]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/dc2114x.c
apalis_t30/tk1, colibri_t20/t30: fix i2c bus frequencies
[people/ms/u-boot.git] / drivers / net / dc2114x.c
1 /*
2 * SPDX-License-Identifier: GPL-2.0+
3 */
4
5 #include <common.h>
6 #include <malloc.h>
7 #include <net.h>
8 #include <netdev.h>
9 #include <pci.h>
10
11 #undef DEBUG_SROM
12 #undef DEBUG_SROM2
13
14 #undef UPDATE_SROM
15
16 /* PCI Registers.
17 */
18 #define PCI_CFDA_PSM 0x43
19
20 #define CFRV_RN 0x000000f0 /* Revision Number */
21
22 #define WAKEUP 0x00 /* Power Saving Wakeup */
23 #define SLEEP 0x80 /* Power Saving Sleep Mode */
24
25 #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
26
27 /* Ethernet chip registers.
28 */
29 #define DE4X5_BMR 0x000 /* Bus Mode Register */
30 #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
31 #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
32 #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
33 #define DE4X5_STS 0x028 /* Status Register */
34 #define DE4X5_OMR 0x030 /* Operation Mode Register */
35 #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
36 #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
37
38 /* Register bits.
39 */
40 #define BMR_SWR 0x00000001 /* Software Reset */
41 #define STS_TS 0x00700000 /* Transmit Process State */
42 #define STS_RS 0x000e0000 /* Receive Process State */
43 #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
44 #define OMR_SR 0x00000002 /* Start/Stop Receive */
45 #define OMR_PS 0x00040000 /* Port Select */
46 #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
47 #define OMR_PM 0x00000080 /* Pass All Multicast */
48
49 /* Descriptor bits.
50 */
51 #define R_OWN 0x80000000 /* Own Bit */
52 #define RD_RER 0x02000000 /* Receive End Of Ring */
53 #define RD_LS 0x00000100 /* Last Descriptor */
54 #define RD_ES 0x00008000 /* Error Summary */
55 #define TD_TER 0x02000000 /* Transmit End Of Ring */
56 #define T_OWN 0x80000000 /* Own Bit */
57 #define TD_LS 0x40000000 /* Last Segment */
58 #define TD_FS 0x20000000 /* First Segment */
59 #define TD_ES 0x00008000 /* Error Summary */
60 #define TD_SET 0x08000000 /* Setup Packet */
61
62 /* The EEPROM commands include the alway-set leading bit. */
63 #define SROM_WRITE_CMD 5
64 #define SROM_READ_CMD 6
65 #define SROM_ERASE_CMD 7
66
67 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
68 #define SROM_RD 0x00004000 /* Read from Boot ROM */
69 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
70 #define EE_WRITE_0 0x4801
71 #define EE_WRITE_1 0x4805
72 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
73 #define SROM_SR 0x00000800 /* Select Serial ROM when set */
74
75 #define DT_IN 0x00000004 /* Serial Data In */
76 #define DT_CLK 0x00000002 /* Serial ROM Clock */
77 #define DT_CS 0x00000001 /* Serial ROM Chip Select */
78
79 #define POLL_DEMAND 1
80
81 #ifdef CONFIG_TULIP_FIX_DAVICOM
82 #define RESET_DM9102(dev) {\
83 unsigned long i;\
84 i=INL(dev, 0x0);\
85 udelay(1000);\
86 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
87 udelay(1000);\
88 }
89 #else
90 #define RESET_DE4X5(dev) {\
91 int i;\
92 i=INL(dev, DE4X5_BMR);\
93 udelay(1000);\
94 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
95 udelay(1000);\
96 OUTL(dev, i, DE4X5_BMR);\
97 udelay(1000);\
98 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
99 udelay(1000);\
100 }
101 #endif
102
103 #define START_DE4X5(dev) {\
104 s32 omr; \
105 omr = INL(dev, DE4X5_OMR);\
106 omr |= OMR_ST | OMR_SR;\
107 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
108 }
109
110 #define STOP_DE4X5(dev) {\
111 s32 omr; \
112 omr = INL(dev, DE4X5_OMR);\
113 omr &= ~(OMR_ST|OMR_SR);\
114 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
115 }
116
117 #define NUM_RX_DESC PKTBUFSRX
118 #ifndef CONFIG_TULIP_FIX_DAVICOM
119 #define NUM_TX_DESC 1 /* Number of TX descriptors */
120 #else
121 #define NUM_TX_DESC 4
122 #endif
123 #define RX_BUFF_SZ PKTSIZE_ALIGN
124
125 #define TOUT_LOOP 1000000
126
127 #define SETUP_FRAME_LEN 192
128 #define ETH_ALEN 6
129
130 struct de4x5_desc {
131 volatile s32 status;
132 u32 des1;
133 u32 buf;
134 u32 next;
135 };
136
137 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
