronously erase a physical eraseblock.
582 * @ubi: UBI device description object
583 * @e: the the physical eraseblock to erase
584 * @torture: if the physical eraseblock has to be tortured
585 *
586 * This function returns zero in case of success and a negative error code in
587 * case of failure.
588 */
589 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
590 {
591 int err;
592 struct ubi_ec_hdr *ec_hdr;
593 unsigned long long ec = e->ec;
594
595 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
596
597 err = paranoid_check_ec(ubi, e->pnum, e->ec);
598 if (err > 0)
599 return -EINVAL;
600
601 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
602 if (!ec_hdr)
603 return -ENOMEM;
604
605 err = ubi_io_sync_erase(ubi, e->pnum, torture);
606 if (err < 0)
607 goto out_free;
608
609 ec += err;
610 if (ec > UBI_MAX_ERASECOUNTER) {
611 /*
612 * Erase counter overflow. Upgrade UBI and use 64-bit
613 * erase counters internally.
614 */
615 ubi_err("erase counter overflow at PEB %d, EC %llu",
616 e->pnum, ec);
617 err = -EINVAL;
618 goto out_free;
619 }
620
621 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
622
623 ec_hdr->ec = cpu_to_be64(ec);
624
625 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
626 if (err)
627 goto out_free;
628
629 e->ec = ec;
630 spin_lock(&ubi->wl_lock);
631 if (e->ec > ubi->max_ec)
632 ubi->max_ec = e->ec;
633 spin_unlock(&ubi->wl_lock);
634
635 out_free:
636 kfree(ec_hdr);
637 return err;
638 }
639
640 /**
641 * check_protection_over - check if it is time to stop protecting some
642 * physical eraseblocks.
643 * @ubi: UBI device description object
644 *
645 * This function is called after each erase operation, when the absolute erase
646 * counter is incremented, to check if some physical eraseblock have not to be
647 * protected any longer. These physical eraseblocks are moved from the
648 * protection trees to the used tree.
649 */
650 static void check_protection_over(struct ubi_device *ubi)
651 {
652 struct ubi_wl_prot_entry *pe;
653
654 /*
655 * There may be several protected physical eraseblock to remove,
656 * process them all.
657 */
658 while (1) {
659 spin_lock(&ubi->wl_lock);
660 if (!ubi->prot.aec.rb_node) {
661 spin_unlock(&ubi->wl_lock);
662 break;
663 }
664
665 pe = rb_entry(rb_first(&ubi->prot.aec),
666 struct ubi_wl_prot_entry, rb_aec);
667
668 if (pe->abs_ec > ubi->abs_ec) {
669 spin_unlock(&ubi->wl_lock);
670 break;
671 }
672
673 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
674 pe->e->pnum, ubi->abs_ec, pe->abs_ec);
675 rb_erase(&pe->rb_aec, &ubi->prot.aec);
676 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
677 wl_tree_add(pe->e, &ubi->used);
678 spin_unlock(&ubi->wl_lock);
679
680 kfree(pe);
681 cond_resched();
682 }
683 }
684
685 /**
686 * schedule_ubi_work - schedule a work.
687 * @ubi: UBI device description object
688 * @wrk: the work to schedule
689 *
690 * This function enqueues a work defined by @wrk to the tail of the pending
691 * works list.
692 */
693 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
694 {
695 spin_lock(&ubi->wl_lock);
696 list_add_tail(&wrk->list, &ubi->works);
697 ubi_assert(ubi->works_count >= 0);
698 ubi->works_count += 1;
699 if (ubi->thread_enabled)
700 wake_up_process(ubi->bgt_thread);
701 spin_unlock(&ubi->wl_lock);
702 }
703
704 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
705 int cancel);
706
707 /**
708 * schedule_erase - schedule an erase work.
709 * @ubi: UBI device description object
710 * @e: the WL entry of the physical eraseblock to erase
711 * @torture: if the physical eraseblock has to be tortured
712 *
713 * This function returns zero in case of success and a %-ENOMEM in case of
714 * failure.
715 */
716 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
717 int torture)
718 {
719 struct ubi_work *wl_wrk;
720
721 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
722 e->pnum, e->ec, torture);
723
724 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
725 if (!wl_wrk)
726 return -ENOMEM;
727
728 wl_wrk->func = &erase_worker;
729 wl_wrk->e = e;
730 wl_wrk->torture = torture;
731
732 schedule_ubi_work(ubi, wl_wrk);
733 return 0;
734 }
735
736 /**
737 * wear_leveling_worker - wear-leveling worker function.
738 * @ubi: UBI device description object
739 * @wrk: the work object
740 * @cancel: non-zero if the worker has to free memory and exit
741 *
742 * This function copies a more worn out physical eraseblock to a less worn out
743 * one. Returns zero in case of success and a negative error code in case of
744 * failure.
745 */
746 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
747 int cancel)
748 {
749 int err, put = 0, scrubbing = 0, protect = 0;
750 struct ubi_wl_prot_entry *uninitialized_var(pe);
751 struct ubi_wl_entry *e1, *e2;
752 struct ubi_vid_hdr *vid_hdr;
753
754 kfree(wrk);
755
756 if (cancel)
757 return 0;
758
759 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
760 if (!vid_hdr)
761 return -ENOMEM;
762
763 mutex_lock(&ubi->move_mutex);
764 spin_lock(&ubi->wl_lock);
765 ubi_assert(!ubi->move_from && !ubi->move_to);
766 ubi_assert(!ubi->move_to_put);
767
768 if (!ubi->free.rb_node ||
769 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
770 /*
771 * No free physical eraseblocks? Well, they must be waiting in
772 * the queue to be erased. Cancel movement - it will be
773 * triggered again when a free physical eraseblock appears.
774 *
775 * No used physical eraseblocks? They must be temporarily
776 * protected from being moved. They will be moved to the
777 * @ubi->used tree later and the wear-leveling will be
778 * triggered again.
779 */
780 dbg_wl("cancel WL, a list is empty: free %d, used %d",
781 !ubi->free.rb_node, !ubi->used.rb_node);
782 goto out_cancel;
783 }
784
785 if (!ubi->scrub.rb_node) {
786 /*
787 * Now pick the least worn-out used physical eraseblock and a
788 * highly worn-out free physical eraseblock. If the erase
789 * counters differ much enough, start wear-leveling.
790 */
791 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
792 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
793
794 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
795 dbg_wl("no WL needed: min used EC %d, max free EC %d",
796 e1->ec, e2->ec);
797 goto out_cancel;
798 }
799 paranoid_check_in_wl_tree(e1, &ubi->used);
800 rb_erase(&e1->rb, &ubi->used);
801 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
802 e1->pnum, e1->ec, e2->pnum, e2->ec);
803 } else {
804 /* Perform scrubbing */
805 scrubbing = 1;
806 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
807 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
808 paranoid_check_in_wl_tree(e1, &ubi->scrub);
809 rb_erase(&e1->rb, &ubi->scrub);
810 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
811 }
812
813 paranoid_check_in_wl_tree(e2, &ubi->free);
814 rb_erase(&e2->rb, &ubi->free);
815 ubi->move_from = e1;
816 ubi->move_to = e2;
817 spin_unlock(&ubi->wl_lock);
818
819 /*
820 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
821 * We so far do not know which logical eraseblock our physical
822 * eraseblock (@e1) belongs to. We have to read the volume identifier
823 * header first.
824 *
825 * Note, we are protected from this PEB being unmapped and erased. The
826 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
827 * which is being moved was unmapped.
828 */
829
830 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
831 if (err && err != UBI_IO_BITFLIPS) {
832 if (err == UBI_IO_PEB_FREE) {
833 /*
834 * We are trying to move PEB without a VID header. UBI
835 * always write VID headers shortly after the PEB was
836 * given, so we have a situation when it did not have
837 * chance to write it down because it was preempted.
838 * Just re-schedule the work, so that next time it will
839 * likely have the VID header in place.
840 */
841 dbg_wl("PEB %d has no VID header", e1->pnum);
842 goto out_not_moved;
843 }
844
845 ubi_err("error %d while reading VID header from PEB %d",
846 err, e1->pnum);
847 if (err > 0)
848 err = -EIO;
849 goto out_error;
850 }
851
852 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
853 if (err) {
854
855 if (err < 0)
856 goto out_error;
857 if (err == 1)
858 goto out_not_moved;
859
860 /*
861 * For some reason the LEB was not moved - it might be because
862 * the volume is being deleted. We should prevent this PEB from
863 * being selected for wear-levelling movement for some "time",
864 * so put it to the protection tree.