138 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
139 static int rx_new; /* RX descriptor ring pointer */
140 static int tx_new; /* TX descriptor ring pointer */
141
142 static char rxRingSize;
143 static char txRingSize;
144
145 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
146 static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
147 static int getfrom_srom(struct eth_device* dev, u_long addr);
148 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
149 static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
150 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
151 #ifdef UPDATE_SROM
152 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
153 static void update_srom(struct eth_device *dev, bd_t *bis);
154 #endif
155 #ifndef CONFIG_TULIP_FIX_DAVICOM
156 static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
157 static void read_hw_addr(struct eth_device* dev, bd_t * bis);
158 #endif /* CONFIG_TULIP_FIX_DAVICOM */
159 static void send_setup_frame(struct eth_device* dev, bd_t * bis);
160
161 static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
162 static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
163 static int dc21x4x_recv(struct eth_device* dev);
164 static void dc21x4x_halt(struct eth_device* dev);
165 #ifdef CONFIG_TULIP_SELECT_MEDIA
166 extern void dc21x4x_select_media(struct eth_device* dev);
167 #endif
168
169 #if defined(CONFIG_E500)
170 #define phys_to_bus(a) (a)
171 #else
172 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
173 #endif
174
175 static int INL(struct eth_device* dev, u_long addr)
176 {
177 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
178 }
179
180 static void OUTL(struct eth_device* dev, int command, u_long addr)
181 {
182 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
183 }
184
185 static struct pci_device_id supported[] = {
186 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
187 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
188 #ifdef CONFIG_TULIP_FIX_DAVICOM
189 { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
190 #endif
191 { }
192 };
193
194 int dc21x4x_initialize(bd_t *bis)
195 {
196 int idx=0;
197 int card_number = 0;
198 unsigned int cfrv;
199 unsigned char timer;
200 pci_dev_t devbusfn;
201 unsigned int iobase;
202 unsigned short status;
203 struct eth_device* dev;
204
205 while(1) {
206 devbusfn = pci_find_devices(supported, idx++);
207 if (devbusfn == -1) {
208 break;
209 }
210
211 /* Get the chip configuration revision register. */
212 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
213
214 #ifndef CONFIG_TULIP_FIX_DAVICOM
215 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
216 printf("Error: The chip is not DC21143.\n");
217 continue;
218 }
219 #endif
220
221 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
222 status |=
223 #ifdef CONFIG_TULIP_USE_IO
224 PCI_COMMAND_IO |
225 #else
226 PCI_COMMAND_MEMORY |
227 #endif
228 PCI_COMMAND_MASTER;
229 pci_write_config_word(devbusfn, PCI_COMMAND, status);
230
231 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
232 #ifdef CONFIG_TULIP_USE_IO
233 if (!(status & PCI_COMMAND_IO)) {
234 printf("Error: Can not enable I/O access.\n");
235 continue;
236 }
237 #else
238 if (!(status & PCI_COMMAND_MEMORY)) {
239 printf("Error: Can not enable MEMORY access.\n");
240 continue;
241 }
242 #endif
243
244 if (!(status & PCI_COMMAND_MASTER)) {
245 printf("Error: Can not enable Bus Mastering.\n");
246 continue;
247 }
248
249 /* Check the latency timer for values >= 0x60. */
250 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
251
252 if (timer < 0x60) {
253 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
254 }
255
256 #ifdef CONFIG_TULIP_USE_IO
257 /* read BAR for memory space access */
258 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
259 iobase &= PCI_BASE_ADDRESS_IO_MASK;
260 #else
261 /* read BAR for memory space access */
262 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
263 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
264 #endif
265 debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
266
267 dev = (struct eth_device*) malloc(sizeof *dev);
268
269 if (!dev) {
270 printf("Can not allocalte memory of dc21x4x\n");
271 break;
272 }
273 memset(dev, 0, sizeof(*dev));
274
275 #ifdef CONFIG_TULIP_FIX_DAVICOM
276 sprintf(dev->name, "Davicom#%d", card_number);
277 #else
278 sprintf(dev->name, "dc21x4x#%d", card_number);
279 #endif
280
281 #ifdef CONFIG_TULIP_USE_IO
282 dev->iobase = pci_io_to_phys(devbusfn, iobase);
283 #else
284 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
285 #endif
286 dev->priv = (void*) devbusfn;
287 dev->init = dc21x4x_init;
288 dev->halt = dc21x4x_halt;
289 dev->send = dc21x4x_send;
290 dev->recv = dc21x4x_recv;
291
292 /* Ensure we're not sleeping. */
293 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
294
295 udelay(10 * 1000);
296
297 #ifndef CONFIG_TULIP_FIX_DAVICOM
298 read_hw_addr(dev, bis);
299 #endif
300 eth_register(dev);
301
302 card_number++;
303 }
304
305 return card_number;
306 }
307
308 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
309 {
310 int i;
311 int devbusfn = (int) dev->priv;
312
313 /* Ensure we're not sleeping. */
314 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
315
316 #ifdef CONFIG_TULIP_FIX_DAVICOM
317 RESET_DM9102(dev);
318 #else
319 RESET_DE4X5(dev);
320 #endif
321
322 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
323 printf("Error: Cannot reset ethernet controller.\n");
324 return -1;
325 }
326
327 #ifdef CONFIG_TULIP_SELECT_MEDIA
328 dc21x4x_select_media(dev);
329 #else
330 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
331 #endif
332
333 for (i = 0; i < NUM_RX_DESC; i++) {
334 rx_ring[i].status = cpu_to_le32(R_OWN);
335 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
336 rx_ring[i].buf = cpu_to_le32(
337 phys_to_bus((u32)net_rx_packets[i]));
338 #ifdef CONFIG_TULIP_FIX_DAVICOM
339 rx_ring[i].next = cpu_to_le32(
340 phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
341 #else
342 rx_ring[i].next = 0;
343 #endif
344 }
345
346 for (i=0; i < NUM_TX_DESC; i++) {
347 tx_ring[i].status = 0;
348 tx_ring[i].des1 = 0;
349 tx_ring[i].buf = 0;
350
351 #ifdef CONFIG_TULIP_FIX_DAVICOM
352 tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
353 #else
354 tx_ring[i].next = 0;
355 #endif
356 }
357
358 rxRingSize = NUM_RX_DESC;
359 txRingSize = NUM_TX_DESC;
360
361 /* Write the end of list marker to the descriptor lists. */
362 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
363 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
364
365 /* Tell the adapter where the TX/RX rings are located. */
366 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
367 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
368
369 START_DE4X5(dev);
370
371 tx_new = 0;
372 rx_new = 0;
373
374 send_setup_frame(dev, bis);
375
376 return 0;
377 }
378
379 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
380 {
381 int status = -1;
382 int i;
383
384 if (length <= 0) {
385 printf("%s: bad packet size: %d\n", dev->name, length);
386 goto Done;
387 }
388
389 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
390 if (i >= TOUT_LOOP) {
391 printf("%s: tx error buffer not ready\n", dev->name);
392 goto Done;
393 }
394 }
395
396 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
397 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
398 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
399
400 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
401
402 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
403 if (i >= TOUT_LOOP) {
404 printf(".%s: tx buffer not ready\n", dev->name);
405 goto Done;
406 }
407 }
408
409 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
410 #if 0 /* test-only */
411 printf("TX error status = 0x%08X\n",
412 le32_to_cpu(tx_ring[tx_new].status));
413 #endif
414 tx_ring[tx_new].status = 0x0;
415 goto Done;
416 }
417
418 status = length;
419
420 Done:
421 tx_new = (tx_new+1) % NUM_TX_DESC;
422 return status;
423 }
424
425 static int dc21x4x_recv(struct eth_device* dev)
426 {
427 s32 status;
428 int length = 0;
429
430 for ( ; ; ) {
431 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
432
433 if (status & R_OWN) {
434 break;
435 }
436
437 if (status & RD_LS) {
438 /* Valid frame status.