865 */
866
867 dbg_wl("cancelled moving PEB %d", e1->pnum);
868 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
869 if (!pe) {
870 err = -ENOMEM;
871 goto out_error;
872 }
873
874 protect = 1;
875 }
876
877 ubi_free_vid_hdr(ubi, vid_hdr);
878 spin_lock(&ubi->wl_lock);
879 if (protect)
880 prot_tree_add(ubi, e1, pe, protect);
881 if (!ubi->move_to_put)
882 wl_tree_add(e2, &ubi->used);
883 else
884 put = 1;
885 ubi->move_from = ubi->move_to = NULL;
886 ubi->move_to_put = ubi->wl_scheduled = 0;
887 spin_unlock(&ubi->wl_lock);
888
889 if (put) {
890 /*
891 * Well, the target PEB was put meanwhile, schedule it for
892 * erasure.
893 */
894 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
895 err = schedule_erase(ubi, e2, 0);
896 if (err)
897 goto out_error;
898 }
899
900 if (!protect) {
901 err = schedule_erase(ubi, e1, 0);
902 if (err)
903 goto out_error;
904 }
905
906
907 dbg_wl("done");
908 mutex_unlock(&ubi->move_mutex);
909 return 0;
910
911 /*
912 * For some reasons the LEB was not moved, might be an error, might be
913 * something else. @e1 was not changed, so return it back. @e2 might
914 * be changed, schedule it for erasure.
915 */
916 out_not_moved:
917 ubi_free_vid_hdr(ubi, vid_hdr);
918 spin_lock(&ubi->wl_lock);
919 if (scrubbing)
920 wl_tree_add(e1, &ubi->scrub);
921 else
922 wl_tree_add(e1, &ubi->used);
923 ubi->move_from = ubi->move_to = NULL;
924 ubi->move_to_put = ubi->wl_scheduled = 0;
925 spin_unlock(&ubi->wl_lock);
926
927 err = schedule_erase(ubi, e2, 0);
928 if (err)
929 goto out_error;
930
931 mutex_unlock(&ubi->move_mutex);
932 return 0;
933
934 out_error:
935 ubi_err("error %d while moving PEB %d to PEB %d",
936 err, e1->pnum, e2->pnum);
937
938 ubi_free_vid_hdr(ubi, vid_hdr);
939 spin_lock(&ubi->wl_lock);
940 ubi->move_from = ubi->move_to = NULL;
941 ubi->move_to_put = ubi->wl_scheduled = 0;
942 spin_unlock(&ubi->wl_lock);
943
944 kmem_cache_free(ubi_wl_entry_slab, e1);
945 kmem_cache_free(ubi_wl_entry_slab, e2);
946 ubi_ro_mode(ubi);
947
948 mutex_unlock(&ubi->move_mutex);
949 return err;
950
951 out_cancel:
952 ubi->wl_scheduled = 0;
953 spin_unlock(&ubi->wl_lock);
954 mutex_unlock(&ubi->move_mutex);
955 ubi_free_vid_hdr(ubi, vid_hdr);
956 return 0;
957 }
958
959 /**
960 * ensure_wear_leveling - schedule wear-leveling if it is needed.
961 * @ubi: UBI device description object
962 *
963 * This function checks if it is time to start wear-leveling and schedules it
964 * if yes. This function returns zero in case of success and a negative error
965 * code in case of failure.
966 */
967 static int ensure_wear_leveling(struct ubi_device *ubi)
968 {
969 int err = 0;
970 struct ubi_wl_entry *e1;
971 struct ubi_wl_entry *e2;
972 struct ubi_work *wrk;
973
974 spin_lock(&ubi->wl_lock);
975 if (ubi->wl_scheduled)
976 /* Wear-leveling is already in the work queue */
977 goto out_unlock;
978
979 /*
980 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
981 * the WL worker has to be scheduled anyway.
982 */
983 if (!ubi->scrub.rb_node) {
984 if (!ubi->used.rb_node || !ubi->free.rb_node)
985 /* No physical eraseblocks - no deal */
986 goto out_unlock;
987
988 /*
989 * We schedule wear-leveling only if the difference between the
990 * lowest erase counter of used physical eraseblocks and a high
991 * erase counter of free physical eraseblocks is greater then
992 * %UBI_WL_THRESHOLD.