439 */
440 if (status & RD_ES) {
441
442 /* There was an error.
443 */
444 printf("RX error status = 0x%08X\n", status);
445 } else {
446 /* A valid frame received.
447 */
448 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
449
450 /* Pass the packet up to the protocol
451 * layers.
452 */
453 net_process_received_packet(
454 net_rx_packets[rx_new], length - 4);
455 }
456
457 /* Change buffer ownership for this frame, back
458 * to the adapter.
459 */
460 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
461 }
462
463 /* Update entry information.
464 */
465 rx_new = (rx_new + 1) % rxRingSize;
466 }
467
468 return length;
469 }
470
471 static void dc21x4x_halt(struct eth_device* dev)
472 {
473 int devbusfn = (int) dev->priv;
474
475 STOP_DE4X5(dev);
476 OUTL(dev, 0, DE4X5_SICR);
477
478 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
479 }
480
481 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
482 {
483 int i;
484 char setup_frame[SETUP_FRAME_LEN];
485 char *pa = &setup_frame[0];
486
487 memset(pa, 0xff, SETUP_FRAME_LEN);
488
489 for (i = 0; i < ETH_ALEN; i++) {
490 *(pa + (i & 1)) = dev->enetaddr[i];
491 if (i & 0x01) {
492 pa += 4;
493 }
494 }
495
496 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
497 if (i >= TOUT_LOOP) {
498 printf("%s: tx error buffer not ready\n", dev->name);
499 goto Done;
500 }
501 }
502
503 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
504 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
505 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
506
507 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
508
509 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
510 if (i >= TOUT_LOOP) {
511 printf("%s: tx buffer not ready\n", dev->name);
512 goto Done;
513 }
514 }
515
516 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
517 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
518 }
519 tx_new = (tx_new+1) % NUM_TX_DESC;
520
521 Done:
522 return;
523 }
524
525 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
526 /* SROM Read and write routines.
527 */
528 static void
529 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
530 {
531 OUTL(dev, command, addr);
532 udelay(1);
533 }
534
535 static int
536 getfrom_srom(struct eth_device* dev, u_long addr)
537 {
538 s32 tmp;
539
540 tmp = INL(dev, addr);
541 udelay(1);
542
543 return tmp;
544 }
545
546 /* Note: this routine returns extra data bits for size detection. */
547 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
548 {
549 int i;
550 unsigned retval = 0;
551 int read_cmd = location | (SROM_READ_CMD << addr_len);
552
553 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
554 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
555
556 #ifdef DEBUG_SROM
557 printf(" EEPROM read at %d ", location);
558 #endif
559
560 /* Shift the read command bits out. */
561 for (i = 4 + addr_len; i >= 0; i--) {
562 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
563 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
564 udelay(10);
565 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
566 udelay(10);
567 #ifdef DEBUG_SROM2
568 printf("%X", getfrom_srom(dev, ioaddr) & 15);
569 #endif
570 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
571 }
572
573 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
574
575 #ifdef DEBUG_SROM2
576 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
577 #endif
578
579 for (i = 16; i > 0; i--) {
580 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
581 udelay(10);
582 #ifdef DEBUG_SROM2
583 printf("%X", getfrom_srom(dev, ioaddr) & 15);
584 #endif
585 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
586 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
587 udelay(10);
588 }
589
590 /* Terminate the EEPROM access. */
591 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
592
593 #ifdef DEBUG_SROM2
594 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
595 #endif
596
597 return retval;
598 }
599 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
600
601 /* This executes a generic EEPROM command, typically a write or write
602 * enable. It returns the data output from the EEPROM, and thus may
603 * also be used for reads.