993 */
994 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
995 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
996
997 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
998 goto out_unlock;
999 dbg_wl("schedule wear-leveling");
1000 } else
1001 dbg_wl("schedule scrubbing");
1002
1003 ubi->wl_scheduled = 1;
1004 spin_unlock(&ubi->wl_lock);
1005
1006 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007 if (!wrk) {
1008 err = -ENOMEM;
1009 goto out_cancel;
1010 }
1011
1012 wrk->func = &wear_leveling_worker;
1013 schedule_ubi_work(ubi, wrk);
1014 return err;
1015
1016 out_cancel:
1017 spin_lock(&ubi->wl_lock);
1018 ubi->wl_scheduled = 0;
1019 out_unlock:
1020 spin_unlock(&ubi->wl_lock);
1021 return err;
1022 }
1023
1024 /**
1025 * erase_worker - physical eraseblock erase worker function.
1026 * @ubi: UBI device description object
1027 * @wl_wrk: the work object
1028 * @cancel: non-zero if the worker has to free memory and exit
1029 *
1030 * This function erases a physical eraseblock and perform torture testing if
1031 * needed. It also takes care about marking the physical eraseblock bad if
1032 * needed. Returns zero in case of success and a negative error code in case of
1033 * failure.
1034 */
1035 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1036 int cancel)
1037 {
1038 struct ubi_wl_entry *e = wl_wrk->e;
1039 int pnum = e->pnum, err, need;
1040
1041 if (cancel) {
1042 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1043 kfree(wl_wrk);
1044 kmem_cache_free(ubi_wl_entry_slab, e);
1045 return 0;
1046 }
1047
1048 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1049
1050 err = sync_erase(ubi, e, wl_wrk->torture);
1051 if (!err) {
1052 /* Fine, we've erased it successfully */
1053 kfree(wl_wrk);
1054
1055 spin_lock(&ubi->wl_lock);
1056 ubi->abs_ec += 1;
1057 wl_tree_add(e, &ubi->free);
1058 spin_unlock(&ubi->wl_lock);
1059
1060 /*
1061 * One more erase operation has happened, take care about protected
1062 * physical eraseblocks.
1063 */
1064 check_protection_over(ubi);
1065
1066 /* And take care about wear-leveling */
1067 err = ensure_wear_leveling(ubi);
1068 return err;
1069 }
1070
1071 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1072 kfree(wl_wrk);
1073 kmem_cache_free(ubi_wl_entry_slab, e);
1074
1075 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1076 err == -EBUSY) {
1077 int err1;
1078
1079 /* Re-schedule the LEB for erasure */
1080 err1 = schedule_erase(ubi, e, 0);
1081 if (err1) {
1082 err = err1;
1083 goto out_ro;
1084 }
1085 return err;
1086 } else if (err != -EIO) {
1087 /*
1088 * If this is not %-EIO, we have no idea what to do. Scheduling
1089 * this physical eraseblock for erasure again would cause
1090 * errors again and again. Well, lets switch to RO mode.
1091 */
1092 goto out_ro;
1093 }
1094
1095 /* It is %-EIO, the PEB went bad */
1096
1097 if (!ubi->bad_allowed) {
1098 ubi_err("bad physical eraseblock %d detected", pnum);
1099 goto out_ro;
1100 }
1101
1102 spin_lock(&ubi->volumes_lock);
1103 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1104 if (need > 0) {
1105 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1106 ubi->avail_pebs -= need;
1107 ubi->rsvd_pebs += need;
1108 ubi->beb_rsvd_pebs += need;
1109 if (need > 0)
1110 ubi_msg("reserve more %d PEBs", need);
1111 }
1112
1113 if (ubi->beb_rsvd_pebs == 0) {
1114 spin_unlock(&ubi->volumes_lock);
1115 ubi_err("no reserved physical eraseblocks");
1116 goto out_ro;
1117 }
1118
1119 spin_unlock(&ubi->volumes_lock);
1120 ubi_msg("mark PEB %d as bad", pnum);
1121
1122 err = ubi_io_mark_bad(ubi, pnum);
1123 if (err)
1124 goto out_ro;
1125
1126 spin_lock(&ubi->volumes_lock);
1127 ubi->beb_rsvd_pebs -= 1;
1128 ubi->bad_peb_count += 1;
1129 ubi->good_peb_count -= 1;
1130 ubi_calculate_reserved(ubi);
1131 if (ubi->beb_rsvd_pebs == 0)
1132 ubi_warn("last PEB from the reserved pool was used");
1133 spin_unlock(&ubi->volumes_lock);
1134
1135 return err;
1136
1137 out_ro:
1138 ubi_ro_mode(ubi);
1139 return err;
1140 }
1141
1142 /**
1143 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1144 * @ubi: UBI device description object
1145 * @pnum: physical eraseblock to return
1146 * @torture: if this physical eraseblock has to be tortured
1147 *
1148 * This function is called to return physical eraseblock @pnum to the pool of
1149 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1150 * occurred to this @pnum and it has to be tested. This function returns zero
1151 * in case of success, and a negative error code in case of failure.