604 */
605 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
606 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
607 {
608 unsigned retval = 0;
609
610 #ifdef DEBUG_SROM
611 printf(" EEPROM op 0x%x: ", cmd);
612 #endif
613
614 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
615
616 /* Shift the command bits out. */
617 do {
618 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
619 sendto_srom(dev,dataval, ioaddr);
620 udelay(10);
621
622 #ifdef DEBUG_SROM2
623 printf("%X", getfrom_srom(dev,ioaddr) & 15);
624 #endif
625
626 sendto_srom(dev,dataval | DT_CLK, ioaddr);
627 udelay(10);
628 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
629 } while (--cmd_len >= 0);
630 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
631
632 /* Terminate the EEPROM access. */
633 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
634
635 #ifdef DEBUG_SROM
636 printf(" EEPROM result is 0x%5.5x.\n", retval);
637 #endif
638
639 return retval;
640 }
641 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
642
643 #ifndef CONFIG_TULIP_FIX_DAVICOM
644 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
645 {
646 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
647
648 return do_eeprom_cmd(dev, ioaddr,
649 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
650 | 0xffff, 3 + ee_addr_size + 16);
651 }
652 #endif /* CONFIG_TULIP_FIX_DAVICOM */
653
654 #ifdef UPDATE_SROM
655 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
656 {
657 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
658 int i;
659 unsigned short newval;
660
661 udelay(10*1000); /* test-only */
662
663 #ifdef DEBUG_SROM
664 printf("ee_addr_size=%d.\n", ee_addr_size);
665 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
666 #endif
667
668 /* Enable programming modes. */
669 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
670
671 /* Do the actual write. */
672 do_eeprom_cmd(dev, ioaddr,
673 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
674 3 + ee_addr_size + 16);
675
676 /* Poll for write finished. */
677 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
678 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
679 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
680 break;
681
682 #ifdef DEBUG_SROM
683 printf(" Write finished after %d ticks.\n", i);
684 #endif
685
686 /* Disable programming. */
687 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
688
689 /* And read the result. */
690 newval = do_eeprom_cmd(dev, ioaddr,
691 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
692 | 0xffff, 3 + ee_addr_size + 16);
693 #ifdef DEBUG_SROM
694 printf(" New value at offset %d is %4.4x.\n", index, newval);
695 #endif
696 return 1;
697 }
698 #endif
699
700 #ifndef CONFIG_TULIP_FIX_DAVICOM
701 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
702 {
703 u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
704 int i, j = 0;
705
706 for (i = 0; i < (ETH_ALEN >> 1); i++) {
707 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
708 *p = le16_to_cpu(tmp);
709 j += *p++;
710 }
711
712 if ((j == 0) || (j == 0x2fffd)) {
713 memset (dev->enetaddr, 0, ETH_ALEN);
714 debug ("Warning: can't read HW address from SROM.\n");
715 goto Done;
716 }
717
718 return;
719
720 Done:
721 #ifdef UPDATE_SROM
722 update_srom(dev, bis);
723 #endif
724 return;
725 }
726 #endif /* CONFIG_TULIP_FIX_DAVICOM */
727
728 #ifdef UPDATE_SROM
729 static void update_srom(struct eth_device *dev, bd_t *bis)
730 {
731 int i;
732 static unsigned short eeprom[0x40] = {
733 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
734 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
735 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
736 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
737 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
738 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
739 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
740 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
741 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
742 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
743 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
744 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
745 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
746 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
747 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
748 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
749 };
750 uchar enetaddr[6];
751
752 /* Ethernet Addr... */
753 if (!eth_getenv_enetaddr("ethaddr", enetaddr))
754 return;
755 eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
756 eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
757 eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
758
759 for (i=0; i<0x40; i++) {
760 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
761 }
762 }
763 #endif /* UPDATE_SROM */