1152 */
1153 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1154 {
1155 int err;
1156 struct ubi_wl_entry *e;
1157
1158 dbg_wl("PEB %d", pnum);
1159 ubi_assert(pnum >= 0);
1160 ubi_assert(pnum < ubi->peb_count);
1161
1162 retry:
1163 spin_lock(&ubi->wl_lock);
1164 e = ubi->lookuptbl[pnum];
1165 if (e == ubi->move_from) {
1166 /*
1167 * User is putting the physical eraseblock which was selected to
1168 * be moved. It will be scheduled for erasure in the
1169 * wear-leveling worker.
1170 */
1171 dbg_wl("PEB %d is being moved, wait", pnum);
1172 spin_unlock(&ubi->wl_lock);
1173
1174 /* Wait for the WL worker by taking the @ubi->move_mutex */
1175 mutex_lock(&ubi->move_mutex);
1176 mutex_unlock(&ubi->move_mutex);
1177 goto retry;
1178 } else if (e == ubi->move_to) {
1179 /*
1180 * User is putting the physical eraseblock which was selected
1181 * as the target the data is moved to. It may happen if the EBA
1182 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1183 * the WL unit has not put the PEB to the "used" tree yet, but
1184 * it is about to do this. So we just set a flag which will
1185 * tell the WL worker that the PEB is not needed anymore and
1186 * should be scheduled for erasure.
1187 */
1188 dbg_wl("PEB %d is the target of data moving", pnum);
1189 ubi_assert(!ubi->move_to_put);
1190 ubi->move_to_put = 1;
1191 spin_unlock(&ubi->wl_lock);
1192 return 0;
1193 } else {
1194 if (in_wl_tree(e, &ubi->used)) {
1195 paranoid_check_in_wl_tree(e, &ubi->used);
1196 rb_erase(&e->rb, &ubi->used);
1197 } else if (in_wl_tree(e, &ubi->scrub)) {
1198 paranoid_check_in_wl_tree(e, &ubi->scrub);
1199 rb_erase(&e->rb, &ubi->scrub);
1200 } else {
1201 err = prot_tree_del(ubi, e->pnum);
1202 if (err) {
1203 ubi_err("PEB %d not found", pnum);
1204 ubi_ro_mode(ubi);
1205 spin_unlock(&ubi->wl_lock);
1206 return err;
1207 }
1208 }
1209 }
1210 spin_unlock(&ubi->wl_lock);
1211
1212 err = schedule_erase(ubi, e, torture);
1213 if (err) {
1214 spin_lock(&ubi->wl_lock);
1215 wl_tree_add(e, &ubi->used);
1216 spin_unlock(&ubi->wl_lock);
1217 }
1218
1219 return err;
1220 }
1221
1222 /**
1223 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1224 * @ubi: UBI device description object
1225 * @pnum: the physical eraseblock to schedule
1226 *
1227 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1228 * needs scrubbing. This function schedules a physical eraseblock for
1229 * scrubbing which is done in background. This function returns zero in case of
1230 * success and a negative error code in case of failure.
1231 */
1232 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1233 {
1234 struct ubi_wl_entry *e;
1235
1236 ubi_msg("schedule PEB %d for scrubbing", pnum);
1237
1238 retry:
1239 spin_lock(&ubi->wl_lock);
1240 e = ubi->lookuptbl[pnum];
1241 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1242 spin_unlock(&ubi->wl_lock);
1243 return 0;
1244 }
1245
1246 if (e == ubi->move_to) {
1247 /*
1248 * This physical eraseblock was used to move data to. The data
1249 * was moved but the PEB was not yet inserted to the proper
1250 * tree. We should just wait a little and let the WL worker
1251 * proceed.
1252 */
1253 spin_unlock(&ubi->wl_lock);
1254 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1255 yield();
1256 goto retry;
1257 }
1258
1259 if (in_wl_tree(e, &ubi->used)) {
1260 paranoid_check_in_wl_tree(e, &ubi->used);
1261 rb_erase(&e->rb, &ubi->used);
1262 } else {
1263 int err;
1264
1265 err = prot_tree_del(ubi, e->pnum);
1266 if (err) {
1267 ubi_err("PEB %d not found", pnum);
1268 ubi_ro_mode(ubi);
1269 spin_unlock(&ubi->wl_lock);
1270 return err;
1271 }
1272 }
1273
1274 wl_tree_add(e, &ubi->scrub);
1275 spin_unlock(&ubi->wl_lock);
1276
1277 /*
1278 * Technically scrubbing is the same as wear-leveling, so it is done
1279 * by the WL worker.
1280 */
1281 return ensure_wear_leveling(ubi);
1282 }
1283
1284 /**
1285 * ubi_wl_flush - flush all pending works.
1286 * @ubi: UBI device description object
1287 *
1288 * This function returns zero in case of success and a negative error code in
1289 * case of failure.
1290 */
1291 int ubi_wl_flush(struct ubi_device *ubi)
1292 {
1293 int err;
1294
1295 /*
1296 * Erase while the pending works queue is not empty, but not more then
1297 * the number of currently pending works.
1298 */
1299 dbg_wl("flush (%d pending works)", ubi->works_count);
1300 while (ubi->works_count) {
1301 err = do_work(ubi);
1302 if (err)
1303 return err;
1304 }
1305
1306 /*
1307 * Make sure all the works which have been done in parallel are
1308 * finished.
1309 */
1310 down_write(&ubi->work_sem);
1311 up_write(&ubi->work_sem);
1312
1313 /*
1314 * And in case last was the WL worker and it cancelled the LEB
1315 * movement, flush again.
1316 */
1317 while (ubi->works_count) {
1318 dbg_wl("flush more (%d pending works)", ubi->works_count);
1319 err = do_work(ubi);
1320 if (err)
1321 return err;
1322 }
1323
1324 return 0;
1325 }
1326
1327 /**
1328 * tree_destroy - destroy an RB-tree.
1329 * @root: the root of the tree to destroy
1330 */
1331 static void tree_destroy(struct rb_root *root)
1332 {
1333 struct rb_node *rb;
1334 struct ubi_wl_entry *e;
1335
1336 rb = root->rb_node;
1337 while (rb) {
1338 if (rb->rb_left)
1339 rb = rb->rb_left;
1340 else if (rb->rb_right)
1341 rb = rb->rb_right;
1342 else {
1343 e = rb_entry(rb, struct ubi_wl_entry, rb);
1344
1345 rb = rb_parent(rb);
1346 if (rb) {
1347 if (rb->rb_left == &e->rb)
1348 rb->rb_left = NULL;
1349 else
1350 rb->rb_right = NULL;
1351 }
1352
1353 kmem_cache_free(ubi_wl_entry_slab, e);
1354 }
1355 }
1356 }
1357
1358 /**
1359 * ubi_thread - UBI background thread.
1360 * @u: the UBI device description object pointer
1361 */
1362 int ubi_thread(void *u)
1363 {
1364 int failures = 0;
1365 struct ubi_device *ubi = u;
1366
1367 ubi_msg("background thread \"%s\" started, PID %d",
1368 ubi->bgt_name, task_pid_nr(current));
1369
1370 set_freezable();
1371 for (;;) {
1372 int err;
1373
1374 if (kthread_should_stop())
1375 break;
1376
1377 if (try_to_freeze())
1378 continue;
1379
1380 spin_lock(&ubi->wl_lock);
1381 if (list_empty(&ubi->works) || ubi->ro_mode ||
1382 !ubi->thread_enabled) {
1383 set_current_state(TASK_INTERRUPTIBLE);
1384 spin_unlock(&ubi->wl_lock);
1385 schedule();
1386 continue;
1387 }
1388 spin_unlock(&ubi->wl_lock);
1389
1390 err = do_work(ubi);
1391 if (err) {
1392 ubi_err("%s: work failed with error code %d",
1393 ubi->bgt_name, err);
1394 if (failures++ > WL_MAX_FAILURES) {
1395 /*
1396 * Too many failures, disable the thread and
1397 * switch to read-only mode.
1398 */
1399 ubi_msg("%s: %d consecutive failures",
1400 ubi->bgt_name, WL_MAX_FAILURES);
1401 ubi_ro_mode(ubi);
1402 break;
1403 }
1404 } else
1405 failures = 0;
1406
1407 cond_resched();
1408 }
1409
1410 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1411 return 0;
1412 }
1413
1414 /**
1415 * cancel_pending - cancel all pending works.
1416 * @ubi: UBI device description object
1417 */
1418 static void cancel_pending(struct ubi_device *ubi)
1419 {
1420 while (!list_empty(&ubi->works)) {
1421 struct ubi_work *wrk;
1422
1423 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1424 list_del(&wrk->list);
1425 wrk->func(ubi, wrk, 1);
1426 ubi->works_count -= 1;
1427 ubi_assert(ubi->works_count >= 0);
1428 }
1429 }
1430
1431 /**
1432 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1433 * information.
1434 * @ubi: UBI device description object
1435 * @si: scanning information
1436 *
1437 * This function returns zero in case of success, and a negative error code in
1438 * case of failure.
1439 */
1440 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1441 {
1442 int err;
1443 struct rb_node *rb1, *rb2;
1444 struct ubi_scan_volume *sv;
1445 struct ubi_scan_leb *seb, *tmp;
1446 struct ubi_wl_entry *e;
1447
1448
1449 ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1450 ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1451 spin_lock_init(&ubi->wl_lock);
1452 mutex_init(&ubi->move_mutex);
1453 init_rwsem(&ubi->work_sem);
1454 ubi->max_ec = si->max_ec;
1455 INIT_LIST_HEAD(&ubi->works);
1456
1457 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1458
1459 err = -ENOMEM;
1460 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1461 if (!ubi->lookuptbl)
1462 return err;
1463
1464 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1465 cond_resched();
1466
1467 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1468 if (!e)
1469 goto out_free;
1470
1471 e->pnum = seb->pnum;
1472 e->ec = seb->ec;
1473 ubi->lookuptbl[e->pnum] = e;
1474 if (schedule_erase(ubi, e, 0)) {
1475 kmem_cache_free(ubi_wl_entry_slab, e);
1476 goto out_free;
1477 }
1478 }
1479
1480 list_for_each_entry(seb, &si->free, u.list) {
1481 cond_resched();
1482
1483 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1484 if (!e)
1485 goto out_free;
1486
1487 e->pnum = seb->pnum;
1488 e->ec = seb->ec;
1489 ubi_assert(e->ec >= 0);
1490 wl_tree_add(e, &ubi->free);
1491 ubi->lookuptbl[e->pnum] = e;
1492 }
1493
1494 list_for_each_entry(seb, &si->corr, u.list) {
1495 cond_resched();
1496
1497 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1498 if (!e)
1499 goto out_free;
1500
1501 e->pnum = seb->pnum;
1502 e->ec = seb->ec;
1503 ubi->lookuptbl[e->pnum] = e;
1504 if (schedule_erase(ubi, e, 0)) {
1505 kmem_cache_free(ubi_wl_entry_slab, e);
1506 goto out_free;
1507 }
1508 }
1509
1510 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1511 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1512 cond_resched();
1513
1514 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1515 if (!e)
1516 goto out_free;
1517
1518 e->pnum = seb->pnum;
1519 e->ec = seb->ec;
1520 ubi->lookuptbl[e->pnum] = e;
1521 if (!seb->scrub) {
1522 dbg_wl("add PEB %d EC %d to the used tree",
1523 e->pnum, e->ec);
1524 wl_tree_add(e, &ubi->used);
1525 } else {
1526 dbg_wl("add PEB %d EC %d to the scrub tree",
1527 e->pnum, e->ec);
1528 wl_tree_add(e, &ubi->scrub);
1529 }
1530 }
1531 }
1532
1533 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1534 ubi_err("no enough physical eraseblocks (%d, need %d)",
1535 ubi->avail_pebs, WL_RESERVED_PEBS);
1536 goto out_free;
1537 }
1538 ubi->avail_pebs -= WL_RESERVED_PEBS;
1539 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1540
1541 /* Schedule wear-leveling if needed */
1542 err = ensure_wear_leveling(ubi);
1543 if (err)
1544 goto out_free;
1545
1546 return 0;
1547
1548 out_free:
1549 cancel_pending(ubi);
1550 tree_destroy(&ubi->used);
1551 tree_destroy(&ubi->free);
1552 tree_destroy(&ubi->scrub);
1553 kfree(ubi->lookuptbl);
1554 return err;
1555 }
1556
1557 /**
1558 * protection_trees_destroy - destroy the protection RB-trees.
1559 * @ubi: UBI device description object
1560 */
1561 static void protection_trees_destroy(struct ubi_device *ubi)
1562 {
1563 struct rb_node *rb;
1564 struct ubi_wl_prot_entry *pe;
1565
1566 rb = ubi->prot.aec.rb_node;
1567 while (rb) {
1568 if (rb->rb_left)
1569 rb = rb->rb_left;
1570 else if (rb->rb_right)
1571 rb = rb->rb_right;
1572 else {
1573 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1574
1575 rb = rb_parent(rb);
1576 if (rb) {
1577 if (rb->rb_left == &pe->rb_aec)
1578 rb->rb_left = NULL;
1579 else
1580 rb->rb_right = NULL;
1581 }
1582
1583 kmem_cache_free(ubi_wl_entry_slab, pe->e);
1584 kfree(pe);
1585 }
1586 }
1587 }
1588
1589 /**
1590 * ubi_wl_close - close the wear-leveling unit.
1591 * @ubi: UBI device description object
1592 */
1593 void ubi_wl_close(struct ubi_device *ubi)
1594 {
1595 dbg_wl("close the UBI wear-leveling unit");
1596
1597 cancel_pending(ubi);
1598 protection_trees_destroy(ubi);
1599 tree_destroy(&ubi->used);
1600 tree_destroy(&ubi->free);
1601 tree_destroy(&ubi->scrub);
1602 kfree(ubi->lookuptbl);
1603 }
1604
1605 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1606
1607 /**
1608 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1609 * is correct.
1610 * @ubi: UBI device description object
1611 * @pnum: the physical eraseblock number to check
1612 * @ec: the erase counter to check
1613 *
1614 * This function returns zero if the erase counter of physical eraseblock @pnum
1615 * is equivalent to @ec, %1 if not, and a negative error code if an error
1616 * occurred.
1617 */
1618 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1619 {
1620 int err;
1621 long long read_ec;
1622 struct ubi_ec_hdr *ec_hdr;
1623
1624 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1625 if (!ec_hdr)
1626 return -ENOMEM;
1627
1628 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1629 if (err && err != UBI_IO_BITFLIPS) {
1630 /* The header does not have to exist */
1631 err = 0;
1632 goto out_free;
1633 }
1634
1635 read_ec = be64_to_cpu(ec_hdr->ec);
1636 if (ec != read_ec) {
1637 ubi_err("paranoid check failed for PEB %d", pnum);
1638 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1639 ubi_dbg_dump_stack();
1640 err = 1;
1641 } else
1642 err = 0;
1643
1644 out_free:
1645 kfree(ec_hdr);
1646 return err;
1647 }
1648
1649 /**
1650 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1651 * in a WL RB-tree.
1652 * @e: the wear-leveling entry to check
1653 * @root: the root of the tree
1654 *
1655 * This function returns zero if @e is in the @root RB-tree and %1 if it
1656 * is not.
1657 */
1658 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1659 struct rb_root *root)
1660 {
1661 if (in_wl_tree(e, root))
1662 return 0;
1663
1664 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1665 e->pnum, e->ec, root);
1666 ubi_dbg_dump_stack();
1667 return 1;
1668 }
1669
1670 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */