]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/e1000.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12 * SPDX-License-Identifier: GPL-2.0+
13
14 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
28 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
30 */
31
32 #include "e1000.h"
33
34 #define TOUT_LOOP 100000
35
36 #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
38
39 #define E1000_DEFAULT_PCI_PBA 0x00000030
40 #define E1000_DEFAULT_PCIE_PBA 0x000a0026
41
42 /* NIC specific static variables go here */
43
44 static char tx_pool[128 + 16];
45 static char rx_pool[128 + 16];
46 static char packet[2096];
47
48 static struct e1000_tx_desc *tx_base;
49 static struct e1000_rx_desc *rx_base;
50
51 static int tx_tail;
52 static int rx_tail, rx_last;
53
54 static struct pci_device_id e1000_supported[] = {
55 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 /* E1000 PCIe card */
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 {}
96 };
97
98 /* Function forward declarations */
99 static int e1000_setup_link(struct eth_device *nic);
100 static int e1000_setup_fiber_link(struct eth_device *nic);
101 static int e1000_setup_copper_link(struct eth_device *nic);
102 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
103 static void e1000_config_collision_dist(struct e1000_hw *hw);
104 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
105 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
106 static int e1000_check_for_link(struct eth_device *nic);
107 static int e1000_wait_autoneg(struct e1000_hw *hw);
108 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
109 uint16_t * duplex);
110 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
111 uint16_t * phy_data);
112 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
113 uint16_t phy_data);
114 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
115 static int e1000_phy_reset(struct e1000_hw *hw);
116 static int e1000_detect_gig_phy(struct e1000_hw *hw);
117 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
118 static void e1000_set_media_type(struct e1000_hw *hw);
119
120 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
121 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
122
123 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
124 uint16_t words,
125 uint16_t *data);
126 /******************************************************************************
127 * Raises the EEPROM's clock input.
128 *
129 * hw - Struct containing variables accessed by shared code
130 * eecd - EECD's current value
131 *****************************************************************************/
132 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
133 {
134 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
135 * wait 50 microseconds.
136 */
137 *eecd = *eecd | E1000_EECD_SK;
138 E1000_WRITE_REG(hw, EECD, *eecd);
139 E1000_WRITE_FLUSH(hw);
140 udelay(50);
141 }
142
143 /******************************************************************************
144 * Lowers the EEPROM's clock input.
145 *
146 * hw - Struct containing variables accessed by shared code
147 * eecd - EECD's current value
148 *****************************************************************************/
149 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
150 {
151 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
152 * wait 50 microseconds.
153 */
154 *eecd = *eecd & ~E1000_EECD_SK;
155 E1000_WRITE_REG(hw, EECD, *eecd);
156 E1000_WRITE_FLUSH(hw);
157 udelay(50);
158 }
159
160 /******************************************************************************
161 * Shift data bits out to the EEPROM.
162 *
163 * hw - Struct containing variables accessed by shared code
164 * data - data to send to the EEPROM
165 * count - number of bits to shift out
166 *****************************************************************************/
167 static void
168 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
169 {
170 uint32_t eecd;
171 uint32_t mask;
172
173 /* We need to shift "count" bits out to the EEPROM. So, value in the
174 * "data" parameter will be shifted out to the EEPROM one bit at a time.
175 * In order to do this, "data" must be broken down into bits.
176 */
177 mask = 0x01 << (count - 1);
178 eecd = E1000_READ_REG(hw, EECD);
179 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
180 do {
181 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
182 * and then raising and then lowering the clock (the SK bit controls
183 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
184 * by setting "DI" to "0" and then raising and then lowering the clock.
185 */
186 eecd &= ~E1000_EECD_DI;
187
188 if (data & mask)
189 eecd |= E1000_EECD_DI;
190
191 E1000_WRITE_REG(hw, EECD, eecd);
192 E1000_WRITE_FLUSH(hw);
193
194 udelay(50);
195
196 e1000_raise_ee_clk(hw, &eecd);
197 e1000_lower_ee_clk(hw, &eecd);
198
199 mask = mask >> 1;
200
201 } while (mask);
202
203 /* We leave the "DI" bit set to "0" when we leave this routine. */
204 eecd &= ~E1000_EECD_DI;
205 E1000_WRITE_REG(hw, EECD, eecd);
206 }
207
208 /******************************************************************************
209 * Shift data bits in from the EEPROM
210 *
211 * hw - Struct containing variables accessed by shared code
212 *****************************************************************************/
213 static uint16_t
214 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
215 {
216 uint32_t eecd;
217 uint32_t i;
218 uint16_t data;
219
220 /* In order to read a register from the EEPROM, we need to shift 'count'
221 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
222 * input to the EEPROM (setting the SK bit), and then reading the
223 * value of the "DO" bit. During this "shifting in" process the
224 * "DI" bit should always be clear.
225 */
226
227 eecd = E1000_READ_REG(hw, EECD);
228
229 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
230 data = 0;
231
232 for (i = 0; i < count; i++) {
233 data = data << 1;
234 e1000_raise_ee_clk(hw, &eecd);
235
236 eecd = E1000_READ_REG(hw, EECD);
237
238 eecd &= ~(E1000_EECD_DI);
239 if (eecd & E1000_EECD_DO)
240 data |= 1;
241
242 e1000_lower_ee_clk(hw, &eecd);
243 }
244
245 return data;
246 }
247
248 /******************************************************************************
249 * Returns EEPROM to a "standby" state
250 *
251 * hw - Struct containing variables accessed by shared code
252 *****************************************************************************/
253 void e1000_standby_eeprom(struct e1000_hw *hw)
254 {
255 struct e1000_eeprom_info *eeprom = &hw->eeprom;
256 uint32_t eecd;
257
258 eecd = E1000_READ_REG(hw, EECD);
259
260 if (eeprom->type == e1000_eeprom_microwire) {
261 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
262 E1000_WRITE_REG(hw, EECD, eecd);
263 E1000_WRITE_FLUSH(hw);
264 udelay(eeprom->delay_usec);
265
266 /* Clock high */
267 eecd |= E1000_EECD_SK;
268 E1000_WRITE_REG(hw, EECD, eecd);
269 E1000_WRITE_FLUSH(hw);
270 udelay(eeprom->delay_usec);
271
272 /* Select EEPROM */
273 eecd |= E1000_EECD_CS;
274 E1000_WRITE_REG(hw, EECD, eecd);
275 E1000_WRITE_FLUSH(hw);
276 udelay(eeprom->delay_usec);
277
278 /* Clock low */
279 eecd &= ~E1000_EECD_SK;
280 E1000_WRITE_REG(hw, EECD, eecd);
281 E1000_WRITE_FLUSH(hw);
282 udelay(eeprom->delay_usec);
283 } else if (eeprom->type == e1000_eeprom_spi) {
284 /* Toggle CS to flush commands */
285 eecd |= E1000_EECD_CS;
286 E1000_WRITE_REG(hw, EECD, eecd);
287 E1000_WRITE_FLUSH(hw);
288 udelay(eeprom->delay_usec);
289 eecd &= ~E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(eeprom->delay_usec);
293 }
294 }
295
296 /***************************************************************************
297 * Description: Determines if the onboard NVM is FLASH or EEPROM.
298 *
299 * hw - Struct containing variables accessed by shared code
300 ****************************************************************************/
301 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
302 {
303 uint32_t eecd = 0;
304
305 DEBUGFUNC();
306
307 if (hw->mac_type == e1000_ich8lan)
308 return false;
309
310 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
311 eecd = E1000_READ_REG(hw, EECD);
312
313 /* Isolate bits 15 & 16 */
314 eecd = ((eecd >> 15) & 0x03);
315
316 /* If both bits are set, device is Flash type */
317 if (eecd == 0x03)
318 return false;
319 }
320 return true;
321 }
322
323 /******************************************************************************
324 * Prepares EEPROM for access
325 *
326 * hw - Struct containing variables accessed by shared code
327 *
328 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
329 * function should be called before issuing a command to the EEPROM.
330 *****************************************************************************/
331 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
332 {
333 struct e1000_eeprom_info *eeprom = &hw->eeprom;
334 uint32_t eecd, i = 0;
335
336 DEBUGFUNC();
337
338 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
339 return -E1000_ERR_SWFW_SYNC;
340 eecd = E1000_READ_REG(hw, EECD);
341
342 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
343 /* Request EEPROM Access */
344 if (hw->mac_type > e1000_82544) {
345 eecd |= E1000_EECD_REQ;
346 E1000_WRITE_REG(hw, EECD, eecd);
347 eecd = E1000_READ_REG(hw, EECD);
348 while ((!(eecd & E1000_EECD_GNT)) &&
349 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
350 i++;
351 udelay(5);
352 eecd = E1000_READ_REG(hw, EECD);
353 }
354 if (!(eecd & E1000_EECD_GNT)) {
355 eecd &= ~E1000_EECD_REQ;
356 E1000_WRITE_REG(hw, EECD, eecd);
357 DEBUGOUT("Could not acquire EEPROM grant\n");
358 return -E1000_ERR_EEPROM;
359 }
360 }
361 }
362
363 /* Setup EEPROM for Read/Write */
364
365 if (eeprom->type == e1000_eeprom_microwire) {
366 /* Clear SK and DI */
367 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
368 E1000_WRITE_REG(hw, EECD, eecd);
369
370 /* Set CS */
371 eecd |= E1000_EECD_CS;
372 E1000_WRITE_REG(hw, EECD, eecd);
373 } else if (eeprom->type == e1000_eeprom_spi) {
374 /* Clear SK and CS */
375 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
376 E1000_WRITE_REG(hw, EECD, eecd);
377 udelay(1);
378 }
379
380 return E1000_SUCCESS;
381 }
382
383 /******************************************************************************
384 * Sets up eeprom variables in the hw struct. Must be called after mac_type
385 * is configured. Additionally, if this is ICH8, the flash controller GbE
386 * registers must be mapped, or this will crash.
387 *
388 * hw - Struct containing variables accessed by shared code
389 *****************************************************************************/
390 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
391 {
392 struct e1000_eeprom_info *eeprom = &hw->eeprom;
393 uint32_t eecd = E1000_READ_REG(hw, EECD);
394 int32_t ret_val = E1000_SUCCESS;
395 uint16_t eeprom_size;
396
397 DEBUGFUNC();
398
399 switch (hw->mac_type) {
400 case e1000_82542_rev2_0:
401 case e1000_82542_rev2_1:
402 case e1000_82543:
403 case e1000_82544:
404 eeprom->type = e1000_eeprom_microwire;
405 eeprom->word_size = 64;
406 eeprom->opcode_bits = 3;
407 eeprom->address_bits = 6;
408 eeprom->delay_usec = 50;
409 eeprom->use_eerd = false;
410 eeprom->use_eewr = false;
411 break;
412 case e1000_82540:
413 case e1000_82545:
414 case e1000_82545_rev_3:
415 case e1000_82546:
416 case e1000_82546_rev_3:
417 eeprom->type = e1000_eeprom_microwire;
418 eeprom->opcode_bits = 3;
419 eeprom->delay_usec = 50;
420 if (eecd & E1000_EECD_SIZE) {
421 eeprom->word_size = 256;
422 eeprom->address_bits = 8;
423 } else {
424 eeprom->word_size = 64;
425 eeprom->address_bits = 6;
426 }
427 eeprom->use_eerd = false;
428 eeprom->use_eewr = false;
429 break;
430 case e1000_82541:
431 case e1000_82541_rev_2:
432 case e1000_82547:
433 case e1000_82547_rev_2:
434 if (eecd & E1000_EECD_TYPE) {
435 eeprom->type = e1000_eeprom_spi;
436 eeprom->opcode_bits = 8;
437 eeprom->delay_usec = 1;
438 if (eecd & E1000_EECD_ADDR_BITS) {
439 eeprom->page_size = 32;
440 eeprom->address_bits = 16;
441 } else {
442 eeprom->page_size = 8;
443 eeprom->address_bits = 8;
444 }
445 } else {
446 eeprom->type = e1000_eeprom_microwire;
447 eeprom->opcode_bits = 3;
448 eeprom->delay_usec = 50;
449 if (eecd & E1000_EECD_ADDR_BITS) {
450 eeprom->word_size = 256;
451 eeprom->address_bits = 8;
452 } else {
453 eeprom->word_size = 64;
454 eeprom->address_bits = 6;
455 }
456 }
457 eeprom->use_eerd = false;
458 eeprom->use_eewr = false;
459 break;
460 case e1000_82571:
461 case e1000_82572:
462 eeprom->type = e1000_eeprom_spi;
463 eeprom->opcode_bits = 8;
464 eeprom->delay_usec = 1;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->page_size = 32;
467 eeprom->address_bits = 16;
468 } else {
469 eeprom->page_size = 8;
470 eeprom->address_bits = 8;
471 }
472 eeprom->use_eerd = false;
473 eeprom->use_eewr = false;
474 break;
475 case e1000_82573:
476 case e1000_82574:
477 eeprom->type = e1000_eeprom_spi;
478 eeprom->opcode_bits = 8;
479 eeprom->delay_usec = 1;
480 if (eecd & E1000_EECD_ADDR_BITS) {
481 eeprom->page_size = 32;
482 eeprom->address_bits = 16;
483 } else {
484 eeprom->page_size = 8;
485 eeprom->address_bits = 8;
486 }
487 eeprom->use_eerd = true;
488 eeprom->use_eewr = true;
489 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
490 eeprom->type = e1000_eeprom_flash;
491 eeprom->word_size = 2048;
492
493 /* Ensure that the Autonomous FLASH update bit is cleared due to
494 * Flash update issue on parts which use a FLASH for NVM. */
495 eecd &= ~E1000_EECD_AUPDEN;
496 E1000_WRITE_REG(hw, EECD, eecd);
497 }
498 break;
499 case e1000_80003es2lan:
500 eeprom->type = e1000_eeprom_spi;
501 eeprom->opcode_bits = 8;
502 eeprom->delay_usec = 1;
503 if (eecd & E1000_EECD_ADDR_BITS) {
504 eeprom->page_size = 32;
505 eeprom->address_bits = 16;
506 } else {
507 eeprom->page_size = 8;
508 eeprom->address_bits = 8;
509 }
510 eeprom->use_eerd = true;
511 eeprom->use_eewr = false;
512 break;
513
514 /* ich8lan does not support currently. if needed, please
515 * add corresponding code and functions.
516 */
517 #if 0
518 case e1000_ich8lan:
519 {
520 int32_t i = 0;
521
522 eeprom->type = e1000_eeprom_ich8;
523 eeprom->use_eerd = false;
524 eeprom->use_eewr = false;
525 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
526 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
527 ICH_FLASH_GFPREG);
528 /* Zero the shadow RAM structure. But don't load it from NVM
529 * so as to save time for driver init */
530 if (hw->eeprom_shadow_ram != NULL) {
531 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
532 hw->eeprom_shadow_ram[i].modified = false;
533 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
534 }
535 }
536
537 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
538 ICH_FLASH_SECTOR_SIZE;
539
540 hw->flash_bank_size = ((flash_size >> 16)
541 & ICH_GFPREG_BASE_MASK) + 1;
542 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
543
544 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
545
546 hw->flash_bank_size /= 2 * sizeof(uint16_t);
547 break;
548 }
549 #endif
550 default:
551 break;
552 }
553
554 if (eeprom->type == e1000_eeprom_spi) {
555 /* eeprom_size will be an enum [0..8] that maps
556 * to eeprom sizes 128B to
557 * 32KB (incremented by powers of 2).
558 */
559 if (hw->mac_type <= e1000_82547_rev_2) {
560 /* Set to default value for initial eeprom read. */
561 eeprom->word_size = 64;
562 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
563 &eeprom_size);
564 if (ret_val)
565 return ret_val;
566 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
567 >> EEPROM_SIZE_SHIFT;
568 /* 256B eeprom size was not supported in earlier
569 * hardware, so we bump eeprom_size up one to
570 * ensure that "1" (which maps to 256B) is never
571 * the result used in the shifting logic below. */
572 if (eeprom_size)
573 eeprom_size++;
574 } else {
575 eeprom_size = (uint16_t)((eecd &
576 E1000_EECD_SIZE_EX_MASK) >>
577 E1000_EECD_SIZE_EX_SHIFT);
578 }
579
580 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
581 }
582 return ret_val;
583 }
584
585 /******************************************************************************
586 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
587 *
588 * hw - Struct containing variables accessed by shared code
589 *****************************************************************************/
590 static int32_t
591 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
592 {
593 uint32_t attempts = 100000;
594 uint32_t i, reg = 0;
595 int32_t done = E1000_ERR_EEPROM;
596
597 for (i = 0; i < attempts; i++) {
598 if (eerd == E1000_EEPROM_POLL_READ)
599 reg = E1000_READ_REG(hw, EERD);
600 else
601 reg = E1000_READ_REG(hw, EEWR);
602
603 if (reg & E1000_EEPROM_RW_REG_DONE) {
604 done = E1000_SUCCESS;
605 break;
606 }
607 udelay(5);
608 }
609
610 return done;
611 }
612
613 /******************************************************************************
614 * Reads a 16 bit word from the EEPROM using the EERD register.
615 *
616 * hw - Struct containing variables accessed by shared code
617 * offset - offset of word in the EEPROM to read
618 * data - word read from the EEPROM
619 * words - number of words to read
620 *****************************************************************************/
621 static int32_t
622 e1000_read_eeprom_eerd(struct e1000_hw *hw,
623 uint16_t offset,
624 uint16_t words,
625 uint16_t *data)
626 {
627 uint32_t i, eerd = 0;
628 int32_t error = 0;
629
630 for (i = 0; i < words; i++) {
631 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
632 E1000_EEPROM_RW_REG_START;
633
634 E1000_WRITE_REG(hw, EERD, eerd);
635 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
636
637 if (error)
638 break;
639 data[i] = (E1000_READ_REG(hw, EERD) >>
640 E1000_EEPROM_RW_REG_DATA);
641
642 }
643
644 return error;
645 }
646
647 void e1000_release_eeprom(struct e1000_hw *hw)
648 {
649 uint32_t eecd;
650
651 DEBUGFUNC();
652
653 eecd = E1000_READ_REG(hw, EECD);
654
655 if (hw->eeprom.type == e1000_eeprom_spi) {
656 eecd |= E1000_EECD_CS; /* Pull CS high */
657 eecd &= ~E1000_EECD_SK; /* Lower SCK */
658
659 E1000_WRITE_REG(hw, EECD, eecd);
660
661 udelay(hw->eeprom.delay_usec);
662 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
663 /* cleanup eeprom */
664
665 /* CS on Microwire is active-high */
666 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
667
668 E1000_WRITE_REG(hw, EECD, eecd);
669
670 /* Rising edge of clock */
671 eecd |= E1000_EECD_SK;
672 E1000_WRITE_REG(hw, EECD, eecd);
673 E1000_WRITE_FLUSH(hw);
674 udelay(hw->eeprom.delay_usec);
675
676 /* Falling edge of clock */
677 eecd &= ~E1000_EECD_SK;
678 E1000_WRITE_REG(hw, EECD, eecd);
679 E1000_WRITE_FLUSH(hw);
680 udelay(hw->eeprom.delay_usec);
681 }
682
683 /* Stop requesting EEPROM access */
684 if (hw->mac_type > e1000_82544) {
685 eecd &= ~E1000_EECD_REQ;
686 E1000_WRITE_REG(hw, EECD, eecd);
687 }
688 }
689 /******************************************************************************
690 * Reads a 16 bit word from the EEPROM.
691 *
692 * hw - Struct containing variables accessed by shared code
693 *****************************************************************************/
694 static int32_t
695 e1000_spi_eeprom_ready(struct e1000_hw *hw)
696 {
697 uint16_t retry_count = 0;
698 uint8_t spi_stat_reg;
699
700 DEBUGFUNC();
701
702 /* Read "Status Register" repeatedly until the LSB is cleared. The
703 * EEPROM will signal that the command has been completed by clearing
704 * bit 0 of the internal status register. If it's not cleared within
705 * 5 milliseconds, then error out.
706 */
707 retry_count = 0;
708 do {
709 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
710 hw->eeprom.opcode_bits);
711 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
712 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
713 break;
714
715 udelay(5);
716 retry_count += 5;
717
718 e1000_standby_eeprom(hw);
719 } while (retry_count < EEPROM_MAX_RETRY_SPI);
720
721 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
722 * only 0-5mSec on 5V devices)
723 */
724 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
725 DEBUGOUT("SPI EEPROM Status error\n");
726 return -E1000_ERR_EEPROM;
727 }
728
729 return E1000_SUCCESS;
730 }
731
732 /******************************************************************************
733 * Reads a 16 bit word from the EEPROM.
734 *
735 * hw - Struct containing variables accessed by shared code
736 * offset - offset of word in the EEPROM to read
737 * data - word read from the EEPROM
738 *****************************************************************************/
739 static int32_t
740 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
741 uint16_t words, uint16_t *data)
742 {
743 struct e1000_eeprom_info *eeprom = &hw->eeprom;
744 uint32_t i = 0;
745
746 DEBUGFUNC();
747
748 /* If eeprom is not yet detected, do so now */
749 if (eeprom->word_size == 0)
750 e1000_init_eeprom_params(hw);
751
752 /* A check for invalid values: offset too large, too many words,
753 * and not enough words.
754 */
755 if ((offset >= eeprom->word_size) ||
756 (words > eeprom->word_size - offset) ||
757 (words == 0)) {
758 DEBUGOUT("\"words\" parameter out of bounds."
759 "Words = %d, size = %d\n", offset, eeprom->word_size);
760 return -E1000_ERR_EEPROM;
761 }
762
763 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
764 * directly. In this case, we need to acquire the EEPROM so that
765 * FW or other port software does not interrupt.
766 */
767 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
768 hw->eeprom.use_eerd == false) {
769
770 /* Prepare the EEPROM for bit-bang reading */
771 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
772 return -E1000_ERR_EEPROM;
773 }
774
775 /* Eerd register EEPROM access requires no eeprom aquire/release */
776 if (eeprom->use_eerd == true)
777 return e1000_read_eeprom_eerd(hw, offset, words, data);
778
779 /* ich8lan does not support currently. if needed, please
780 * add corresponding code and functions.
781 */
782 #if 0
783 /* ICH EEPROM access is done via the ICH flash controller */
784 if (eeprom->type == e1000_eeprom_ich8)
785 return e1000_read_eeprom_ich8(hw, offset, words, data);
786 #endif
787 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
788 * acquired the EEPROM at this point, so any returns should relase it */
789 if (eeprom->type == e1000_eeprom_spi) {
790 uint16_t word_in;
791 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
792
793 if (e1000_spi_eeprom_ready(hw)) {
794 e1000_release_eeprom(hw);
795 return -E1000_ERR_EEPROM;
796 }
797
798 e1000_standby_eeprom(hw);
799
800 /* Some SPI eeproms use the 8th address bit embedded in
801 * the opcode */
802 if ((eeprom->address_bits == 8) && (offset >= 128))
803 read_opcode |= EEPROM_A8_OPCODE_SPI;
804
805 /* Send the READ command (opcode + addr) */
806 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
807 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
808 eeprom->address_bits);
809
810 /* Read the data. The address of the eeprom internally
811 * increments with each byte (spi) being read, saving on the
812 * overhead of eeprom setup and tear-down. The address
813 * counter will roll over if reading beyond the size of
814 * the eeprom, thus allowing the entire memory to be read
815 * starting from any offset. */
816 for (i = 0; i < words; i++) {
817 word_in = e1000_shift_in_ee_bits(hw, 16);
818 data[i] = (word_in >> 8) | (word_in << 8);
819 }
820 } else if (eeprom->type == e1000_eeprom_microwire) {
821 for (i = 0; i < words; i++) {
822 /* Send the READ command (opcode + addr) */
823 e1000_shift_out_ee_bits(hw,
824 EEPROM_READ_OPCODE_MICROWIRE,
825 eeprom->opcode_bits);
826 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
827 eeprom->address_bits);
828
829 /* Read the data. For microwire, each word requires
830 * the overhead of eeprom setup and tear-down. */
831 data[i] = e1000_shift_in_ee_bits(hw, 16);
832 e1000_standby_eeprom(hw);
833 }
834 }
835
836 /* End this read operation */
837 e1000_release_eeprom(hw);
838
839 return E1000_SUCCESS;
840 }
841
842 /******************************************************************************
843 * Verifies that the EEPROM has a valid checksum
844 *
845 * hw - Struct containing variables accessed by shared code
846 *
847 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
848 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
849 * valid.
850 *****************************************************************************/
851 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
852 {
853 uint16_t i, checksum, checksum_reg, *buf;
854
855 DEBUGFUNC();
856
857 /* Allocate a temporary buffer */
858 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
859 if (!buf) {
860 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
861 return -E1000_ERR_EEPROM;
862 }
863
864 /* Read the EEPROM */
865 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
866 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
867 return -E1000_ERR_EEPROM;
868 }
869
870 /* Compute the checksum */
871 checksum = 0;
872 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
873 checksum += buf[i];
874 checksum = ((uint16_t)EEPROM_SUM) - checksum;
875 checksum_reg = buf[i];
876
877 /* Verify it! */
878 if (checksum == checksum_reg)
879 return 0;
880
881 /* Hrm, verification failed, print an error */
882 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
883 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
884 checksum_reg, checksum);
885
886 return -E1000_ERR_EEPROM;
887 }
888
889 /*****************************************************************************
890 * Set PHY to class A mode
891 * Assumes the following operations will follow to enable the new class mode.
892 * 1. Do a PHY soft reset
893 * 2. Restart auto-negotiation or force link.
894 *
895 * hw - Struct containing variables accessed by shared code
896 ****************************************************************************/
897 static int32_t
898 e1000_set_phy_mode(struct e1000_hw *hw)
899 {
900 int32_t ret_val;
901 uint16_t eeprom_data;
902
903 DEBUGFUNC();
904
905 if ((hw->mac_type == e1000_82545_rev_3) &&
906 (hw->media_type == e1000_media_type_copper)) {
907 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
908 1, &eeprom_data);
909 if (ret_val)
910 return ret_val;
911
912 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
913 (eeprom_data & EEPROM_PHY_CLASS_A)) {
914 ret_val = e1000_write_phy_reg(hw,
915 M88E1000_PHY_PAGE_SELECT, 0x000B);
916 if (ret_val)
917 return ret_val;
918 ret_val = e1000_write_phy_reg(hw,
919 M88E1000_PHY_GEN_CONTROL, 0x8104);
920 if (ret_val)
921 return ret_val;
922
923 hw->phy_reset_disable = false;
924 }
925 }
926
927 return E1000_SUCCESS;
928 }
929
930 /***************************************************************************
931 *
932 * Obtaining software semaphore bit (SMBI) before resetting PHY.
933 *
934 * hw: Struct containing variables accessed by shared code
935 *
936 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
937 * E1000_SUCCESS at any other case.
938 *
939 ***************************************************************************/
940 static int32_t
941 e1000_get_software_semaphore(struct e1000_hw *hw)
942 {
943 int32_t timeout = hw->eeprom.word_size + 1;
944 uint32_t swsm;
945
946 DEBUGFUNC();
947
948 if (hw->mac_type != e1000_80003es2lan)
949 return E1000_SUCCESS;
950
951 while (timeout) {
952 swsm = E1000_READ_REG(hw, SWSM);
953 /* If SMBI bit cleared, it is now set and we hold
954 * the semaphore */
955 if (!(swsm & E1000_SWSM_SMBI))
956 break;
957 mdelay(1);
958 timeout--;
959 }
960
961 if (!timeout) {
962 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
963 return -E1000_ERR_RESET;
964 }
965
966 return E1000_SUCCESS;
967 }
968
969 /***************************************************************************
970 * This function clears HW semaphore bits.
971 *
972 * hw: Struct containing variables accessed by shared code
973 *
974 * returns: - None.
975 *
976 ***************************************************************************/
977 static void
978 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
979 {
980 uint32_t swsm;
981
982 DEBUGFUNC();
983
984 if (!hw->eeprom_semaphore_present)
985 return;
986
987 swsm = E1000_READ_REG(hw, SWSM);
988 if (hw->mac_type == e1000_80003es2lan) {
989 /* Release both semaphores. */
990 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
991 } else
992 swsm &= ~(E1000_SWSM_SWESMBI);
993 E1000_WRITE_REG(hw, SWSM, swsm);
994 }
995
996 /***************************************************************************
997 *
998 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
999 * adapter or Eeprom access.
1000 *
1001 * hw: Struct containing variables accessed by shared code
1002 *
1003 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1004 * E1000_SUCCESS at any other case.
1005 *
1006 ***************************************************************************/
1007 static int32_t
1008 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1009 {
1010 int32_t timeout;
1011 uint32_t swsm;
1012
1013 DEBUGFUNC();
1014
1015 if (!hw->eeprom_semaphore_present)
1016 return E1000_SUCCESS;
1017
1018 if (hw->mac_type == e1000_80003es2lan) {
1019 /* Get the SW semaphore. */
1020 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1021 return -E1000_ERR_EEPROM;
1022 }
1023
1024 /* Get the FW semaphore. */
1025 timeout = hw->eeprom.word_size + 1;
1026 while (timeout) {
1027 swsm = E1000_READ_REG(hw, SWSM);
1028 swsm |= E1000_SWSM_SWESMBI;
1029 E1000_WRITE_REG(hw, SWSM, swsm);
1030 /* if we managed to set the bit we got the semaphore. */
1031 swsm = E1000_READ_REG(hw, SWSM);
1032 if (swsm & E1000_SWSM_SWESMBI)
1033 break;
1034
1035 udelay(50);
1036 timeout--;
1037 }
1038
1039 if (!timeout) {
1040 /* Release semaphores */
1041 e1000_put_hw_eeprom_semaphore(hw);
1042 DEBUGOUT("Driver can't access the Eeprom - "
1043 "SWESMBI bit is set.\n");
1044 return -E1000_ERR_EEPROM;
1045 }
1046
1047 return E1000_SUCCESS;
1048 }
1049
1050 static int32_t
1051 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1052 {
1053 uint32_t swfw_sync = 0;
1054 uint32_t swmask = mask;
1055 uint32_t fwmask = mask << 16;
1056 int32_t timeout = 200;
1057
1058 DEBUGFUNC();
1059 while (timeout) {
1060 if (e1000_get_hw_eeprom_semaphore(hw))
1061 return -E1000_ERR_SWFW_SYNC;
1062
1063 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1064 if (!(swfw_sync & (fwmask | swmask)))
1065 break;
1066
1067 /* firmware currently using resource (fwmask) */
1068 /* or other software thread currently using resource (swmask) */
1069 e1000_put_hw_eeprom_semaphore(hw);
1070 mdelay(5);
1071 timeout--;
1072 }
1073
1074 if (!timeout) {
1075 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1076 return -E1000_ERR_SWFW_SYNC;
1077 }
1078
1079 swfw_sync |= swmask;
1080 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1081
1082 e1000_put_hw_eeprom_semaphore(hw);
1083 return E1000_SUCCESS;
1084 }
1085
1086 static bool e1000_is_second_port(struct e1000_hw *hw)
1087 {
1088 switch (hw->mac_type) {
1089 case e1000_80003es2lan:
1090 case e1000_82546:
1091 case e1000_82571:
1092 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1093 return true;
1094 /* Fallthrough */
1095 default:
1096 return false;
1097 }
1098 }
1099
1100 /******************************************************************************
1101 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1102 * second function of dual function devices
1103 *
1104 * nic - Struct containing variables accessed by shared code
1105 *****************************************************************************/
1106 static int
1107 e1000_read_mac_addr(struct eth_device *nic)
1108 {
1109 struct e1000_hw *hw = nic->priv;
1110 uint16_t offset;
1111 uint16_t eeprom_data;
1112 int i;
1113
1114 DEBUGFUNC();
1115
1116 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1117 offset = i >> 1;
1118 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1119 DEBUGOUT("EEPROM Read Error\n");
1120 return -E1000_ERR_EEPROM;
1121 }
1122 nic->enetaddr[i] = eeprom_data & 0xff;
1123 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1124 }
1125
1126 /* Invert the last bit if this is the second device */
1127 if (e1000_is_second_port(hw))
1128 nic->enetaddr[5] ^= 1;
1129
1130 #ifdef CONFIG_E1000_FALLBACK_MAC
1131 if (!is_valid_ether_addr(nic->enetaddr)) {
1132 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1133
1134 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1135 }
1136 #endif
1137 return 0;
1138 }
1139
1140 /******************************************************************************
1141 * Initializes receive address filters.
1142 *
1143 * hw - Struct containing variables accessed by shared code
1144 *
1145 * Places the MAC address in receive address register 0 and clears the rest
1146 * of the receive addresss registers. Clears the multicast table. Assumes
1147 * the receiver is in reset when the routine is called.
1148 *****************************************************************************/
1149 static void
1150 e1000_init_rx_addrs(struct eth_device *nic)
1151 {
1152 struct e1000_hw *hw = nic->priv;
1153 uint32_t i;
1154 uint32_t addr_low;
1155 uint32_t addr_high;
1156
1157 DEBUGFUNC();
1158
1159 /* Setup the receive address. */
1160 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1161 addr_low = (nic->enetaddr[0] |
1162 (nic->enetaddr[1] << 8) |
1163 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1164
1165 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1166
1167 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1168 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1169
1170 /* Zero out the other 15 receive addresses. */
1171 DEBUGOUT("Clearing RAR[1-15]\n");
1172 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1173 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1174 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1175 }
1176 }
1177
1178 /******************************************************************************
1179 * Clears the VLAN filer table
1180 *
1181 * hw - Struct containing variables accessed by shared code
1182 *****************************************************************************/
1183 static void
1184 e1000_clear_vfta(struct e1000_hw *hw)
1185 {
1186 uint32_t offset;
1187
1188 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1189 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1190 }
1191
1192 /******************************************************************************
1193 * Set the mac type member in the hw struct.
1194 *
1195 * hw - Struct containing variables accessed by shared code
1196 *****************************************************************************/
1197 int32_t
1198 e1000_set_mac_type(struct e1000_hw *hw)
1199 {
1200 DEBUGFUNC();
1201
1202 switch (hw->device_id) {
1203 case E1000_DEV_ID_82542:
1204 switch (hw->revision_id) {
1205 case E1000_82542_2_0_REV_ID:
1206 hw->mac_type = e1000_82542_rev2_0;
1207 break;
1208 case E1000_82542_2_1_REV_ID:
1209 hw->mac_type = e1000_82542_rev2_1;
1210 break;
1211 default:
1212 /* Invalid 82542 revision ID */
1213 return -E1000_ERR_MAC_TYPE;
1214 }
1215 break;
1216 case E1000_DEV_ID_82543GC_FIBER:
1217 case E1000_DEV_ID_82543GC_COPPER:
1218 hw->mac_type = e1000_82543;
1219 break;
1220 case E1000_DEV_ID_82544EI_COPPER:
1221 case E1000_DEV_ID_82544EI_FIBER:
1222 case E1000_DEV_ID_82544GC_COPPER:
1223 case E1000_DEV_ID_82544GC_LOM:
1224 hw->mac_type = e1000_82544;
1225 break;
1226 case E1000_DEV_ID_82540EM:
1227 case E1000_DEV_ID_82540EM_LOM:
1228 case E1000_DEV_ID_82540EP:
1229 case E1000_DEV_ID_82540EP_LOM:
1230 case E1000_DEV_ID_82540EP_LP:
1231 hw->mac_type = e1000_82540;
1232 break;
1233 case E1000_DEV_ID_82545EM_COPPER:
1234 case E1000_DEV_ID_82545EM_FIBER:
1235 hw->mac_type = e1000_82545;
1236 break;
1237 case E1000_DEV_ID_82545GM_COPPER:
1238 case E1000_DEV_ID_82545GM_FIBER:
1239 case E1000_DEV_ID_82545GM_SERDES:
1240 hw->mac_type = e1000_82545_rev_3;
1241 break;
1242 case E1000_DEV_ID_82546EB_COPPER:
1243 case E1000_DEV_ID_82546EB_FIBER:
1244 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1245 hw->mac_type = e1000_82546;
1246 break;
1247 case E1000_DEV_ID_82546GB_COPPER:
1248 case E1000_DEV_ID_82546GB_FIBER:
1249 case E1000_DEV_ID_82546GB_SERDES:
1250 case E1000_DEV_ID_82546GB_PCIE:
1251 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1252 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1253 hw->mac_type = e1000_82546_rev_3;
1254 break;
1255 case E1000_DEV_ID_82541EI:
1256 case E1000_DEV_ID_82541EI_MOBILE:
1257 case E1000_DEV_ID_82541ER_LOM:
1258 hw->mac_type = e1000_82541;
1259 break;
1260 case E1000_DEV_ID_82541ER:
1261 case E1000_DEV_ID_82541GI:
1262 case E1000_DEV_ID_82541GI_LF:
1263 case E1000_DEV_ID_82541GI_MOBILE:
1264 hw->mac_type = e1000_82541_rev_2;
1265 break;
1266 case E1000_DEV_ID_82547EI:
1267 case E1000_DEV_ID_82547EI_MOBILE:
1268 hw->mac_type = e1000_82547;
1269 break;
1270 case E1000_DEV_ID_82547GI:
1271 hw->mac_type = e1000_82547_rev_2;
1272 break;
1273 case E1000_DEV_ID_82571EB_COPPER:
1274 case E1000_DEV_ID_82571EB_FIBER:
1275 case E1000_DEV_ID_82571EB_SERDES:
1276 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1277 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1278 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1279 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1280 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1281 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1282 hw->mac_type = e1000_82571;
1283 break;
1284 case E1000_DEV_ID_82572EI_COPPER:
1285 case E1000_DEV_ID_82572EI_FIBER:
1286 case E1000_DEV_ID_82572EI_SERDES:
1287 case E1000_DEV_ID_82572EI:
1288 hw->mac_type = e1000_82572;
1289 break;
1290 case E1000_DEV_ID_82573E:
1291 case E1000_DEV_ID_82573E_IAMT:
1292 case E1000_DEV_ID_82573L:
1293 hw->mac_type = e1000_82573;
1294 break;
1295 case E1000_DEV_ID_82574L:
1296 hw->mac_type = e1000_82574;
1297 break;
1298 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1299 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1300 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1301 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1302 hw->mac_type = e1000_80003es2lan;
1303 break;
1304 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1305 case E1000_DEV_ID_ICH8_IGP_AMT:
1306 case E1000_DEV_ID_ICH8_IGP_C:
1307 case E1000_DEV_ID_ICH8_IFE:
1308 case E1000_DEV_ID_ICH8_IFE_GT:
1309 case E1000_DEV_ID_ICH8_IFE_G:
1310 case E1000_DEV_ID_ICH8_IGP_M:
1311 hw->mac_type = e1000_ich8lan;
1312 break;
1313 default:
1314 /* Should never have loaded on this device */
1315 return -E1000_ERR_MAC_TYPE;
1316 }
1317 return E1000_SUCCESS;
1318 }
1319
1320 /******************************************************************************
1321 * Reset the transmit and receive units; mask and clear all interrupts.
1322 *
1323 * hw - Struct containing variables accessed by shared code
1324 *****************************************************************************/
1325 void
1326 e1000_reset_hw(struct e1000_hw *hw)
1327 {
1328 uint32_t ctrl;
1329 uint32_t ctrl_ext;
1330 uint32_t manc;
1331 uint32_t pba = 0;
1332
1333 DEBUGFUNC();
1334
1335 /* get the correct pba value for both PCI and PCIe*/
1336 if (hw->mac_type < e1000_82571)
1337 pba = E1000_DEFAULT_PCI_PBA;
1338 else
1339 pba = E1000_DEFAULT_PCIE_PBA;
1340
1341 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1342 if (hw->mac_type == e1000_82542_rev2_0) {
1343 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1344 pci_write_config_word(hw->pdev, PCI_COMMAND,
1345 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1346 }
1347
1348 /* Clear interrupt mask to stop board from generating interrupts */
1349 DEBUGOUT("Masking off all interrupts\n");
1350 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1351
1352 /* Disable the Transmit and Receive units. Then delay to allow
1353 * any pending transactions to complete before we hit the MAC with
1354 * the global reset.
1355 */
1356 E1000_WRITE_REG(hw, RCTL, 0);
1357 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1358 E1000_WRITE_FLUSH(hw);
1359
1360 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1361 hw->tbi_compatibility_on = false;
1362
1363 /* Delay to allow any outstanding PCI transactions to complete before
1364 * resetting the device
1365 */
1366 mdelay(10);
1367
1368 /* Issue a global reset to the MAC. This will reset the chip's
1369 * transmit, receive, DMA, and link units. It will not effect
1370 * the current PCI configuration. The global reset bit is self-
1371 * clearing, and should clear within a microsecond.
1372 */
1373 DEBUGOUT("Issuing a global reset to MAC\n");
1374 ctrl = E1000_READ_REG(hw, CTRL);
1375
1376 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1377
1378 /* Force a reload from the EEPROM if necessary */
1379 if (hw->mac_type < e1000_82540) {
1380 /* Wait for reset to complete */
1381 udelay(10);
1382 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1383 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1384 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1385 E1000_WRITE_FLUSH(hw);
1386 /* Wait for EEPROM reload */
1387 mdelay(2);
1388 } else {
1389 /* Wait for EEPROM reload (it happens automatically) */
1390 mdelay(4);
1391 /* Dissable HW ARPs on ASF enabled adapters */
1392 manc = E1000_READ_REG(hw, MANC);
1393 manc &= ~(E1000_MANC_ARP_EN);
1394 E1000_WRITE_REG(hw, MANC, manc);
1395 }
1396
1397 /* Clear interrupt mask to stop board from generating interrupts */
1398 DEBUGOUT("Masking off all interrupts\n");
1399 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1400
1401 /* Clear any pending interrupt events. */
1402 E1000_READ_REG(hw, ICR);
1403
1404 /* If MWI was previously enabled, reenable it. */
1405 if (hw->mac_type == e1000_82542_rev2_0) {
1406 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1407 }
1408 E1000_WRITE_REG(hw, PBA, pba);
1409 }
1410
1411 /******************************************************************************
1412 *
1413 * Initialize a number of hardware-dependent bits
1414 *
1415 * hw: Struct containing variables accessed by shared code
1416 *
1417 * This function contains hardware limitation workarounds for PCI-E adapters
1418 *
1419 *****************************************************************************/
1420 static void
1421 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1422 {
1423 if ((hw->mac_type >= e1000_82571) &&
1424 (!hw->initialize_hw_bits_disable)) {
1425 /* Settings common to all PCI-express silicon */
1426 uint32_t reg_ctrl, reg_ctrl_ext;
1427 uint32_t reg_tarc0, reg_tarc1;
1428 uint32_t reg_tctl;
1429 uint32_t reg_txdctl, reg_txdctl1;
1430
1431 /* link autonegotiation/sync workarounds */
1432 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1433 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1434
1435 /* Enable not-done TX descriptor counting */
1436 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1437 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1438 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1439
1440 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1441 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1442 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1443
1444 switch (hw->mac_type) {
1445 case e1000_82571:
1446 case e1000_82572:
1447 /* Clear PHY TX compatible mode bits */
1448 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1449 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1450
1451 /* link autonegotiation/sync workarounds */
1452 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1453
1454 /* TX ring control fixes */
1455 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1456
1457 /* Multiple read bit is reversed polarity */
1458 reg_tctl = E1000_READ_REG(hw, TCTL);
1459 if (reg_tctl & E1000_TCTL_MULR)
1460 reg_tarc1 &= ~(1 << 28);
1461 else
1462 reg_tarc1 |= (1 << 28);
1463
1464 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1465 break;
1466 case e1000_82573:
1467 case e1000_82574:
1468 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1469 reg_ctrl_ext &= ~(1 << 23);
1470 reg_ctrl_ext |= (1 << 22);
1471
1472 /* TX byte count fix */
1473 reg_ctrl = E1000_READ_REG(hw, CTRL);
1474 reg_ctrl &= ~(1 << 29);
1475
1476 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1477 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1478 break;
1479 case e1000_80003es2lan:
1480 /* improve small packet performace for fiber/serdes */
1481 if ((hw->media_type == e1000_media_type_fiber)
1482 || (hw->media_type ==
1483 e1000_media_type_internal_serdes)) {
1484 reg_tarc0 &= ~(1 << 20);
1485 }
1486
1487 /* Multiple read bit is reversed polarity */
1488 reg_tctl = E1000_READ_REG(hw, TCTL);
1489 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1490 if (reg_tctl & E1000_TCTL_MULR)
1491 reg_tarc1 &= ~(1 << 28);
1492 else
1493 reg_tarc1 |= (1 << 28);
1494
1495 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1496 break;
1497 case e1000_ich8lan:
1498 /* Reduce concurrent DMA requests to 3 from 4 */
1499 if ((hw->revision_id < 3) ||
1500 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1501 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1502 reg_tarc0 |= ((1 << 29)|(1 << 28));
1503
1504 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1505 reg_ctrl_ext |= (1 << 22);
1506 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1507
1508 /* workaround TX hang with TSO=on */
1509 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1510
1511 /* Multiple read bit is reversed polarity */
1512 reg_tctl = E1000_READ_REG(hw, TCTL);
1513 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1514 if (reg_tctl & E1000_TCTL_MULR)
1515 reg_tarc1 &= ~(1 << 28);
1516 else
1517 reg_tarc1 |= (1 << 28);
1518
1519 /* workaround TX hang with TSO=on */
1520 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1521
1522 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1523 break;
1524 default:
1525 break;
1526 }
1527
1528 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1529 }
1530 }
1531
1532 /******************************************************************************
1533 * Performs basic configuration of the adapter.
1534 *
1535 * hw - Struct containing variables accessed by shared code
1536 *
1537 * Assumes that the controller has previously been reset and is in a
1538 * post-reset uninitialized state. Initializes the receive address registers,
1539 * multicast table, and VLAN filter table. Calls routines to setup link
1540 * configuration and flow control settings. Clears all on-chip counters. Leaves
1541 * the transmit and receive units disabled and uninitialized.
1542 *****************************************************************************/
1543 static int
1544 e1000_init_hw(struct eth_device *nic)
1545 {
1546 struct e1000_hw *hw = nic->priv;
1547 uint32_t ctrl;
1548 uint32_t i;
1549 int32_t ret_val;
1550 uint16_t pcix_cmd_word;
1551 uint16_t pcix_stat_hi_word;
1552 uint16_t cmd_mmrbc;
1553 uint16_t stat_mmrbc;
1554 uint32_t mta_size;
1555 uint32_t reg_data;
1556 uint32_t ctrl_ext;
1557 DEBUGFUNC();
1558 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1559 if ((hw->mac_type == e1000_ich8lan) &&
1560 ((hw->revision_id < 3) ||
1561 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1562 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1563 reg_data = E1000_READ_REG(hw, STATUS);
1564 reg_data &= ~0x80000000;
1565 E1000_WRITE_REG(hw, STATUS, reg_data);
1566 }
1567 /* Do not need initialize Identification LED */
1568
1569 /* Set the media type and TBI compatibility */
1570 e1000_set_media_type(hw);
1571
1572 /* Must be called after e1000_set_media_type
1573 * because media_type is used */
1574 e1000_initialize_hardware_bits(hw);
1575
1576 /* Disabling VLAN filtering. */
1577 DEBUGOUT("Initializing the IEEE VLAN\n");
1578 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1579 if (hw->mac_type != e1000_ich8lan) {
1580 if (hw->mac_type < e1000_82545_rev_3)
1581 E1000_WRITE_REG(hw, VET, 0);
1582 e1000_clear_vfta(hw);
1583 }
1584
1585 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1586 if (hw->mac_type == e1000_82542_rev2_0) {
1587 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1588 pci_write_config_word(hw->pdev, PCI_COMMAND,
1589 hw->
1590 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1591 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1592 E1000_WRITE_FLUSH(hw);
1593 mdelay(5);
1594 }
1595
1596 /* Setup the receive address. This involves initializing all of the Receive
1597 * Address Registers (RARs 0 - 15).
1598 */
1599 e1000_init_rx_addrs(nic);
1600
1601 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1602 if (hw->mac_type == e1000_82542_rev2_0) {
1603 E1000_WRITE_REG(hw, RCTL, 0);
1604 E1000_WRITE_FLUSH(hw);
1605 mdelay(1);
1606 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1607 }
1608
1609 /* Zero out the Multicast HASH table */
1610 DEBUGOUT("Zeroing the MTA\n");
1611 mta_size = E1000_MC_TBL_SIZE;
1612 if (hw->mac_type == e1000_ich8lan)
1613 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1614 for (i = 0; i < mta_size; i++) {
1615 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1616 /* use write flush to prevent Memory Write Block (MWB) from
1617 * occuring when accessing our register space */
1618 E1000_WRITE_FLUSH(hw);
1619 }
1620 #if 0
1621 /* Set the PCI priority bit correctly in the CTRL register. This
1622 * determines if the adapter gives priority to receives, or if it
1623 * gives equal priority to transmits and receives. Valid only on
1624 * 82542 and 82543 silicon.
1625 */
1626 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1627 ctrl = E1000_READ_REG(hw, CTRL);
1628 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1629 }
1630 #endif
1631 switch (hw->mac_type) {
1632 case e1000_82545_rev_3:
1633 case e1000_82546_rev_3:
1634 break;
1635 default:
1636 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1637 if (hw->bus_type == e1000_bus_type_pcix) {
1638 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1639 &pcix_cmd_word);
1640 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1641 &pcix_stat_hi_word);
1642 cmd_mmrbc =
1643 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1644 PCIX_COMMAND_MMRBC_SHIFT;
1645 stat_mmrbc =
1646 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1647 PCIX_STATUS_HI_MMRBC_SHIFT;
1648 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1649 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1650 if (cmd_mmrbc > stat_mmrbc) {
1651 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1652 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1653 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1654 pcix_cmd_word);
1655 }
1656 }
1657 break;
1658 }
1659
1660 /* More time needed for PHY to initialize */
1661 if (hw->mac_type == e1000_ich8lan)
1662 mdelay(15);
1663
1664 /* Call a subroutine to configure the link and setup flow control. */
1665 ret_val = e1000_setup_link(nic);
1666
1667 /* Set the transmit descriptor write-back policy */
1668 if (hw->mac_type > e1000_82544) {
1669 ctrl = E1000_READ_REG(hw, TXDCTL);
1670 ctrl =
1671 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1672 E1000_TXDCTL_FULL_TX_DESC_WB;
1673 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1674 }
1675
1676 /* Set the receive descriptor write back policy */
1677
1678 if (hw->mac_type >= e1000_82571) {
1679 ctrl = E1000_READ_REG(hw, RXDCTL);
1680 ctrl =
1681 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1682 E1000_RXDCTL_FULL_RX_DESC_WB;
1683 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1684 }
1685
1686 switch (hw->mac_type) {
1687 default:
1688 break;
1689 case e1000_80003es2lan:
1690 /* Enable retransmit on late collisions */
1691 reg_data = E1000_READ_REG(hw, TCTL);
1692 reg_data |= E1000_TCTL_RTLC;
1693 E1000_WRITE_REG(hw, TCTL, reg_data);
1694
1695 /* Configure Gigabit Carry Extend Padding */
1696 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1697 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1698 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1699 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1700
1701 /* Configure Transmit Inter-Packet Gap */
1702 reg_data = E1000_READ_REG(hw, TIPG);
1703 reg_data &= ~E1000_TIPG_IPGT_MASK;
1704 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1705 E1000_WRITE_REG(hw, TIPG, reg_data);
1706
1707 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1708 reg_data &= ~0x00100000;
1709 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1710 /* Fall through */
1711 case e1000_82571:
1712 case e1000_82572:
1713 case e1000_ich8lan:
1714 ctrl = E1000_READ_REG(hw, TXDCTL1);
1715 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1716 | E1000_TXDCTL_FULL_TX_DESC_WB;
1717 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1718 break;
1719 case e1000_82573:
1720 case e1000_82574:
1721 reg_data = E1000_READ_REG(hw, GCR);
1722 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1723 E1000_WRITE_REG(hw, GCR, reg_data);
1724 }
1725
1726 #if 0
1727 /* Clear all of the statistics registers (clear on read). It is
1728 * important that we do this after we have tried to establish link
1729 * because the symbol error count will increment wildly if there
1730 * is no link.
1731 */
1732 e1000_clear_hw_cntrs(hw);
1733
1734 /* ICH8 No-snoop bits are opposite polarity.
1735 * Set to snoop by default after reset. */
1736 if (hw->mac_type == e1000_ich8lan)
1737 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1738 #endif
1739
1740 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1741 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1742 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1743 /* Relaxed ordering must be disabled to avoid a parity
1744 * error crash in a PCI slot. */
1745 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1746 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1747 }
1748
1749 return ret_val;
1750 }
1751
1752 /******************************************************************************
1753 * Configures flow control and link settings.
1754 *
1755 * hw - Struct containing variables accessed by shared code
1756 *
1757 * Determines which flow control settings to use. Calls the apropriate media-
1758 * specific link configuration function. Configures the flow control settings.
1759 * Assuming the adapter has a valid link partner, a valid link should be
1760 * established. Assumes the hardware has previously been reset and the
1761 * transmitter and receiver are not enabled.
1762 *****************************************************************************/
1763 static int
1764 e1000_setup_link(struct eth_device *nic)
1765 {
1766 struct e1000_hw *hw = nic->priv;
1767 uint32_t ctrl_ext;
1768 int32_t ret_val;
1769 uint16_t eeprom_data;
1770
1771 DEBUGFUNC();
1772
1773 /* In the case of the phy reset being blocked, we already have a link.
1774 * We do not have to set it up again. */
1775 if (e1000_check_phy_reset_block(hw))
1776 return E1000_SUCCESS;
1777
1778 /* Read and store word 0x0F of the EEPROM. This word contains bits
1779 * that determine the hardware's default PAUSE (flow control) mode,
1780 * a bit that determines whether the HW defaults to enabling or
1781 * disabling auto-negotiation, and the direction of the
1782 * SW defined pins. If there is no SW over-ride of the flow
1783 * control setting, then the variable hw->fc will
1784 * be initialized based on a value in the EEPROM.
1785 */
1786 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1787 &eeprom_data) < 0) {
1788 DEBUGOUT("EEPROM Read Error\n");
1789 return -E1000_ERR_EEPROM;
1790 }
1791
1792 if (hw->fc == e1000_fc_default) {
1793 switch (hw->mac_type) {
1794 case e1000_ich8lan:
1795 case e1000_82573:
1796 case e1000_82574:
1797 hw->fc = e1000_fc_full;
1798 break;
1799 default:
1800 ret_val = e1000_read_eeprom(hw,
1801 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1802 if (ret_val) {
1803 DEBUGOUT("EEPROM Read Error\n");
1804 return -E1000_ERR_EEPROM;
1805 }
1806 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1807 hw->fc = e1000_fc_none;
1808 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1809 EEPROM_WORD0F_ASM_DIR)
1810 hw->fc = e1000_fc_tx_pause;
1811 else
1812 hw->fc = e1000_fc_full;
1813 break;
1814 }
1815 }
1816
1817 /* We want to save off the original Flow Control configuration just
1818 * in case we get disconnected and then reconnected into a different
1819 * hub or switch with different Flow Control capabilities.
1820 */
1821 if (hw->mac_type == e1000_82542_rev2_0)
1822 hw->fc &= (~e1000_fc_tx_pause);
1823
1824 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1825 hw->fc &= (~e1000_fc_rx_pause);
1826
1827 hw->original_fc = hw->fc;
1828
1829 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1830
1831 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1832 * polarity value for the SW controlled pins, and setup the
1833 * Extended Device Control reg with that info.
1834 * This is needed because one of the SW controlled pins is used for
1835 * signal detection. So this should be done before e1000_setup_pcs_link()
1836 * or e1000_phy_setup() is called.
1837 */
1838 if (hw->mac_type == e1000_82543) {
1839 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1840 SWDPIO__EXT_SHIFT);
1841 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1842 }
1843
1844 /* Call the necessary subroutine to configure the link. */
1845 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1846 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1847 if (ret_val < 0) {
1848 return ret_val;
1849 }
1850
1851 /* Initialize the flow control address, type, and PAUSE timer
1852 * registers to their default values. This is done even if flow
1853 * control is disabled, because it does not hurt anything to
1854 * initialize these registers.
1855 */
1856 DEBUGOUT("Initializing the Flow Control address, type"
1857 "and timer regs\n");
1858
1859 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1860 if (hw->mac_type != e1000_ich8lan) {
1861 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1862 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1863 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1864 }
1865
1866 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1867
1868 /* Set the flow control receive threshold registers. Normally,
1869 * these registers will be set to a default threshold that may be
1870 * adjusted later by the driver's runtime code. However, if the
1871 * ability to transmit pause frames in not enabled, then these
1872 * registers will be set to 0.
1873 */
1874 if (!(hw->fc & e1000_fc_tx_pause)) {
1875 E1000_WRITE_REG(hw, FCRTL, 0);
1876 E1000_WRITE_REG(hw, FCRTH, 0);
1877 } else {
1878 /* We need to set up the Receive Threshold high and low water marks
1879 * as well as (optionally) enabling the transmission of XON frames.
1880 */
1881 if (hw->fc_send_xon) {
1882 E1000_WRITE_REG(hw, FCRTL,
1883 (hw->fc_low_water | E1000_FCRTL_XONE));
1884 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1885 } else {
1886 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1887 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1888 }
1889 }
1890 return ret_val;
1891 }
1892
1893 /******************************************************************************
1894 * Sets up link for a fiber based adapter
1895 *
1896 * hw - Struct containing variables accessed by shared code
1897 *
1898 * Manipulates Physical Coding Sublayer functions in order to configure
1899 * link. Assumes the hardware has been previously reset and the transmitter
1900 * and receiver are not enabled.
1901 *****************************************************************************/
1902 static int
1903 e1000_setup_fiber_link(struct eth_device *nic)
1904 {
1905 struct e1000_hw *hw = nic->priv;
1906 uint32_t ctrl;
1907 uint32_t status;
1908 uint32_t txcw = 0;
1909 uint32_t i;
1910 uint32_t signal;
1911 int32_t ret_val;
1912
1913 DEBUGFUNC();
1914 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1915 * set when the optics detect a signal. On older adapters, it will be
1916 * cleared when there is a signal
1917 */
1918 ctrl = E1000_READ_REG(hw, CTRL);
1919 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1920 signal = E1000_CTRL_SWDPIN1;
1921 else
1922 signal = 0;
1923
1924 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1925 ctrl);
1926 /* Take the link out of reset */
1927 ctrl &= ~(E1000_CTRL_LRST);
1928
1929 e1000_config_collision_dist(hw);
1930
1931 /* Check for a software override of the flow control settings, and setup
1932 * the device accordingly. If auto-negotiation is enabled, then software
1933 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1934 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1935 * auto-negotiation is disabled, then software will have to manually
1936 * configure the two flow control enable bits in the CTRL register.
1937 *
1938 * The possible values of the "fc" parameter are:
1939 * 0: Flow control is completely disabled
1940 * 1: Rx flow control is enabled (we can receive pause frames, but
1941 * not send pause frames).
1942 * 2: Tx flow control is enabled (we can send pause frames but we do
1943 * not support receiving pause frames).
1944 * 3: Both Rx and TX flow control (symmetric) are enabled.
1945 */
1946 switch (hw->fc) {
1947 case e1000_fc_none:
1948 /* Flow control is completely disabled by a software over-ride. */
1949 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1950 break;
1951 case e1000_fc_rx_pause:
1952 /* RX Flow control is enabled and TX Flow control is disabled by a
1953 * software over-ride. Since there really isn't a way to advertise
1954 * that we are capable of RX Pause ONLY, we will advertise that we
1955 * support both symmetric and asymmetric RX PAUSE. Later, we will
1956 * disable the adapter's ability to send PAUSE frames.
1957 */
1958 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1959 break;
1960 case e1000_fc_tx_pause:
1961 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1962 * software over-ride.
1963 */
1964 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1965 break;
1966 case e1000_fc_full:
1967 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1968 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1969 break;
1970 default:
1971 DEBUGOUT("Flow control param set incorrectly\n");
1972 return -E1000_ERR_CONFIG;
1973 break;
1974 }
1975
1976 /* Since auto-negotiation is enabled, take the link out of reset (the link
1977 * will be in reset, because we previously reset the chip). This will
1978 * restart auto-negotiation. If auto-neogtiation is successful then the
1979 * link-up status bit will be set and the flow control enable bits (RFCE
1980 * and TFCE) will be set according to their negotiated value.
1981 */
1982 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1983
1984 E1000_WRITE_REG(hw, TXCW, txcw);
1985 E1000_WRITE_REG(hw, CTRL, ctrl);
1986 E1000_WRITE_FLUSH(hw);
1987
1988 hw->txcw = txcw;
1989 mdelay(1);
1990
1991 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1992 * indication in the Device Status Register. Time-out if a link isn't
1993 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1994 * less than 500 milliseconds even if the other end is doing it in SW).
1995 */
1996 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1997 DEBUGOUT("Looking for Link\n");
1998 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1999 mdelay(10);
2000 status = E1000_READ_REG(hw, STATUS);
2001 if (status & E1000_STATUS_LU)
2002 break;
2003 }
2004 if (i == (LINK_UP_TIMEOUT / 10)) {
2005 /* AutoNeg failed to achieve a link, so we'll call
2006 * e1000_check_for_link. This routine will force the link up if we
2007 * detect a signal. This will allow us to communicate with
2008 * non-autonegotiating link partners.
2009 */
2010 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2011 hw->autoneg_failed = 1;
2012 ret_val = e1000_check_for_link(nic);
2013 if (ret_val < 0) {
2014 DEBUGOUT("Error while checking for link\n");
2015 return ret_val;
2016 }
2017 hw->autoneg_failed = 0;
2018 } else {
2019 hw->autoneg_failed = 0;
2020 DEBUGOUT("Valid Link Found\n");
2021 }
2022 } else {
2023 DEBUGOUT("No Signal Detected\n");
2024 return -E1000_ERR_NOLINK;
2025 }
2026 return 0;
2027 }
2028
2029 /******************************************************************************
2030 * Make sure we have a valid PHY and change PHY mode before link setup.
2031 *
2032 * hw - Struct containing variables accessed by shared code
2033 ******************************************************************************/
2034 static int32_t
2035 e1000_copper_link_preconfig(struct e1000_hw *hw)
2036 {
2037 uint32_t ctrl;
2038 int32_t ret_val;
2039 uint16_t phy_data;
2040
2041 DEBUGFUNC();
2042
2043 ctrl = E1000_READ_REG(hw, CTRL);
2044 /* With 82543, we need to force speed and duplex on the MAC equal to what
2045 * the PHY speed and duplex configuration is. In addition, we need to
2046 * perform a hardware reset on the PHY to take it out of reset.
2047 */
2048 if (hw->mac_type > e1000_82543) {
2049 ctrl |= E1000_CTRL_SLU;
2050 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2051 E1000_WRITE_REG(hw, CTRL, ctrl);
2052 } else {
2053 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2054 | E1000_CTRL_SLU);
2055 E1000_WRITE_REG(hw, CTRL, ctrl);
2056 ret_val = e1000_phy_hw_reset(hw);
2057 if (ret_val)
2058 return ret_val;
2059 }
2060
2061 /* Make sure we have a valid PHY */
2062 ret_val = e1000_detect_gig_phy(hw);
2063 if (ret_val) {
2064 DEBUGOUT("Error, did not detect valid phy.\n");
2065 return ret_val;
2066 }
2067 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2068
2069 /* Set PHY to class A mode (if necessary) */
2070 ret_val = e1000_set_phy_mode(hw);
2071 if (ret_val)
2072 return ret_val;
2073 if ((hw->mac_type == e1000_82545_rev_3) ||
2074 (hw->mac_type == e1000_82546_rev_3)) {
2075 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2076 &phy_data);
2077 phy_data |= 0x00000008;
2078 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2079 phy_data);
2080 }
2081
2082 if (hw->mac_type <= e1000_82543 ||
2083 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2084 hw->mac_type == e1000_82541_rev_2
2085 || hw->mac_type == e1000_82547_rev_2)
2086 hw->phy_reset_disable = false;
2087
2088 return E1000_SUCCESS;
2089 }
2090
2091 /*****************************************************************************
2092 *
2093 * This function sets the lplu state according to the active flag. When
2094 * activating lplu this function also disables smart speed and vise versa.
2095 * lplu will not be activated unless the device autonegotiation advertisment
2096 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2097 * hw: Struct containing variables accessed by shared code
2098 * active - true to enable lplu false to disable lplu.
2099 *
2100 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2101 * E1000_SUCCESS at any other case.
2102 *
2103 ****************************************************************************/
2104
2105 static int32_t
2106 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2107 {
2108 uint32_t phy_ctrl = 0;
2109 int32_t ret_val;
2110 uint16_t phy_data;
2111 DEBUGFUNC();
2112
2113 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2114 && hw->phy_type != e1000_phy_igp_3)
2115 return E1000_SUCCESS;
2116
2117 /* During driver activity LPLU should not be used or it will attain link
2118 * from the lowest speeds starting from 10Mbps. The capability is used
2119 * for Dx transitions and states */
2120 if (hw->mac_type == e1000_82541_rev_2
2121 || hw->mac_type == e1000_82547_rev_2) {
2122 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2123 &phy_data);
2124 if (ret_val)
2125 return ret_val;
2126 } else if (hw->mac_type == e1000_ich8lan) {
2127 /* MAC writes into PHY register based on the state transition
2128 * and start auto-negotiation. SW driver can overwrite the
2129 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2130 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2131 } else {
2132 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2133 &phy_data);
2134 if (ret_val)
2135 return ret_val;
2136 }
2137
2138 if (!active) {
2139 if (hw->mac_type == e1000_82541_rev_2 ||
2140 hw->mac_type == e1000_82547_rev_2) {
2141 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2142 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2143 phy_data);
2144 if (ret_val)
2145 return ret_val;
2146 } else {
2147 if (hw->mac_type == e1000_ich8lan) {
2148 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2149 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2150 } else {
2151 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2152 ret_val = e1000_write_phy_reg(hw,
2153 IGP02E1000_PHY_POWER_MGMT, phy_data);
2154 if (ret_val)
2155 return ret_val;
2156 }
2157 }
2158
2159 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2160 * Dx states where the power conservation is most important. During
2161 * driver activity we should enable SmartSpeed, so performance is
2162 * maintained. */
2163 if (hw->smart_speed == e1000_smart_speed_on) {
2164 ret_val = e1000_read_phy_reg(hw,
2165 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2166 if (ret_val)
2167 return ret_val;
2168
2169 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2170 ret_val = e1000_write_phy_reg(hw,
2171 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2172 if (ret_val)
2173 return ret_val;
2174 } else if (hw->smart_speed == e1000_smart_speed_off) {
2175 ret_val = e1000_read_phy_reg(hw,
2176 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2177 if (ret_val)
2178 return ret_val;
2179
2180 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2181 ret_val = e1000_write_phy_reg(hw,
2182 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2183 if (ret_val)
2184 return ret_val;
2185 }
2186
2187 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2188 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2189 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2190
2191 if (hw->mac_type == e1000_82541_rev_2 ||
2192 hw->mac_type == e1000_82547_rev_2) {
2193 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2194 ret_val = e1000_write_phy_reg(hw,
2195 IGP01E1000_GMII_FIFO, phy_data);
2196 if (ret_val)
2197 return ret_val;
2198 } else {
2199 if (hw->mac_type == e1000_ich8lan) {
2200 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2201 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2202 } else {
2203 phy_data |= IGP02E1000_PM_D3_LPLU;
2204 ret_val = e1000_write_phy_reg(hw,
2205 IGP02E1000_PHY_POWER_MGMT, phy_data);
2206 if (ret_val)
2207 return ret_val;
2208 }
2209 }
2210
2211 /* When LPLU is enabled we should disable SmartSpeed */
2212 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2213 &phy_data);
2214 if (ret_val)
2215 return ret_val;
2216
2217 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2218 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2219 phy_data);
2220 if (ret_val)
2221 return ret_val;
2222 }
2223 return E1000_SUCCESS;
2224 }
2225
2226 /*****************************************************************************
2227 *
2228 * This function sets the lplu d0 state according to the active flag. When
2229 * activating lplu this function also disables smart speed and vise versa.
2230 * lplu will not be activated unless the device autonegotiation advertisment
2231 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2232 * hw: Struct containing variables accessed by shared code
2233 * active - true to enable lplu false to disable lplu.
2234 *
2235 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2236 * E1000_SUCCESS at any other case.
2237 *
2238 ****************************************************************************/
2239
2240 static int32_t
2241 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2242 {
2243 uint32_t phy_ctrl = 0;
2244 int32_t ret_val;
2245 uint16_t phy_data;
2246 DEBUGFUNC();
2247
2248 if (hw->mac_type <= e1000_82547_rev_2)
2249 return E1000_SUCCESS;
2250
2251 if (hw->mac_type == e1000_ich8lan) {
2252 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2253 } else {
2254 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2255 &phy_data);
2256 if (ret_val)
2257 return ret_val;
2258 }
2259
2260 if (!active) {
2261 if (hw->mac_type == e1000_ich8lan) {
2262 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2263 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2264 } else {
2265 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2266 ret_val = e1000_write_phy_reg(hw,
2267 IGP02E1000_PHY_POWER_MGMT, phy_data);
2268 if (ret_val)
2269 return ret_val;
2270 }
2271
2272 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2273 * Dx states where the power conservation is most important. During
2274 * driver activity we should enable SmartSpeed, so performance is
2275 * maintained. */
2276 if (hw->smart_speed == e1000_smart_speed_on) {
2277 ret_val = e1000_read_phy_reg(hw,
2278 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2279 if (ret_val)
2280 return ret_val;
2281
2282 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2283 ret_val = e1000_write_phy_reg(hw,
2284 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2285 if (ret_val)
2286 return ret_val;
2287 } else if (hw->smart_speed == e1000_smart_speed_off) {
2288 ret_val = e1000_read_phy_reg(hw,
2289 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2290 if (ret_val)
2291 return ret_val;
2292
2293 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2294 ret_val = e1000_write_phy_reg(hw,
2295 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2296 if (ret_val)
2297 return ret_val;
2298 }
2299
2300
2301 } else {
2302
2303 if (hw->mac_type == e1000_ich8lan) {
2304 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2305 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2306 } else {
2307 phy_data |= IGP02E1000_PM_D0_LPLU;
2308 ret_val = e1000_write_phy_reg(hw,
2309 IGP02E1000_PHY_POWER_MGMT, phy_data);
2310 if (ret_val)
2311 return ret_val;
2312 }
2313
2314 /* When LPLU is enabled we should disable SmartSpeed */
2315 ret_val = e1000_read_phy_reg(hw,
2316 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2317 if (ret_val)
2318 return ret_val;
2319
2320 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2321 ret_val = e1000_write_phy_reg(hw,
2322 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2323 if (ret_val)
2324 return ret_val;
2325
2326 }
2327 return E1000_SUCCESS;
2328 }
2329
2330 /********************************************************************
2331 * Copper link setup for e1000_phy_igp series.
2332 *
2333 * hw - Struct containing variables accessed by shared code
2334 *********************************************************************/
2335 static int32_t
2336 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2337 {
2338 uint32_t led_ctrl;
2339 int32_t ret_val;
2340 uint16_t phy_data;
2341
2342 DEBUGFUNC();
2343
2344 if (hw->phy_reset_disable)
2345 return E1000_SUCCESS;
2346
2347 ret_val = e1000_phy_reset(hw);
2348 if (ret_val) {
2349 DEBUGOUT("Error Resetting the PHY\n");
2350 return ret_val;
2351 }
2352
2353 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2354 mdelay(15);
2355 if (hw->mac_type != e1000_ich8lan) {
2356 /* Configure activity LED after PHY reset */
2357 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2358 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2359 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2360 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2361 }
2362
2363 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2364 if (hw->phy_type == e1000_phy_igp) {
2365 /* disable lplu d3 during driver init */
2366 ret_val = e1000_set_d3_lplu_state(hw, false);
2367 if (ret_val) {
2368 DEBUGOUT("Error Disabling LPLU D3\n");
2369 return ret_val;
2370 }
2371 }
2372
2373 /* disable lplu d0 during driver init */
2374 ret_val = e1000_set_d0_lplu_state(hw, false);
2375 if (ret_val) {
2376 DEBUGOUT("Error Disabling LPLU D0\n");
2377 return ret_val;
2378 }
2379 /* Configure mdi-mdix settings */
2380 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2381 if (ret_val)
2382 return ret_val;
2383
2384 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2385 hw->dsp_config_state = e1000_dsp_config_disabled;
2386 /* Force MDI for earlier revs of the IGP PHY */
2387 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2388 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2389 hw->mdix = 1;
2390
2391 } else {
2392 hw->dsp_config_state = e1000_dsp_config_enabled;
2393 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2394
2395 switch (hw->mdix) {
2396 case 1:
2397 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2398 break;
2399 case 2:
2400 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2401 break;
2402 case 0:
2403 default:
2404 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2405 break;
2406 }
2407 }
2408 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2409 if (ret_val)
2410 return ret_val;
2411
2412 /* set auto-master slave resolution settings */
2413 if (hw->autoneg) {
2414 e1000_ms_type phy_ms_setting = hw->master_slave;
2415
2416 if (hw->ffe_config_state == e1000_ffe_config_active)
2417 hw->ffe_config_state = e1000_ffe_config_enabled;
2418
2419 if (hw->dsp_config_state == e1000_dsp_config_activated)
2420 hw->dsp_config_state = e1000_dsp_config_enabled;
2421
2422 /* when autonegotiation advertisment is only 1000Mbps then we
2423 * should disable SmartSpeed and enable Auto MasterSlave
2424 * resolution as hardware default. */
2425 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2426 /* Disable SmartSpeed */
2427 ret_val = e1000_read_phy_reg(hw,
2428 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2429 if (ret_val)
2430 return ret_val;
2431 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2432 ret_val = e1000_write_phy_reg(hw,
2433 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2434 if (ret_val)
2435 return ret_val;
2436 /* Set auto Master/Slave resolution process */
2437 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2438 &phy_data);
2439 if (ret_val)
2440 return ret_val;
2441 phy_data &= ~CR_1000T_MS_ENABLE;
2442 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2443 phy_data);
2444 if (ret_val)
2445 return ret_val;
2446 }
2447
2448 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2449 if (ret_val)
2450 return ret_val;
2451
2452 /* load defaults for future use */
2453 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2454 ((phy_data & CR_1000T_MS_VALUE) ?
2455 e1000_ms_force_master :
2456 e1000_ms_force_slave) :
2457 e1000_ms_auto;
2458
2459 switch (phy_ms_setting) {
2460 case e1000_ms_force_master:
2461 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2462 break;
2463 case e1000_ms_force_slave:
2464 phy_data |= CR_1000T_MS_ENABLE;
2465 phy_data &= ~(CR_1000T_MS_VALUE);
2466 break;
2467 case e1000_ms_auto:
2468 phy_data &= ~CR_1000T_MS_ENABLE;
2469 default:
2470 break;
2471 }
2472 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2473 if (ret_val)
2474 return ret_val;
2475 }
2476
2477 return E1000_SUCCESS;
2478 }
2479
2480 /*****************************************************************************
2481 * This function checks the mode of the firmware.
2482 *
2483 * returns - true when the mode is IAMT or false.
2484 ****************************************************************************/
2485 bool
2486 e1000_check_mng_mode(struct e1000_hw *hw)
2487 {
2488 uint32_t fwsm;
2489 DEBUGFUNC();
2490
2491 fwsm = E1000_READ_REG(hw, FWSM);
2492
2493 if (hw->mac_type == e1000_ich8lan) {
2494 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2495 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2496 return true;
2497 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2498 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2499 return true;
2500
2501 return false;
2502 }
2503
2504 static int32_t
2505 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2506 {
2507 uint16_t swfw = E1000_SWFW_PHY0_SM;
2508 uint32_t reg_val;
2509 DEBUGFUNC();
2510
2511 if (e1000_is_second_port(hw))
2512 swfw = E1000_SWFW_PHY1_SM;
2513
2514 if (e1000_swfw_sync_acquire(hw, swfw))
2515 return -E1000_ERR_SWFW_SYNC;
2516
2517 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2518 & E1000_KUMCTRLSTA_OFFSET) | data;
2519 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2520 udelay(2);
2521
2522 return E1000_SUCCESS;
2523 }
2524
2525 static int32_t
2526 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2527 {
2528 uint16_t swfw = E1000_SWFW_PHY0_SM;
2529 uint32_t reg_val;
2530 DEBUGFUNC();
2531
2532 if (e1000_is_second_port(hw))
2533 swfw = E1000_SWFW_PHY1_SM;
2534
2535 if (e1000_swfw_sync_acquire(hw, swfw))
2536 return -E1000_ERR_SWFW_SYNC;
2537
2538 /* Write register address */
2539 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2540 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2541 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2542 udelay(2);
2543
2544 /* Read the data returned */
2545 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2546 *data = (uint16_t)reg_val;
2547
2548 return E1000_SUCCESS;
2549 }
2550
2551 /********************************************************************
2552 * Copper link setup for e1000_phy_gg82563 series.
2553 *
2554 * hw - Struct containing variables accessed by shared code
2555 *********************************************************************/
2556 static int32_t
2557 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2558 {
2559 int32_t ret_val;
2560 uint16_t phy_data;
2561 uint32_t reg_data;
2562
2563 DEBUGFUNC();
2564
2565 if (!hw->phy_reset_disable) {
2566 /* Enable CRS on TX for half-duplex operation. */
2567 ret_val = e1000_read_phy_reg(hw,
2568 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2569 if (ret_val)
2570 return ret_val;
2571
2572 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2573 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2574 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2575
2576 ret_val = e1000_write_phy_reg(hw,
2577 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2578 if (ret_val)
2579 return ret_val;
2580
2581 /* Options:
2582 * MDI/MDI-X = 0 (default)
2583 * 0 - Auto for all speeds
2584 * 1 - MDI mode
2585 * 2 - MDI-X mode
2586 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2587 */
2588 ret_val = e1000_read_phy_reg(hw,
2589 GG82563_PHY_SPEC_CTRL, &phy_data);
2590 if (ret_val)
2591 return ret_val;
2592
2593 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2594
2595 switch (hw->mdix) {
2596 case 1:
2597 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2598 break;
2599 case 2:
2600 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2601 break;
2602 case 0:
2603 default:
2604 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2605 break;
2606 }
2607
2608 /* Options:
2609 * disable_polarity_correction = 0 (default)
2610 * Automatic Correction for Reversed Cable Polarity
2611 * 0 - Disabled
2612 * 1 - Enabled
2613 */
2614 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2615 ret_val = e1000_write_phy_reg(hw,
2616 GG82563_PHY_SPEC_CTRL, phy_data);
2617
2618 if (ret_val)
2619 return ret_val;
2620
2621 /* SW Reset the PHY so all changes take effect */
2622 ret_val = e1000_phy_reset(hw);
2623 if (ret_val) {
2624 DEBUGOUT("Error Resetting the PHY\n");
2625 return ret_val;
2626 }
2627 } /* phy_reset_disable */
2628
2629 if (hw->mac_type == e1000_80003es2lan) {
2630 /* Bypass RX and TX FIFO's */
2631 ret_val = e1000_write_kmrn_reg(hw,
2632 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2633 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2634 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2635 if (ret_val)
2636 return ret_val;
2637
2638 ret_val = e1000_read_phy_reg(hw,
2639 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2640 if (ret_val)
2641 return ret_val;
2642
2643 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2644 ret_val = e1000_write_phy_reg(hw,
2645 GG82563_PHY_SPEC_CTRL_2, phy_data);
2646
2647 if (ret_val)
2648 return ret_val;
2649
2650 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2651 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2652 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2653
2654 ret_val = e1000_read_phy_reg(hw,
2655 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2656 if (ret_val)
2657 return ret_val;
2658
2659 /* Do not init these registers when the HW is in IAMT mode, since the
2660 * firmware will have already initialized them. We only initialize
2661 * them if the HW is not in IAMT mode.
2662 */
2663 if (e1000_check_mng_mode(hw) == false) {
2664 /* Enable Electrical Idle on the PHY */
2665 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2666 ret_val = e1000_write_phy_reg(hw,
2667 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2668 if (ret_val)
2669 return ret_val;
2670
2671 ret_val = e1000_read_phy_reg(hw,
2672 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2673 if (ret_val)
2674 return ret_val;
2675
2676 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2677 ret_val = e1000_write_phy_reg(hw,
2678 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2679
2680 if (ret_val)
2681 return ret_val;
2682 }
2683
2684 /* Workaround: Disable padding in Kumeran interface in the MAC
2685 * and in the PHY to avoid CRC errors.
2686 */
2687 ret_val = e1000_read_phy_reg(hw,
2688 GG82563_PHY_INBAND_CTRL, &phy_data);
2689 if (ret_val)
2690 return ret_val;
2691 phy_data |= GG82563_ICR_DIS_PADDING;
2692 ret_val = e1000_write_phy_reg(hw,
2693 GG82563_PHY_INBAND_CTRL, phy_data);
2694 if (ret_val)
2695 return ret_val;
2696 }
2697 return E1000_SUCCESS;
2698 }
2699
2700 /********************************************************************
2701 * Copper link setup for e1000_phy_m88 series.
2702 *
2703 * hw - Struct containing variables accessed by shared code
2704 *********************************************************************/
2705 static int32_t
2706 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2707 {
2708 int32_t ret_val;
2709 uint16_t phy_data;
2710
2711 DEBUGFUNC();
2712
2713 if (hw->phy_reset_disable)
2714 return E1000_SUCCESS;
2715
2716 /* Enable CRS on TX. This must be set for half-duplex operation. */
2717 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2718 if (ret_val)
2719 return ret_val;
2720
2721 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2722
2723 /* Options:
2724 * MDI/MDI-X = 0 (default)
2725 * 0 - Auto for all speeds
2726 * 1 - MDI mode
2727 * 2 - MDI-X mode
2728 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2729 */
2730 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2731
2732 switch (hw->mdix) {
2733 case 1:
2734 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2735 break;
2736 case 2:
2737 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2738 break;
2739 case 3:
2740 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2741 break;
2742 case 0:
2743 default:
2744 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2745 break;
2746 }
2747
2748 /* Options:
2749 * disable_polarity_correction = 0 (default)
2750 * Automatic Correction for Reversed Cable Polarity
2751 * 0 - Disabled
2752 * 1 - Enabled
2753 */
2754 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2755 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2756 if (ret_val)
2757 return ret_val;
2758
2759 if (hw->phy_revision < M88E1011_I_REV_4) {
2760 /* Force TX_CLK in the Extended PHY Specific Control Register
2761 * to 25MHz clock.
2762 */
2763 ret_val = e1000_read_phy_reg(hw,
2764 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2765 if (ret_val)
2766 return ret_val;
2767
2768 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2769
2770 if ((hw->phy_revision == E1000_REVISION_2) &&
2771 (hw->phy_id == M88E1111_I_PHY_ID)) {
2772 /* Vidalia Phy, set the downshift counter to 5x */
2773 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2774 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2775 ret_val = e1000_write_phy_reg(hw,
2776 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2777 if (ret_val)
2778 return ret_val;
2779 } else {
2780 /* Configure Master and Slave downshift values */
2781 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2782 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2783 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2784 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2785 ret_val = e1000_write_phy_reg(hw,
2786 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2787 if (ret_val)
2788 return ret_val;
2789 }
2790 }
2791
2792 /* SW Reset the PHY so all changes take effect */
2793 ret_val = e1000_phy_reset(hw);
2794 if (ret_val) {
2795 DEBUGOUT("Error Resetting the PHY\n");
2796 return ret_val;
2797 }
2798
2799 return E1000_SUCCESS;
2800 }
2801
2802 /********************************************************************
2803 * Setup auto-negotiation and flow control advertisements,
2804 * and then perform auto-negotiation.
2805 *
2806 * hw - Struct containing variables accessed by shared code
2807 *********************************************************************/
2808 static int32_t
2809 e1000_copper_link_autoneg(struct e1000_hw *hw)
2810 {
2811 int32_t ret_val;
2812 uint16_t phy_data;
2813
2814 DEBUGFUNC();
2815
2816 /* Perform some bounds checking on the hw->autoneg_advertised
2817 * parameter. If this variable is zero, then set it to the default.
2818 */
2819 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2820
2821 /* If autoneg_advertised is zero, we assume it was not defaulted
2822 * by the calling code so we set to advertise full capability.
2823 */
2824 if (hw->autoneg_advertised == 0)
2825 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2826
2827 /* IFE phy only supports 10/100 */
2828 if (hw->phy_type == e1000_phy_ife)
2829 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2830
2831 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2832 ret_val = e1000_phy_setup_autoneg(hw);
2833 if (ret_val) {
2834 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2835 return ret_val;
2836 }
2837 DEBUGOUT("Restarting Auto-Neg\n");
2838
2839 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2840 * the Auto Neg Restart bit in the PHY control register.
2841 */
2842 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2843 if (ret_val)
2844 return ret_val;
2845
2846 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2847 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2848 if (ret_val)
2849 return ret_val;
2850
2851 /* Does the user want to wait for Auto-Neg to complete here, or
2852 * check at a later time (for example, callback routine).
2853 */
2854 /* If we do not wait for autonegtation to complete I
2855 * do not see a valid link status.
2856 * wait_autoneg_complete = 1 .
2857 */
2858 if (hw->wait_autoneg_complete) {
2859 ret_val = e1000_wait_autoneg(hw);
2860 if (ret_val) {
2861 DEBUGOUT("Error while waiting for autoneg"
2862 "to complete\n");
2863 return ret_val;
2864 }
2865 }
2866
2867 hw->get_link_status = true;
2868
2869 return E1000_SUCCESS;
2870 }
2871
2872 /******************************************************************************
2873 * Config the MAC and the PHY after link is up.
2874 * 1) Set up the MAC to the current PHY speed/duplex
2875 * if we are on 82543. If we
2876 * are on newer silicon, we only need to configure
2877 * collision distance in the Transmit Control Register.
2878 * 2) Set up flow control on the MAC to that established with
2879 * the link partner.
2880 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2881 *
2882 * hw - Struct containing variables accessed by shared code
2883 ******************************************************************************/
2884 static int32_t
2885 e1000_copper_link_postconfig(struct e1000_hw *hw)
2886 {
2887 int32_t ret_val;
2888 DEBUGFUNC();
2889
2890 if (hw->mac_type >= e1000_82544) {
2891 e1000_config_collision_dist(hw);
2892 } else {
2893 ret_val = e1000_config_mac_to_phy(hw);
2894 if (ret_val) {
2895 DEBUGOUT("Error configuring MAC to PHY settings\n");
2896 return ret_val;
2897 }
2898 }
2899 ret_val = e1000_config_fc_after_link_up(hw);
2900 if (ret_val) {
2901 DEBUGOUT("Error Configuring Flow Control\n");
2902 return ret_val;
2903 }
2904 return E1000_SUCCESS;
2905 }
2906
2907 /******************************************************************************
2908 * Detects which PHY is present and setup the speed and duplex
2909 *
2910 * hw - Struct containing variables accessed by shared code
2911 ******************************************************************************/
2912 static int
2913 e1000_setup_copper_link(struct eth_device *nic)
2914 {
2915 struct e1000_hw *hw = nic->priv;
2916 int32_t ret_val;
2917 uint16_t i;
2918 uint16_t phy_data;
2919 uint16_t reg_data;
2920
2921 DEBUGFUNC();
2922
2923 switch (hw->mac_type) {
2924 case e1000_80003es2lan:
2925 case e1000_ich8lan:
2926 /* Set the mac to wait the maximum time between each
2927 * iteration and increase the max iterations when
2928 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2929 ret_val = e1000_write_kmrn_reg(hw,
2930 GG82563_REG(0x34, 4), 0xFFFF);
2931 if (ret_val)
2932 return ret_val;
2933 ret_val = e1000_read_kmrn_reg(hw,
2934 GG82563_REG(0x34, 9), &reg_data);
2935 if (ret_val)
2936 return ret_val;
2937 reg_data |= 0x3F;
2938 ret_val = e1000_write_kmrn_reg(hw,
2939 GG82563_REG(0x34, 9), reg_data);
2940 if (ret_val)
2941 return ret_val;
2942 default:
2943 break;
2944 }
2945
2946 /* Check if it is a valid PHY and set PHY mode if necessary. */
2947 ret_val = e1000_copper_link_preconfig(hw);
2948 if (ret_val)
2949 return ret_val;
2950 switch (hw->mac_type) {
2951 case e1000_80003es2lan:
2952 /* Kumeran registers are written-only */
2953 reg_data =
2954 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2955 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2956 ret_val = e1000_write_kmrn_reg(hw,
2957 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2958 if (ret_val)
2959 return ret_val;
2960 break;
2961 default:
2962 break;
2963 }
2964
2965 if (hw->phy_type == e1000_phy_igp ||
2966 hw->phy_type == e1000_phy_igp_3 ||
2967 hw->phy_type == e1000_phy_igp_2) {
2968 ret_val = e1000_copper_link_igp_setup(hw);
2969 if (ret_val)
2970 return ret_val;
2971 } else if (hw->phy_type == e1000_phy_m88) {
2972 ret_val = e1000_copper_link_mgp_setup(hw);
2973 if (ret_val)
2974 return ret_val;
2975 } else if (hw->phy_type == e1000_phy_gg82563) {
2976 ret_val = e1000_copper_link_ggp_setup(hw);
2977 if (ret_val)
2978 return ret_val;
2979 }
2980
2981 /* always auto */
2982 /* Setup autoneg and flow control advertisement
2983 * and perform autonegotiation */
2984 ret_val = e1000_copper_link_autoneg(hw);
2985 if (ret_val)
2986 return ret_val;
2987
2988 /* Check link status. Wait up to 100 microseconds for link to become
2989 * valid.
2990 */
2991 for (i = 0; i < 10; i++) {
2992 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2993 if (ret_val)
2994 return ret_val;
2995 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2996 if (ret_val)
2997 return ret_val;
2998
2999 if (phy_data & MII_SR_LINK_STATUS) {
3000 /* Config the MAC and PHY after link is up */
3001 ret_val = e1000_copper_link_postconfig(hw);
3002 if (ret_val)
3003 return ret_val;
3004
3005 DEBUGOUT("Valid link established!!!\n");
3006 return E1000_SUCCESS;
3007 }
3008 udelay(10);
3009 }
3010
3011 DEBUGOUT("Unable to establish link!!!\n");
3012 return E1000_SUCCESS;
3013 }
3014
3015 /******************************************************************************
3016 * Configures PHY autoneg and flow control advertisement settings
3017 *
3018 * hw - Struct containing variables accessed by shared code
3019 ******************************************************************************/
3020 int32_t
3021 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3022 {
3023 int32_t ret_val;
3024 uint16_t mii_autoneg_adv_reg;
3025 uint16_t mii_1000t_ctrl_reg;
3026
3027 DEBUGFUNC();
3028
3029 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3030 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3031 if (ret_val)
3032 return ret_val;
3033
3034 if (hw->phy_type != e1000_phy_ife) {
3035 /* Read the MII 1000Base-T Control Register (Address 9). */
3036 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3037 &mii_1000t_ctrl_reg);
3038 if (ret_val)
3039 return ret_val;
3040 } else
3041 mii_1000t_ctrl_reg = 0;
3042
3043 /* Need to parse both autoneg_advertised and fc and set up
3044 * the appropriate PHY registers. First we will parse for
3045 * autoneg_advertised software override. Since we can advertise
3046 * a plethora of combinations, we need to check each bit
3047 * individually.
3048 */
3049
3050 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3051 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3052 * the 1000Base-T Control Register (Address 9).
3053 */
3054 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3055 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3056
3057 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3058
3059 /* Do we want to advertise 10 Mb Half Duplex? */
3060 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3061 DEBUGOUT("Advertise 10mb Half duplex\n");
3062 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3063 }
3064
3065 /* Do we want to advertise 10 Mb Full Duplex? */
3066 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3067 DEBUGOUT("Advertise 10mb Full duplex\n");
3068 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3069 }
3070
3071 /* Do we want to advertise 100 Mb Half Duplex? */
3072 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3073 DEBUGOUT("Advertise 100mb Half duplex\n");
3074 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3075 }
3076
3077 /* Do we want to advertise 100 Mb Full Duplex? */
3078 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3079 DEBUGOUT("Advertise 100mb Full duplex\n");
3080 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3081 }
3082
3083 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3084 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3085 DEBUGOUT
3086 ("Advertise 1000mb Half duplex requested, request denied!\n");
3087 }
3088
3089 /* Do we want to advertise 1000 Mb Full Duplex? */
3090 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3091 DEBUGOUT("Advertise 1000mb Full duplex\n");
3092 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3093 }
3094
3095 /* Check for a software override of the flow control settings, and
3096 * setup the PHY advertisement registers accordingly. If
3097 * auto-negotiation is enabled, then software will have to set the
3098 * "PAUSE" bits to the correct value in the Auto-Negotiation
3099 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3100 *
3101 * The possible values of the "fc" parameter are:
3102 * 0: Flow control is completely disabled
3103 * 1: Rx flow control is enabled (we can receive pause frames
3104 * but not send pause frames).
3105 * 2: Tx flow control is enabled (we can send pause frames
3106 * but we do not support receiving pause frames).
3107 * 3: Both Rx and TX flow control (symmetric) are enabled.
3108 * other: No software override. The flow control configuration
3109 * in the EEPROM is used.
3110 */
3111 switch (hw->fc) {
3112 case e1000_fc_none: /* 0 */
3113 /* Flow control (RX & TX) is completely disabled by a
3114 * software over-ride.
3115 */
3116 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3117 break;
3118 case e1000_fc_rx_pause: /* 1 */
3119 /* RX Flow control is enabled, and TX Flow control is
3120 * disabled, by a software over-ride.
3121 */
3122 /* Since there really isn't a way to advertise that we are
3123 * capable of RX Pause ONLY, we will advertise that we
3124 * support both symmetric and asymmetric RX PAUSE. Later
3125 * (in e1000_config_fc_after_link_up) we will disable the
3126 *hw's ability to send PAUSE frames.
3127 */
3128 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3129 break;
3130 case e1000_fc_tx_pause: /* 2 */
3131 /* TX Flow control is enabled, and RX Flow control is
3132 * disabled, by a software over-ride.
3133 */
3134 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3135 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3136 break;
3137 case e1000_fc_full: /* 3 */
3138 /* Flow control (both RX and TX) is enabled by a software
3139 * over-ride.
3140 */
3141 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3142 break;
3143 default:
3144 DEBUGOUT("Flow control param set incorrectly\n");
3145 return -E1000_ERR_CONFIG;
3146 }
3147
3148 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3149 if (ret_val)
3150 return ret_val;
3151
3152 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3153
3154 if (hw->phy_type != e1000_phy_ife) {
3155 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3156 mii_1000t_ctrl_reg);
3157 if (ret_val)
3158 return ret_val;
3159 }
3160
3161 return E1000_SUCCESS;
3162 }
3163
3164 /******************************************************************************
3165 * Sets the collision distance in the Transmit Control register
3166 *
3167 * hw - Struct containing variables accessed by shared code
3168 *
3169 * Link should have been established previously. Reads the speed and duplex
3170 * information from the Device Status register.
3171 ******************************************************************************/
3172 static void
3173 e1000_config_collision_dist(struct e1000_hw *hw)
3174 {
3175 uint32_t tctl, coll_dist;
3176
3177 DEBUGFUNC();
3178
3179 if (hw->mac_type < e1000_82543)
3180 coll_dist = E1000_COLLISION_DISTANCE_82542;
3181 else
3182 coll_dist = E1000_COLLISION_DISTANCE;
3183
3184 tctl = E1000_READ_REG(hw, TCTL);
3185
3186 tctl &= ~E1000_TCTL_COLD;
3187 tctl |= coll_dist << E1000_COLD_SHIFT;
3188
3189 E1000_WRITE_REG(hw, TCTL, tctl);
3190 E1000_WRITE_FLUSH(hw);
3191 }
3192
3193 /******************************************************************************
3194 * Sets MAC speed and duplex settings to reflect the those in the PHY
3195 *
3196 * hw - Struct containing variables accessed by shared code
3197 * mii_reg - data to write to the MII control register
3198 *
3199 * The contents of the PHY register containing the needed information need to
3200 * be passed in.
3201 ******************************************************************************/
3202 static int
3203 e1000_config_mac_to_phy(struct e1000_hw *hw)
3204 {
3205 uint32_t ctrl;
3206 uint16_t phy_data;
3207
3208 DEBUGFUNC();
3209
3210 /* Read the Device Control Register and set the bits to Force Speed
3211 * and Duplex.
3212 */
3213 ctrl = E1000_READ_REG(hw, CTRL);
3214 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3215 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3216
3217 /* Set up duplex in the Device Control and Transmit Control
3218 * registers depending on negotiated values.
3219 */
3220 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3221 DEBUGOUT("PHY Read Error\n");
3222 return -E1000_ERR_PHY;
3223 }
3224 if (phy_data & M88E1000_PSSR_DPLX)
3225 ctrl |= E1000_CTRL_FD;
3226 else
3227 ctrl &= ~E1000_CTRL_FD;
3228
3229 e1000_config_collision_dist(hw);
3230
3231 /* Set up speed in the Device Control register depending on
3232 * negotiated values.
3233 */
3234 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3235 ctrl |= E1000_CTRL_SPD_1000;
3236 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3237 ctrl |= E1000_CTRL_SPD_100;
3238 /* Write the configured values back to the Device Control Reg. */
3239 E1000_WRITE_REG(hw, CTRL, ctrl);
3240 return 0;
3241 }
3242
3243 /******************************************************************************
3244 * Forces the MAC's flow control settings.
3245 *
3246 * hw - Struct containing variables accessed by shared code
3247 *
3248 * Sets the TFCE and RFCE bits in the device control register to reflect
3249 * the adapter settings. TFCE and RFCE need to be explicitly set by
3250 * software when a Copper PHY is used because autonegotiation is managed
3251 * by the PHY rather than the MAC. Software must also configure these
3252 * bits when link is forced on a fiber connection.
3253 *****************************************************************************/
3254 static int
3255 e1000_force_mac_fc(struct e1000_hw *hw)
3256 {
3257 uint32_t ctrl;
3258
3259 DEBUGFUNC();
3260
3261 /* Get the current configuration of the Device Control Register */
3262 ctrl = E1000_READ_REG(hw, CTRL);
3263
3264 /* Because we didn't get link via the internal auto-negotiation
3265 * mechanism (we either forced link or we got link via PHY
3266 * auto-neg), we have to manually enable/disable transmit an
3267 * receive flow control.
3268 *
3269 * The "Case" statement below enables/disable flow control
3270 * according to the "hw->fc" parameter.
3271 *
3272 * The possible values of the "fc" parameter are:
3273 * 0: Flow control is completely disabled
3274 * 1: Rx flow control is enabled (we can receive pause
3275 * frames but not send pause frames).
3276 * 2: Tx flow control is enabled (we can send pause frames
3277 * frames but we do not receive pause frames).
3278 * 3: Both Rx and TX flow control (symmetric) is enabled.
3279 * other: No other values should be possible at this point.
3280 */
3281
3282 switch (hw->fc) {
3283 case e1000_fc_none:
3284 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3285 break;
3286 case e1000_fc_rx_pause:
3287 ctrl &= (~E1000_CTRL_TFCE);
3288 ctrl |= E1000_CTRL_RFCE;
3289 break;
3290 case e1000_fc_tx_pause:
3291 ctrl &= (~E1000_CTRL_RFCE);
3292 ctrl |= E1000_CTRL_TFCE;
3293 break;
3294 case e1000_fc_full:
3295 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3296 break;
3297 default:
3298 DEBUGOUT("Flow control param set incorrectly\n");
3299 return -E1000_ERR_CONFIG;
3300 }
3301
3302 /* Disable TX Flow Control for 82542 (rev 2.0) */
3303 if (hw->mac_type == e1000_82542_rev2_0)
3304 ctrl &= (~E1000_CTRL_TFCE);
3305
3306 E1000_WRITE_REG(hw, CTRL, ctrl);
3307 return 0;
3308 }
3309
3310 /******************************************************************************
3311 * Configures flow control settings after link is established
3312 *
3313 * hw - Struct containing variables accessed by shared code
3314 *
3315 * Should be called immediately after a valid link has been established.
3316 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3317 * and autonegotiation is enabled, the MAC flow control settings will be set
3318 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3319 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3320 *****************************************************************************/
3321 static int32_t
3322 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3323 {
3324 int32_t ret_val;
3325 uint16_t mii_status_reg;
3326 uint16_t mii_nway_adv_reg;
3327 uint16_t mii_nway_lp_ability_reg;
3328 uint16_t speed;
3329 uint16_t duplex;
3330
3331 DEBUGFUNC();
3332
3333 /* Check for the case where we have fiber media and auto-neg failed
3334 * so we had to force link. In this case, we need to force the
3335 * configuration of the MAC to match the "fc" parameter.
3336 */
3337 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3338 || ((hw->media_type == e1000_media_type_internal_serdes)
3339 && (hw->autoneg_failed))
3340 || ((hw->media_type == e1000_media_type_copper)
3341 && (!hw->autoneg))) {
3342 ret_val = e1000_force_mac_fc(hw);
3343 if (ret_val < 0) {
3344 DEBUGOUT("Error forcing flow control settings\n");
3345 return ret_val;
3346 }
3347 }
3348
3349 /* Check for the case where we have copper media and auto-neg is
3350 * enabled. In this case, we need to check and see if Auto-Neg
3351 * has completed, and if so, how the PHY and link partner has
3352 * flow control configured.
3353 */
3354 if (hw->media_type == e1000_media_type_copper) {
3355 /* Read the MII Status Register and check to see if AutoNeg
3356 * has completed. We read this twice because this reg has
3357 * some "sticky" (latched) bits.
3358 */
3359 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3360 DEBUGOUT("PHY Read Error \n");
3361 return -E1000_ERR_PHY;
3362 }
3363 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3364 DEBUGOUT("PHY Read Error \n");
3365 return -E1000_ERR_PHY;
3366 }
3367
3368 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3369 /* The AutoNeg process has completed, so we now need to
3370 * read both the Auto Negotiation Advertisement Register
3371 * (Address 4) and the Auto_Negotiation Base Page Ability
3372 * Register (Address 5) to determine how flow control was
3373 * negotiated.
3374 */
3375 if (e1000_read_phy_reg
3376 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3377 DEBUGOUT("PHY Read Error\n");
3378 return -E1000_ERR_PHY;
3379 }
3380 if (e1000_read_phy_reg
3381 (hw, PHY_LP_ABILITY,
3382 &mii_nway_lp_ability_reg) < 0) {
3383 DEBUGOUT("PHY Read Error\n");
3384 return -E1000_ERR_PHY;
3385 }
3386
3387 /* Two bits in the Auto Negotiation Advertisement Register
3388 * (Address 4) and two bits in the Auto Negotiation Base
3389 * Page Ability Register (Address 5) determine flow control
3390 * for both the PHY and the link partner. The following
3391 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3392 * 1999, describes these PAUSE resolution bits and how flow
3393 * control is determined based upon these settings.
3394 * NOTE: DC = Don't Care
3395 *
3396 * LOCAL DEVICE | LINK PARTNER
3397 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3398 *-------|---------|-------|---------|--------------------
3399 * 0 | 0 | DC | DC | e1000_fc_none
3400 * 0 | 1 | 0 | DC | e1000_fc_none
3401 * 0 | 1 | 1 | 0 | e1000_fc_none
3402 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3403 * 1 | 0 | 0 | DC | e1000_fc_none
3404 * 1 | DC | 1 | DC | e1000_fc_full
3405 * 1 | 1 | 0 | 0 | e1000_fc_none
3406 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3407 *
3408 */
3409 /* Are both PAUSE bits set to 1? If so, this implies
3410 * Symmetric Flow Control is enabled at both ends. The
3411 * ASM_DIR bits are irrelevant per the spec.
3412 *
3413 * For Symmetric Flow Control:
3414 *
3415 * LOCAL DEVICE | LINK PARTNER
3416 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3417 *-------|---------|-------|---------|--------------------
3418 * 1 | DC | 1 | DC | e1000_fc_full
3419 *
3420 */
3421 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3422 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3423 /* Now we need to check if the user selected RX ONLY
3424 * of pause frames. In this case, we had to advertise
3425 * FULL flow control because we could not advertise RX
3426 * ONLY. Hence, we must now check to see if we need to
3427 * turn OFF the TRANSMISSION of PAUSE frames.
3428 */
3429 if (hw->original_fc == e1000_fc_full) {
3430 hw->fc = e1000_fc_full;
3431 DEBUGOUT("Flow Control = FULL.\r\n");
3432 } else {
3433 hw->fc = e1000_fc_rx_pause;
3434 DEBUGOUT
3435 ("Flow Control = RX PAUSE frames only.\r\n");
3436 }
3437 }
3438 /* For receiving PAUSE frames ONLY.
3439 *
3440 * LOCAL DEVICE | LINK PARTNER
3441 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3442 *-------|---------|-------|---------|--------------------
3443 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3444 *
3445 */
3446 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3447 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3448 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3449 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3450 {
3451 hw->fc = e1000_fc_tx_pause;
3452 DEBUGOUT
3453 ("Flow Control = TX PAUSE frames only.\r\n");
3454 }
3455 /* For transmitting PAUSE frames ONLY.
3456 *
3457 * LOCAL DEVICE | LINK PARTNER
3458 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3459 *-------|---------|-------|---------|--------------------
3460 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3461 *
3462 */
3463 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3464 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3465 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3466 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3467 {
3468 hw->fc = e1000_fc_rx_pause;
3469 DEBUGOUT
3470 ("Flow Control = RX PAUSE frames only.\r\n");
3471 }
3472 /* Per the IEEE spec, at this point flow control should be
3473 * disabled. However, we want to consider that we could
3474 * be connected to a legacy switch that doesn't advertise
3475 * desired flow control, but can be forced on the link
3476 * partner. So if we advertised no flow control, that is
3477 * what we will resolve to. If we advertised some kind of
3478 * receive capability (Rx Pause Only or Full Flow Control)
3479 * and the link partner advertised none, we will configure
3480 * ourselves to enable Rx Flow Control only. We can do
3481 * this safely for two reasons: If the link partner really
3482 * didn't want flow control enabled, and we enable Rx, no
3483 * harm done since we won't be receiving any PAUSE frames
3484 * anyway. If the intent on the link partner was to have
3485 * flow control enabled, then by us enabling RX only, we
3486 * can at least receive pause frames and process them.
3487 * This is a good idea because in most cases, since we are
3488 * predominantly a server NIC, more times than not we will
3489 * be asked to delay transmission of packets than asking
3490 * our link partner to pause transmission of frames.
3491 */
3492 else if (hw->original_fc == e1000_fc_none ||
3493 hw->original_fc == e1000_fc_tx_pause) {
3494 hw->fc = e1000_fc_none;
3495 DEBUGOUT("Flow Control = NONE.\r\n");
3496 } else {
3497 hw->fc = e1000_fc_rx_pause;
3498 DEBUGOUT
3499 ("Flow Control = RX PAUSE frames only.\r\n");
3500 }
3501
3502 /* Now we need to do one last check... If we auto-
3503 * negotiated to HALF DUPLEX, flow control should not be
3504 * enabled per IEEE 802.3 spec.
3505 */
3506 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3507
3508 if (duplex == HALF_DUPLEX)
3509 hw->fc = e1000_fc_none;
3510
3511 /* Now we call a subroutine to actually force the MAC
3512 * controller to use the correct flow control settings.
3513 */
3514 ret_val = e1000_force_mac_fc(hw);
3515 if (ret_val < 0) {
3516 DEBUGOUT
3517 ("Error forcing flow control settings\n");
3518 return ret_val;
3519 }
3520 } else {
3521 DEBUGOUT
3522 ("Copper PHY and Auto Neg has not completed.\r\n");
3523 }
3524 }
3525 return E1000_SUCCESS;
3526 }
3527
3528 /******************************************************************************
3529 * Checks to see if the link status of the hardware has changed.
3530 *
3531 * hw - Struct containing variables accessed by shared code
3532 *
3533 * Called by any function that needs to check the link status of the adapter.
3534 *****************************************************************************/
3535 static int
3536 e1000_check_for_link(struct eth_device *nic)
3537 {
3538 struct e1000_hw *hw = nic->priv;
3539 uint32_t rxcw;
3540 uint32_t ctrl;
3541 uint32_t status;
3542 uint32_t rctl;
3543 uint32_t signal;
3544 int32_t ret_val;
3545 uint16_t phy_data;
3546 uint16_t lp_capability;
3547
3548 DEBUGFUNC();
3549
3550 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3551 * set when the optics detect a signal. On older adapters, it will be
3552 * cleared when there is a signal
3553 */
3554 ctrl = E1000_READ_REG(hw, CTRL);
3555 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3556 signal = E1000_CTRL_SWDPIN1;
3557 else
3558 signal = 0;
3559
3560 status = E1000_READ_REG(hw, STATUS);
3561 rxcw = E1000_READ_REG(hw, RXCW);
3562 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3563
3564 /* If we have a copper PHY then we only want to go out to the PHY
3565 * registers to see if Auto-Neg has completed and/or if our link
3566 * status has changed. The get_link_status flag will be set if we
3567 * receive a Link Status Change interrupt or we have Rx Sequence
3568 * Errors.
3569 */
3570 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3571 /* First we want to see if the MII Status Register reports
3572 * link. If so, then we want to get the current speed/duplex
3573 * of the PHY.
3574 * Read the register twice since the link bit is sticky.
3575 */
3576 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3577 DEBUGOUT("PHY Read Error\n");
3578 return -E1000_ERR_PHY;
3579 }
3580 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3581 DEBUGOUT("PHY Read Error\n");
3582 return -E1000_ERR_PHY;
3583 }
3584
3585 if (phy_data & MII_SR_LINK_STATUS) {
3586 hw->get_link_status = false;
3587 } else {
3588 /* No link detected */
3589 return -E1000_ERR_NOLINK;
3590 }
3591
3592 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3593 * have Si on board that is 82544 or newer, Auto
3594 * Speed Detection takes care of MAC speed/duplex
3595 * configuration. So we only need to configure Collision
3596 * Distance in the MAC. Otherwise, we need to force
3597 * speed/duplex on the MAC to the current PHY speed/duplex
3598 * settings.
3599 */
3600 if (hw->mac_type >= e1000_82544)
3601 e1000_config_collision_dist(hw);
3602 else {
3603 ret_val = e1000_config_mac_to_phy(hw);
3604 if (ret_val < 0) {
3605 DEBUGOUT
3606 ("Error configuring MAC to PHY settings\n");
3607 return ret_val;
3608 }
3609 }
3610
3611 /* Configure Flow Control now that Auto-Neg has completed. First, we
3612 * need to restore the desired flow control settings because we may
3613 * have had to re-autoneg with a different link partner.
3614 */
3615 ret_val = e1000_config_fc_after_link_up(hw);
3616 if (ret_val < 0) {
3617 DEBUGOUT("Error configuring flow control\n");
3618 return ret_val;
3619 }
3620
3621 /* At this point we know that we are on copper and we have
3622 * auto-negotiated link. These are conditions for checking the link
3623 * parter capability register. We use the link partner capability to
3624 * determine if TBI Compatibility needs to be turned on or off. If
3625 * the link partner advertises any speed in addition to Gigabit, then
3626 * we assume that they are GMII-based, and TBI compatibility is not
3627 * needed. If no other speeds are advertised, we assume the link
3628 * partner is TBI-based, and we turn on TBI Compatibility.
3629 */
3630 if (hw->tbi_compatibility_en) {
3631 if (e1000_read_phy_reg
3632 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3633 DEBUGOUT("PHY Read Error\n");
3634 return -E1000_ERR_PHY;
3635 }
3636 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3637 NWAY_LPAR_10T_FD_CAPS |
3638 NWAY_LPAR_100TX_HD_CAPS |
3639 NWAY_LPAR_100TX_FD_CAPS |
3640 NWAY_LPAR_100T4_CAPS)) {
3641 /* If our link partner advertises anything in addition to
3642 * gigabit, we do not need to enable TBI compatibility.
3643 */
3644 if (hw->tbi_compatibility_on) {
3645 /* If we previously were in the mode, turn it off. */
3646 rctl = E1000_READ_REG(hw, RCTL);
3647 rctl &= ~E1000_RCTL_SBP;
3648 E1000_WRITE_REG(hw, RCTL, rctl);
3649 hw->tbi_compatibility_on = false;
3650 }
3651 } else {
3652 /* If TBI compatibility is was previously off, turn it on. For
3653 * compatibility with a TBI link partner, we will store bad
3654 * packets. Some frames have an additional byte on the end and
3655 * will look like CRC errors to to the hardware.
3656 */
3657 if (!hw->tbi_compatibility_on) {
3658 hw->tbi_compatibility_on = true;
3659 rctl = E1000_READ_REG(hw, RCTL);
3660 rctl |= E1000_RCTL_SBP;
3661 E1000_WRITE_REG(hw, RCTL, rctl);
3662 }
3663 }
3664 }
3665 }
3666 /* If we don't have link (auto-negotiation failed or link partner cannot
3667 * auto-negotiate), the cable is plugged in (we have signal), and our
3668 * link partner is not trying to auto-negotiate with us (we are receiving
3669 * idles or data), we need to force link up. We also need to give
3670 * auto-negotiation time to complete, in case the cable was just plugged
3671 * in. The autoneg_failed flag does this.
3672 */
3673 else if ((hw->media_type == e1000_media_type_fiber) &&
3674 (!(status & E1000_STATUS_LU)) &&
3675 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3676 (!(rxcw & E1000_RXCW_C))) {
3677 if (hw->autoneg_failed == 0) {
3678 hw->autoneg_failed = 1;
3679 return 0;
3680 }
3681 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3682
3683 /* Disable auto-negotiation in the TXCW register */
3684 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3685
3686 /* Force link-up and also force full-duplex. */
3687 ctrl = E1000_READ_REG(hw, CTRL);
3688 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3689 E1000_WRITE_REG(hw, CTRL, ctrl);
3690
3691 /* Configure Flow Control after forcing link up. */
3692 ret_val = e1000_config_fc_after_link_up(hw);
3693 if (ret_val < 0) {
3694 DEBUGOUT("Error configuring flow control\n");
3695 return ret_val;
3696 }
3697 }
3698 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3699 * auto-negotiation in the TXCW register and disable forced link in the
3700 * Device Control register in an attempt to auto-negotiate with our link
3701 * partner.
3702 */
3703 else if ((hw->media_type == e1000_media_type_fiber) &&
3704 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3705 DEBUGOUT
3706 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3707 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3708 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3709 }
3710 return 0;
3711 }
3712
3713 /******************************************************************************
3714 * Configure the MAC-to-PHY interface for 10/100Mbps
3715 *
3716 * hw - Struct containing variables accessed by shared code
3717 ******************************************************************************/
3718 static int32_t
3719 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3720 {
3721 int32_t ret_val = E1000_SUCCESS;
3722 uint32_t tipg;
3723 uint16_t reg_data;
3724
3725 DEBUGFUNC();
3726
3727 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3728 ret_val = e1000_write_kmrn_reg(hw,
3729 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3730 if (ret_val)
3731 return ret_val;
3732
3733 /* Configure Transmit Inter-Packet Gap */
3734 tipg = E1000_READ_REG(hw, TIPG);
3735 tipg &= ~E1000_TIPG_IPGT_MASK;
3736 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3737 E1000_WRITE_REG(hw, TIPG, tipg);
3738
3739 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3740
3741 if (ret_val)
3742 return ret_val;
3743
3744 if (duplex == HALF_DUPLEX)
3745 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3746 else
3747 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3748
3749 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3750
3751 return ret_val;
3752 }
3753
3754 static int32_t
3755 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3756 {
3757 int32_t ret_val = E1000_SUCCESS;
3758 uint16_t reg_data;
3759 uint32_t tipg;
3760
3761 DEBUGFUNC();
3762
3763 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3764 ret_val = e1000_write_kmrn_reg(hw,
3765 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3766 if (ret_val)
3767 return ret_val;
3768
3769 /* Configure Transmit Inter-Packet Gap */
3770 tipg = E1000_READ_REG(hw, TIPG);
3771 tipg &= ~E1000_TIPG_IPGT_MASK;
3772 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3773 E1000_WRITE_REG(hw, TIPG, tipg);
3774
3775 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3776
3777 if (ret_val)
3778 return ret_val;
3779
3780 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3781 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3782
3783 return ret_val;
3784 }
3785
3786 /******************************************************************************
3787 * Detects the current speed and duplex settings of the hardware.
3788 *
3789 * hw - Struct containing variables accessed by shared code
3790 * speed - Speed of the connection
3791 * duplex - Duplex setting of the connection
3792 *****************************************************************************/
3793 static int
3794 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3795 uint16_t *duplex)
3796 {
3797 uint32_t status;
3798 int32_t ret_val;
3799 uint16_t phy_data;
3800
3801 DEBUGFUNC();
3802
3803 if (hw->mac_type >= e1000_82543) {
3804 status = E1000_READ_REG(hw, STATUS);
3805 if (status & E1000_STATUS_SPEED_1000) {
3806 *speed = SPEED_1000;
3807 DEBUGOUT("1000 Mbs, ");
3808 } else if (status & E1000_STATUS_SPEED_100) {
3809 *speed = SPEED_100;
3810 DEBUGOUT("100 Mbs, ");
3811 } else {
3812 *speed = SPEED_10;
3813 DEBUGOUT("10 Mbs, ");
3814 }
3815
3816 if (status & E1000_STATUS_FD) {
3817 *duplex = FULL_DUPLEX;
3818 DEBUGOUT("Full Duplex\r\n");
3819 } else {
3820 *duplex = HALF_DUPLEX;
3821 DEBUGOUT(" Half Duplex\r\n");
3822 }
3823 } else {
3824 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3825 *speed = SPEED_1000;
3826 *duplex = FULL_DUPLEX;
3827 }
3828
3829 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3830 * even if it is operating at half duplex. Here we set the duplex
3831 * settings to match the duplex in the link partner's capabilities.
3832 */
3833 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3834 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3835 if (ret_val)
3836 return ret_val;
3837
3838 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3839 *duplex = HALF_DUPLEX;
3840 else {
3841 ret_val = e1000_read_phy_reg(hw,
3842 PHY_LP_ABILITY, &phy_data);
3843 if (ret_val)
3844 return ret_val;
3845 if ((*speed == SPEED_100 &&
3846 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3847 || (*speed == SPEED_10
3848 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3849 *duplex = HALF_DUPLEX;
3850 }
3851 }
3852
3853 if ((hw->mac_type == e1000_80003es2lan) &&
3854 (hw->media_type == e1000_media_type_copper)) {
3855 if (*speed == SPEED_1000)
3856 ret_val = e1000_configure_kmrn_for_1000(hw);
3857 else
3858 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3859 if (ret_val)
3860 return ret_val;
3861 }
3862 return E1000_SUCCESS;
3863 }
3864
3865 /******************************************************************************
3866 * Blocks until autoneg completes or times out (~4.5 seconds)
3867 *
3868 * hw - Struct containing variables accessed by shared code
3869 ******************************************************************************/
3870 static int
3871 e1000_wait_autoneg(struct e1000_hw *hw)
3872 {
3873 uint16_t i;
3874 uint16_t phy_data;
3875
3876 DEBUGFUNC();
3877 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3878
3879 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3880 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3881 /* Read the MII Status Register and wait for Auto-Neg
3882 * Complete bit to be set.
3883 */
3884 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3885 DEBUGOUT("PHY Read Error\n");
3886 return -E1000_ERR_PHY;
3887 }
3888 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3889 DEBUGOUT("PHY Read Error\n");
3890 return -E1000_ERR_PHY;
3891 }
3892 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3893 DEBUGOUT("Auto-Neg complete.\n");
3894 return 0;
3895 }
3896 mdelay(100);
3897 }
3898 DEBUGOUT("Auto-Neg timedout.\n");
3899 return -E1000_ERR_TIMEOUT;
3900 }
3901
3902 /******************************************************************************
3903 * Raises the Management Data Clock
3904 *
3905 * hw - Struct containing variables accessed by shared code
3906 * ctrl - Device control register's current value
3907 ******************************************************************************/
3908 static void
3909 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3910 {
3911 /* Raise the clock input to the Management Data Clock (by setting the MDC
3912 * bit), and then delay 2 microseconds.
3913 */
3914 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3915 E1000_WRITE_FLUSH(hw);
3916 udelay(2);
3917 }
3918
3919 /******************************************************************************
3920 * Lowers the Management Data Clock
3921 *
3922 * hw - Struct containing variables accessed by shared code
3923 * ctrl - Device control register's current value
3924 ******************************************************************************/
3925 static void
3926 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3927 {
3928 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3929 * bit), and then delay 2 microseconds.
3930 */
3931 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3932 E1000_WRITE_FLUSH(hw);
3933 udelay(2);
3934 }
3935
3936 /******************************************************************************
3937 * Shifts data bits out to the PHY
3938 *
3939 * hw - Struct containing variables accessed by shared code
3940 * data - Data to send out to the PHY
3941 * count - Number of bits to shift out
3942 *
3943 * Bits are shifted out in MSB to LSB order.
3944 ******************************************************************************/
3945 static void
3946 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3947 {
3948 uint32_t ctrl;
3949 uint32_t mask;
3950
3951 /* We need to shift "count" number of bits out to the PHY. So, the value
3952 * in the "data" parameter will be shifted out to the PHY one bit at a
3953 * time. In order to do this, "data" must be broken down into bits.
3954 */
3955 mask = 0x01;
3956 mask <<= (count - 1);
3957
3958 ctrl = E1000_READ_REG(hw, CTRL);
3959
3960 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3961 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3962
3963 while (mask) {
3964 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3965 * then raising and lowering the Management Data Clock. A "0" is
3966 * shifted out to the PHY by setting the MDIO bit to "0" and then
3967 * raising and lowering the clock.
3968 */
3969 if (data & mask)
3970 ctrl |= E1000_CTRL_MDIO;
3971 else
3972 ctrl &= ~E1000_CTRL_MDIO;
3973
3974 E1000_WRITE_REG(hw, CTRL, ctrl);
3975 E1000_WRITE_FLUSH(hw);
3976
3977 udelay(2);
3978
3979 e1000_raise_mdi_clk(hw, &ctrl);
3980 e1000_lower_mdi_clk(hw, &ctrl);
3981
3982 mask = mask >> 1;
3983 }
3984 }
3985
3986 /******************************************************************************
3987 * Shifts data bits in from the PHY
3988 *
3989 * hw - Struct containing variables accessed by shared code
3990 *
3991 * Bits are shifted in in MSB to LSB order.
3992 ******************************************************************************/
3993 static uint16_t
3994 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3995 {
3996 uint32_t ctrl;
3997 uint16_t data = 0;
3998 uint8_t i;
3999
4000 /* In order to read a register from the PHY, we need to shift in a total
4001 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4002 * to avoid contention on the MDIO pin when a read operation is performed.
4003 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4004 * by raising the input to the Management Data Clock (setting the MDC bit),
4005 * and then reading the value of the MDIO bit.
4006 */
4007 ctrl = E1000_READ_REG(hw, CTRL);
4008
4009 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4010 ctrl &= ~E1000_CTRL_MDIO_DIR;
4011 ctrl &= ~E1000_CTRL_MDIO;
4012
4013 E1000_WRITE_REG(hw, CTRL, ctrl);
4014 E1000_WRITE_FLUSH(hw);
4015
4016 /* Raise and Lower the clock before reading in the data. This accounts for
4017 * the turnaround bits. The first clock occurred when we clocked out the
4018 * last bit of the Register Address.
4019 */
4020 e1000_raise_mdi_clk(hw, &ctrl);
4021 e1000_lower_mdi_clk(hw, &ctrl);
4022
4023 for (data = 0, i = 0; i < 16; i++) {
4024 data = data << 1;
4025 e1000_raise_mdi_clk(hw, &ctrl);
4026 ctrl = E1000_READ_REG(hw, CTRL);
4027 /* Check to see if we shifted in a "1". */
4028 if (ctrl & E1000_CTRL_MDIO)
4029 data |= 1;
4030 e1000_lower_mdi_clk(hw, &ctrl);
4031 }
4032
4033 e1000_raise_mdi_clk(hw, &ctrl);
4034 e1000_lower_mdi_clk(hw, &ctrl);
4035
4036 return data;
4037 }
4038
4039 /*****************************************************************************
4040 * Reads the value from a PHY register
4041 *
4042 * hw - Struct containing variables accessed by shared code
4043 * reg_addr - address of the PHY register to read
4044 ******************************************************************************/
4045 static int
4046 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4047 {
4048 uint32_t i;
4049 uint32_t mdic = 0;
4050 const uint32_t phy_addr = 1;
4051
4052 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4053 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4054 return -E1000_ERR_PARAM;
4055 }
4056
4057 if (hw->mac_type > e1000_82543) {
4058 /* Set up Op-code, Phy Address, and register address in the MDI
4059 * Control register. The MAC will take care of interfacing with the
4060 * PHY to retrieve the desired data.
4061 */
4062 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4063 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4064 (E1000_MDIC_OP_READ));
4065
4066 E1000_WRITE_REG(hw, MDIC, mdic);
4067
4068 /* Poll the ready bit to see if the MDI read completed */
4069 for (i = 0; i < 64; i++) {
4070 udelay(10);
4071 mdic = E1000_READ_REG(hw, MDIC);
4072 if (mdic & E1000_MDIC_READY)
4073 break;
4074 }
4075 if (!(mdic & E1000_MDIC_READY)) {
4076 DEBUGOUT("MDI Read did not complete\n");
4077 return -E1000_ERR_PHY;
4078 }
4079 if (mdic & E1000_MDIC_ERROR) {
4080 DEBUGOUT("MDI Error\n");
4081 return -E1000_ERR_PHY;
4082 }
4083 *phy_data = (uint16_t) mdic;
4084 } else {
4085 /* We must first send a preamble through the MDIO pin to signal the
4086 * beginning of an MII instruction. This is done by sending 32
4087 * consecutive "1" bits.
4088 */
4089 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4090
4091 /* Now combine the next few fields that are required for a read
4092 * operation. We use this method instead of calling the
4093 * e1000_shift_out_mdi_bits routine five different times. The format of
4094 * a MII read instruction consists of a shift out of 14 bits and is
4095 * defined as follows:
4096 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4097 * followed by a shift in of 18 bits. This first two bits shifted in
4098 * are TurnAround bits used to avoid contention on the MDIO pin when a
4099 * READ operation is performed. These two bits are thrown away
4100 * followed by a shift in of 16 bits which contains the desired data.
4101 */
4102 mdic = ((reg_addr) | (phy_addr << 5) |
4103 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4104
4105 e1000_shift_out_mdi_bits(hw, mdic, 14);
4106
4107 /* Now that we've shifted out the read command to the MII, we need to
4108 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4109 * register address.
4110 */
4111 *phy_data = e1000_shift_in_mdi_bits(hw);
4112 }
4113 return 0;
4114 }
4115
4116 /******************************************************************************
4117 * Writes a value to a PHY register
4118 *
4119 * hw - Struct containing variables accessed by shared code
4120 * reg_addr - address of the PHY register to write
4121 * data - data to write to the PHY
4122 ******************************************************************************/
4123 static int
4124 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4125 {
4126 uint32_t i;
4127 uint32_t mdic = 0;
4128 const uint32_t phy_addr = 1;
4129
4130 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4131 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4132 return -E1000_ERR_PARAM;
4133 }
4134
4135 if (hw->mac_type > e1000_82543) {
4136 /* Set up Op-code, Phy Address, register address, and data intended
4137 * for the PHY register in the MDI Control register. The MAC will take
4138 * care of interfacing with the PHY to send the desired data.
4139 */
4140 mdic = (((uint32_t) phy_data) |
4141 (reg_addr << E1000_MDIC_REG_SHIFT) |
4142 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4143 (E1000_MDIC_OP_WRITE));
4144
4145 E1000_WRITE_REG(hw, MDIC, mdic);
4146
4147 /* Poll the ready bit to see if the MDI read completed */
4148 for (i = 0; i < 64; i++) {
4149 udelay(10);
4150 mdic = E1000_READ_REG(hw, MDIC);
4151 if (mdic & E1000_MDIC_READY)
4152 break;
4153 }
4154 if (!(mdic & E1000_MDIC_READY)) {
4155 DEBUGOUT("MDI Write did not complete\n");
4156 return -E1000_ERR_PHY;
4157 }
4158 } else {
4159 /* We'll need to use the SW defined pins to shift the write command
4160 * out to the PHY. We first send a preamble to the PHY to signal the
4161 * beginning of the MII instruction. This is done by sending 32
4162 * consecutive "1" bits.
4163 */
4164 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4165
4166 /* Now combine the remaining required fields that will indicate a
4167 * write operation. We use this method instead of calling the
4168 * e1000_shift_out_mdi_bits routine for each field in the command. The
4169 * format of a MII write instruction is as follows:
4170 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4171 */
4172 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4173 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4174 mdic <<= 16;
4175 mdic |= (uint32_t) phy_data;
4176
4177 e1000_shift_out_mdi_bits(hw, mdic, 32);
4178 }
4179 return 0;
4180 }
4181
4182 /******************************************************************************
4183 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4184 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4185 * the caller to figure out how to deal with it.
4186 *
4187 * hw - Struct containing variables accessed by shared code
4188 *
4189 * returns: - E1000_BLK_PHY_RESET
4190 * E1000_SUCCESS
4191 *
4192 *****************************************************************************/
4193 int32_t
4194 e1000_check_phy_reset_block(struct e1000_hw *hw)
4195 {
4196 uint32_t manc = 0;
4197 uint32_t fwsm = 0;
4198
4199 if (hw->mac_type == e1000_ich8lan) {
4200 fwsm = E1000_READ_REG(hw, FWSM);
4201 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4202 : E1000_BLK_PHY_RESET;
4203 }
4204
4205 if (hw->mac_type > e1000_82547_rev_2)
4206 manc = E1000_READ_REG(hw, MANC);
4207 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4208 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4209 }
4210
4211 /***************************************************************************
4212 * Checks if the PHY configuration is done
4213 *
4214 * hw: Struct containing variables accessed by shared code
4215 *
4216 * returns: - E1000_ERR_RESET if fail to reset MAC
4217 * E1000_SUCCESS at any other case.
4218 *
4219 ***************************************************************************/
4220 static int32_t
4221 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4222 {
4223 int32_t timeout = PHY_CFG_TIMEOUT;
4224 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4225
4226 DEBUGFUNC();
4227
4228 switch (hw->mac_type) {
4229 default:
4230 mdelay(10);
4231 break;
4232
4233 case e1000_80003es2lan:
4234 /* Separate *_CFG_DONE_* bit for each port */
4235 if (e1000_is_second_port(hw))
4236 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4237 /* Fall Through */
4238
4239 case e1000_82571:
4240 case e1000_82572:
4241 while (timeout) {
4242 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4243 break;
4244 else
4245 mdelay(1);
4246 timeout--;
4247 }
4248 if (!timeout) {
4249 DEBUGOUT("MNG configuration cycle has not "
4250 "completed.\n");
4251 return -E1000_ERR_RESET;
4252 }
4253 break;
4254 }
4255
4256 return E1000_SUCCESS;
4257 }
4258
4259 /******************************************************************************
4260 * Returns the PHY to the power-on reset state
4261 *
4262 * hw - Struct containing variables accessed by shared code
4263 ******************************************************************************/
4264 int32_t
4265 e1000_phy_hw_reset(struct e1000_hw *hw)
4266 {
4267 uint16_t swfw = E1000_SWFW_PHY0_SM;
4268 uint32_t ctrl, ctrl_ext;
4269 uint32_t led_ctrl;
4270 int32_t ret_val;
4271
4272 DEBUGFUNC();
4273
4274 /* In the case of the phy reset being blocked, it's not an error, we
4275 * simply return success without performing the reset. */
4276 ret_val = e1000_check_phy_reset_block(hw);
4277 if (ret_val)
4278 return E1000_SUCCESS;
4279
4280 DEBUGOUT("Resetting Phy...\n");
4281
4282 if (hw->mac_type > e1000_82543) {
4283 if (e1000_is_second_port(hw))
4284 swfw = E1000_SWFW_PHY1_SM;
4285
4286 if (e1000_swfw_sync_acquire(hw, swfw)) {
4287 DEBUGOUT("Unable to acquire swfw sync\n");
4288 return -E1000_ERR_SWFW_SYNC;
4289 }
4290
4291 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4292 * bit. Then, take it out of reset.
4293 */
4294 ctrl = E1000_READ_REG(hw, CTRL);
4295 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4296 E1000_WRITE_FLUSH(hw);
4297
4298 if (hw->mac_type < e1000_82571)
4299 udelay(10);
4300 else
4301 udelay(100);
4302
4303 E1000_WRITE_REG(hw, CTRL, ctrl);
4304 E1000_WRITE_FLUSH(hw);
4305
4306 if (hw->mac_type >= e1000_82571)
4307 mdelay(10);
4308
4309 } else {
4310 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4311 * bit to put the PHY into reset. Then, take it out of reset.
4312 */
4313 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4314 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4315 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4316 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4317 E1000_WRITE_FLUSH(hw);
4318 mdelay(10);
4319 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4320 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4321 E1000_WRITE_FLUSH(hw);
4322 }
4323 udelay(150);
4324
4325 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4326 /* Configure activity LED after PHY reset */
4327 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4328 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4329 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4330 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4331 }
4332
4333 /* Wait for FW to finish PHY configuration. */
4334 ret_val = e1000_get_phy_cfg_done(hw);
4335 if (ret_val != E1000_SUCCESS)
4336 return ret_val;
4337
4338 return ret_val;
4339 }
4340
4341 /******************************************************************************
4342 * IGP phy init script - initializes the GbE PHY
4343 *
4344 * hw - Struct containing variables accessed by shared code
4345 *****************************************************************************/
4346 static void
4347 e1000_phy_init_script(struct e1000_hw *hw)
4348 {
4349 uint32_t ret_val;
4350 uint16_t phy_saved_data;
4351 DEBUGFUNC();
4352
4353 if (hw->phy_init_script) {
4354 mdelay(20);
4355
4356 /* Save off the current value of register 0x2F5B to be
4357 * restored at the end of this routine. */
4358 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4359
4360 /* Disabled the PHY transmitter */
4361 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4362
4363 mdelay(20);
4364
4365 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4366
4367 mdelay(5);
4368
4369 switch (hw->mac_type) {
4370 case e1000_82541:
4371 case e1000_82547:
4372 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4373
4374 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4375
4376 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4377
4378 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4379
4380 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4381
4382 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4383
4384 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4385
4386 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4387
4388 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4389 break;
4390
4391 case e1000_82541_rev_2:
4392 case e1000_82547_rev_2:
4393 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4394 break;
4395 default:
4396 break;
4397 }
4398
4399 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4400
4401 mdelay(20);
4402
4403 /* Now enable the transmitter */
4404 if (!ret_val)
4405 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4406
4407 if (hw->mac_type == e1000_82547) {
4408 uint16_t fused, fine, coarse;
4409
4410 /* Move to analog registers page */
4411 e1000_read_phy_reg(hw,
4412 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4413
4414 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4415 e1000_read_phy_reg(hw,
4416 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4417
4418 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4419 coarse = fused
4420 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4421
4422 if (coarse >
4423 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4424 coarse -=
4425 IGP01E1000_ANALOG_FUSE_COARSE_10;
4426 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4427 } else if (coarse
4428 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4429 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4430
4431 fused = (fused
4432 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4433 (fine
4434 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4435 (coarse
4436 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4437
4438 e1000_write_phy_reg(hw,
4439 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4440 e1000_write_phy_reg(hw,
4441 IGP01E1000_ANALOG_FUSE_BYPASS,
4442 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4443 }
4444 }
4445 }
4446 }
4447
4448 /******************************************************************************
4449 * Resets the PHY
4450 *
4451 * hw - Struct containing variables accessed by shared code
4452 *
4453 * Sets bit 15 of the MII Control register
4454 ******************************************************************************/
4455 int32_t
4456 e1000_phy_reset(struct e1000_hw *hw)
4457 {
4458 int32_t ret_val;
4459 uint16_t phy_data;
4460
4461 DEBUGFUNC();
4462
4463 /* In the case of the phy reset being blocked, it's not an error, we
4464 * simply return success without performing the reset. */
4465 ret_val = e1000_check_phy_reset_block(hw);
4466 if (ret_val)
4467 return E1000_SUCCESS;
4468
4469 switch (hw->phy_type) {
4470 case e1000_phy_igp:
4471 case e1000_phy_igp_2:
4472 case e1000_phy_igp_3:
4473 case e1000_phy_ife:
4474 ret_val = e1000_phy_hw_reset(hw);
4475 if (ret_val)
4476 return ret_val;
4477 break;
4478 default:
4479 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4480 if (ret_val)
4481 return ret_val;
4482
4483 phy_data |= MII_CR_RESET;
4484 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4485 if (ret_val)
4486 return ret_val;
4487
4488 udelay(1);
4489 break;
4490 }
4491
4492 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4493 e1000_phy_init_script(hw);
4494
4495 return E1000_SUCCESS;
4496 }
4497
4498 static int e1000_set_phy_type (struct e1000_hw *hw)
4499 {
4500 DEBUGFUNC ();
4501
4502 if (hw->mac_type == e1000_undefined)
4503 return -E1000_ERR_PHY_TYPE;
4504
4505 switch (hw->phy_id) {
4506 case M88E1000_E_PHY_ID:
4507 case M88E1000_I_PHY_ID:
4508 case M88E1011_I_PHY_ID:
4509 case M88E1111_I_PHY_ID:
4510 hw->phy_type = e1000_phy_m88;
4511 break;
4512 case IGP01E1000_I_PHY_ID:
4513 if (hw->mac_type == e1000_82541 ||
4514 hw->mac_type == e1000_82541_rev_2 ||
4515 hw->mac_type == e1000_82547 ||
4516 hw->mac_type == e1000_82547_rev_2) {
4517 hw->phy_type = e1000_phy_igp;
4518 hw->phy_type = e1000_phy_igp;
4519 break;
4520 }
4521 case IGP03E1000_E_PHY_ID:
4522 hw->phy_type = e1000_phy_igp_3;
4523 break;
4524 case IFE_E_PHY_ID:
4525 case IFE_PLUS_E_PHY_ID:
4526 case IFE_C_E_PHY_ID:
4527 hw->phy_type = e1000_phy_ife;
4528 break;
4529 case GG82563_E_PHY_ID:
4530 if (hw->mac_type == e1000_80003es2lan) {
4531 hw->phy_type = e1000_phy_gg82563;
4532 break;
4533 }
4534 case BME1000_E_PHY_ID:
4535 hw->phy_type = e1000_phy_bm;
4536 break;
4537 /* Fall Through */
4538 default:
4539 /* Should never have loaded on this device */
4540 hw->phy_type = e1000_phy_undefined;
4541 return -E1000_ERR_PHY_TYPE;
4542 }
4543
4544 return E1000_SUCCESS;
4545 }
4546
4547 /******************************************************************************
4548 * Probes the expected PHY address for known PHY IDs
4549 *
4550 * hw - Struct containing variables accessed by shared code
4551 ******************************************************************************/
4552 static int32_t
4553 e1000_detect_gig_phy(struct e1000_hw *hw)
4554 {
4555 int32_t phy_init_status, ret_val;
4556 uint16_t phy_id_high, phy_id_low;
4557 bool match = false;
4558
4559 DEBUGFUNC();
4560
4561 /* The 82571 firmware may still be configuring the PHY. In this
4562 * case, we cannot access the PHY until the configuration is done. So
4563 * we explicitly set the PHY values. */
4564 if (hw->mac_type == e1000_82571 ||
4565 hw->mac_type == e1000_82572) {
4566 hw->phy_id = IGP01E1000_I_PHY_ID;
4567 hw->phy_type = e1000_phy_igp_2;
4568 return E1000_SUCCESS;
4569 }
4570
4571 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4572 * work- around that forces PHY page 0 to be set or the reads fail.
4573 * The rest of the code in this routine uses e1000_read_phy_reg to
4574 * read the PHY ID. So for ESB-2 we need to have this set so our
4575 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4576 * the routines below will figure this out as well. */
4577 if (hw->mac_type == e1000_80003es2lan)
4578 hw->phy_type = e1000_phy_gg82563;
4579
4580 /* Read the PHY ID Registers to identify which PHY is onboard. */
4581 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4582 if (ret_val)
4583 return ret_val;
4584
4585 hw->phy_id = (uint32_t) (phy_id_high << 16);
4586 udelay(20);
4587 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4588 if (ret_val)
4589 return ret_val;
4590
4591 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4592 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4593
4594 switch (hw->mac_type) {
4595 case e1000_82543:
4596 if (hw->phy_id == M88E1000_E_PHY_ID)
4597 match = true;
4598 break;
4599 case e1000_82544:
4600 if (hw->phy_id == M88E1000_I_PHY_ID)
4601 match = true;
4602 break;
4603 case e1000_82540:
4604 case e1000_82545:
4605 case e1000_82545_rev_3:
4606 case e1000_82546:
4607 case e1000_82546_rev_3:
4608 if (hw->phy_id == M88E1011_I_PHY_ID)
4609 match = true;
4610 break;
4611 case e1000_82541:
4612 case e1000_82541_rev_2:
4613 case e1000_82547:
4614 case e1000_82547_rev_2:
4615 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4616 match = true;
4617
4618 break;
4619 case e1000_82573:
4620 if (hw->phy_id == M88E1111_I_PHY_ID)
4621 match = true;
4622 break;
4623 case e1000_82574:
4624 if (hw->phy_id == BME1000_E_PHY_ID)
4625 match = true;
4626 break;
4627 case e1000_80003es2lan:
4628 if (hw->phy_id == GG82563_E_PHY_ID)
4629 match = true;
4630 break;
4631 case e1000_ich8lan:
4632 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4633 match = true;
4634 if (hw->phy_id == IFE_E_PHY_ID)
4635 match = true;
4636 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4637 match = true;
4638 if (hw->phy_id == IFE_C_E_PHY_ID)
4639 match = true;
4640 break;
4641 default:
4642 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4643 return -E1000_ERR_CONFIG;
4644 }
4645
4646 phy_init_status = e1000_set_phy_type(hw);
4647
4648 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4649 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4650 return 0;
4651 }
4652 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4653 return -E1000_ERR_PHY;
4654 }
4655
4656 /*****************************************************************************
4657 * Set media type and TBI compatibility.
4658 *
4659 * hw - Struct containing variables accessed by shared code
4660 * **************************************************************************/
4661 void
4662 e1000_set_media_type(struct e1000_hw *hw)
4663 {
4664 uint32_t status;
4665
4666 DEBUGFUNC();
4667
4668 if (hw->mac_type != e1000_82543) {
4669 /* tbi_compatibility is only valid on 82543 */
4670 hw->tbi_compatibility_en = false;
4671 }
4672
4673 switch (hw->device_id) {
4674 case E1000_DEV_ID_82545GM_SERDES:
4675 case E1000_DEV_ID_82546GB_SERDES:
4676 case E1000_DEV_ID_82571EB_SERDES:
4677 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4678 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4679 case E1000_DEV_ID_82572EI_SERDES:
4680 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4681 hw->media_type = e1000_media_type_internal_serdes;
4682 break;
4683 default:
4684 switch (hw->mac_type) {
4685 case e1000_82542_rev2_0:
4686 case e1000_82542_rev2_1:
4687 hw->media_type = e1000_media_type_fiber;
4688 break;
4689 case e1000_ich8lan:
4690 case e1000_82573:
4691 case e1000_82574:
4692 /* The STATUS_TBIMODE bit is reserved or reused
4693 * for the this device.
4694 */
4695 hw->media_type = e1000_media_type_copper;
4696 break;
4697 default:
4698 status = E1000_READ_REG(hw, STATUS);
4699 if (status & E1000_STATUS_TBIMODE) {
4700 hw->media_type = e1000_media_type_fiber;
4701 /* tbi_compatibility not valid on fiber */
4702 hw->tbi_compatibility_en = false;
4703 } else {
4704 hw->media_type = e1000_media_type_copper;
4705 }
4706 break;
4707 }
4708 }
4709 }
4710
4711 /**
4712 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4713 *
4714 * e1000_sw_init initializes the Adapter private data structure.
4715 * Fields are initialized based on PCI device information and
4716 * OS network device settings (MTU size).
4717 **/
4718
4719 static int
4720 e1000_sw_init(struct eth_device *nic)
4721 {
4722 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4723 int result;
4724
4725 /* PCI config space info */
4726 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4727 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4728 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4729 &hw->subsystem_vendor_id);
4730 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4731
4732 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4733 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4734
4735 /* identify the MAC */
4736 result = e1000_set_mac_type(hw);
4737 if (result) {
4738 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4739 return result;
4740 }
4741
4742 switch (hw->mac_type) {
4743 default:
4744 break;
4745 case e1000_82541:
4746 case e1000_82547:
4747 case e1000_82541_rev_2:
4748 case e1000_82547_rev_2:
4749 hw->phy_init_script = 1;
4750 break;
4751 }
4752
4753 /* flow control settings */
4754 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4755 hw->fc_low_water = E1000_FC_LOW_THRESH;
4756 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4757 hw->fc_send_xon = 1;
4758
4759 /* Media type - copper or fiber */
4760 e1000_set_media_type(hw);
4761
4762 if (hw->mac_type >= e1000_82543) {
4763 uint32_t status = E1000_READ_REG(hw, STATUS);
4764
4765 if (status & E1000_STATUS_TBIMODE) {
4766 DEBUGOUT("fiber interface\n");
4767 hw->media_type = e1000_media_type_fiber;
4768 } else {
4769 DEBUGOUT("copper interface\n");
4770 hw->media_type = e1000_media_type_copper;
4771 }
4772 } else {
4773 hw->media_type = e1000_media_type_fiber;
4774 }
4775
4776 hw->tbi_compatibility_en = true;
4777 hw->wait_autoneg_complete = true;
4778 if (hw->mac_type < e1000_82543)
4779 hw->report_tx_early = 0;
4780 else
4781 hw->report_tx_early = 1;
4782
4783 return E1000_SUCCESS;
4784 }
4785
4786 void
4787 fill_rx(struct e1000_hw *hw)
4788 {
4789 struct e1000_rx_desc *rd;
4790
4791 rx_last = rx_tail;
4792 rd = rx_base + rx_tail;
4793 rx_tail = (rx_tail + 1) % 8;
4794 memset(rd, 0, 16);
4795 rd->buffer_addr = cpu_to_le64((u32) & packet);
4796 E1000_WRITE_REG(hw, RDT, rx_tail);
4797 }
4798
4799 /**
4800 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4801 * @adapter: board private structure
4802 *
4803 * Configure the Tx unit of the MAC after a reset.
4804 **/
4805
4806 static void
4807 e1000_configure_tx(struct e1000_hw *hw)
4808 {
4809 unsigned long ptr;
4810 unsigned long tctl;
4811 unsigned long tipg, tarc;
4812 uint32_t ipgr1, ipgr2;
4813
4814 ptr = (u32) tx_pool;
4815 if (ptr & 0xf)
4816 ptr = (ptr + 0x10) & (~0xf);
4817
4818 tx_base = (typeof(tx_base)) ptr;
4819
4820 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4821 E1000_WRITE_REG(hw, TDBAH, 0);
4822
4823 E1000_WRITE_REG(hw, TDLEN, 128);
4824
4825 /* Setup the HW Tx Head and Tail descriptor pointers */
4826 E1000_WRITE_REG(hw, TDH, 0);
4827 E1000_WRITE_REG(hw, TDT, 0);
4828 tx_tail = 0;
4829
4830 /* Set the default values for the Tx Inter Packet Gap timer */
4831 if (hw->mac_type <= e1000_82547_rev_2 &&
4832 (hw->media_type == e1000_media_type_fiber ||
4833 hw->media_type == e1000_media_type_internal_serdes))
4834 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4835 else
4836 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4837
4838 /* Set the default values for the Tx Inter Packet Gap timer */
4839 switch (hw->mac_type) {
4840 case e1000_82542_rev2_0:
4841 case e1000_82542_rev2_1:
4842 tipg = DEFAULT_82542_TIPG_IPGT;
4843 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4844 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4845 break;
4846 case e1000_80003es2lan:
4847 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4848 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4849 break;
4850 default:
4851 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4852 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4853 break;
4854 }
4855 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4856 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4857 E1000_WRITE_REG(hw, TIPG, tipg);
4858 /* Program the Transmit Control Register */
4859 tctl = E1000_READ_REG(hw, TCTL);
4860 tctl &= ~E1000_TCTL_CT;
4861 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4862 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4863
4864 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4865 tarc = E1000_READ_REG(hw, TARC0);
4866 /* set the speed mode bit, we'll clear it if we're not at
4867 * gigabit link later */
4868 /* git bit can be set to 1*/
4869 } else if (hw->mac_type == e1000_80003es2lan) {
4870 tarc = E1000_READ_REG(hw, TARC0);
4871 tarc |= 1;
4872 E1000_WRITE_REG(hw, TARC0, tarc);
4873 tarc = E1000_READ_REG(hw, TARC1);
4874 tarc |= 1;
4875 E1000_WRITE_REG(hw, TARC1, tarc);
4876 }
4877
4878
4879 e1000_config_collision_dist(hw);
4880 /* Setup Transmit Descriptor Settings for eop descriptor */
4881 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4882
4883 /* Need to set up RS bit */
4884 if (hw->mac_type < e1000_82543)
4885 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4886 else
4887 hw->txd_cmd |= E1000_TXD_CMD_RS;
4888 E1000_WRITE_REG(hw, TCTL, tctl);
4889 }
4890
4891 /**
4892 * e1000_setup_rctl - configure the receive control register
4893 * @adapter: Board private structure
4894 **/
4895 static void
4896 e1000_setup_rctl(struct e1000_hw *hw)
4897 {
4898 uint32_t rctl;
4899
4900 rctl = E1000_READ_REG(hw, RCTL);
4901
4902 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4903
4904 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4905 | E1000_RCTL_RDMTS_HALF; /* |
4906 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4907
4908 if (hw->tbi_compatibility_on == 1)
4909 rctl |= E1000_RCTL_SBP;
4910 else
4911 rctl &= ~E1000_RCTL_SBP;
4912
4913 rctl &= ~(E1000_RCTL_SZ_4096);
4914 rctl |= E1000_RCTL_SZ_2048;
4915 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4916 E1000_WRITE_REG(hw, RCTL, rctl);
4917 }
4918
4919 /**
4920 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4921 * @adapter: board private structure
4922 *
4923 * Configure the Rx unit of the MAC after a reset.
4924 **/
4925 static void
4926 e1000_configure_rx(struct e1000_hw *hw)
4927 {
4928 unsigned long ptr;
4929 unsigned long rctl, ctrl_ext;
4930 rx_tail = 0;
4931 /* make sure receives are disabled while setting up the descriptors */
4932 rctl = E1000_READ_REG(hw, RCTL);
4933 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4934 if (hw->mac_type >= e1000_82540) {
4935 /* Set the interrupt throttling rate. Value is calculated
4936 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4937 #define MAX_INTS_PER_SEC 8000
4938 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
4939 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4940 }
4941
4942 if (hw->mac_type >= e1000_82571) {
4943 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4944 /* Reset delay timers after every interrupt */
4945 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4946 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4947 E1000_WRITE_FLUSH(hw);
4948 }
4949 /* Setup the Base and Length of the Rx Descriptor Ring */
4950 ptr = (u32) rx_pool;
4951 if (ptr & 0xf)
4952 ptr = (ptr + 0x10) & (~0xf);
4953 rx_base = (typeof(rx_base)) ptr;
4954 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4955 E1000_WRITE_REG(hw, RDBAH, 0);
4956
4957 E1000_WRITE_REG(hw, RDLEN, 128);
4958
4959 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4960 E1000_WRITE_REG(hw, RDH, 0);
4961 E1000_WRITE_REG(hw, RDT, 0);
4962 /* Enable Receives */
4963
4964 E1000_WRITE_REG(hw, RCTL, rctl);
4965 fill_rx(hw);
4966 }
4967
4968 /**************************************************************************
4969 POLL - Wait for a frame
4970 ***************************************************************************/
4971 static int
4972 e1000_poll(struct eth_device *nic)
4973 {
4974 struct e1000_hw *hw = nic->priv;
4975 struct e1000_rx_desc *rd;
4976 /* return true if there's an ethernet packet ready to read */
4977 rd = rx_base + rx_last;
4978 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4979 return 0;
4980 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4981 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4982 fill_rx(hw);
4983 return 1;
4984 }
4985
4986 /**************************************************************************
4987 TRANSMIT - Transmit a frame
4988 ***************************************************************************/
4989 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
4990 {
4991 void *nv_packet = (void *)packet;
4992 struct e1000_hw *hw = nic->priv;
4993 struct e1000_tx_desc *txp;
4994 int i = 0;
4995
4996 txp = tx_base + tx_tail;
4997 tx_tail = (tx_tail + 1) % 8;
4998
4999 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5000 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5001 txp->upper.data = 0;
5002 E1000_WRITE_REG(hw, TDT, tx_tail);
5003
5004 E1000_WRITE_FLUSH(hw);
5005 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5006 if (i++ > TOUT_LOOP) {
5007 DEBUGOUT("e1000: tx timeout\n");
5008 return 0;
5009 }
5010 udelay(10); /* give the nic a chance to write to the register */
5011 }
5012 return 1;
5013 }
5014
5015 /*reset function*/
5016 static inline int
5017 e1000_reset(struct eth_device *nic)
5018 {
5019 struct e1000_hw *hw = nic->priv;
5020
5021 e1000_reset_hw(hw);
5022 if (hw->mac_type >= e1000_82544) {
5023 E1000_WRITE_REG(hw, WUC, 0);
5024 }
5025 return e1000_init_hw(nic);
5026 }
5027
5028 /**************************************************************************
5029 DISABLE - Turn off ethernet interface
5030 ***************************************************************************/
5031 static void
5032 e1000_disable(struct eth_device *nic)
5033 {
5034 struct e1000_hw *hw = nic->priv;
5035
5036 /* Turn off the ethernet interface */
5037 E1000_WRITE_REG(hw, RCTL, 0);
5038 E1000_WRITE_REG(hw, TCTL, 0);
5039
5040 /* Clear the transmit ring */
5041 E1000_WRITE_REG(hw, TDH, 0);
5042 E1000_WRITE_REG(hw, TDT, 0);
5043
5044 /* Clear the receive ring */
5045 E1000_WRITE_REG(hw, RDH, 0);
5046 E1000_WRITE_REG(hw, RDT, 0);
5047
5048 /* put the card in its initial state */
5049 #if 0
5050 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5051 #endif
5052 mdelay(10);
5053
5054 }
5055
5056 /**************************************************************************
5057 INIT - set up ethernet interface(s)
5058 ***************************************************************************/
5059 static int
5060 e1000_init(struct eth_device *nic, bd_t * bis)
5061 {
5062 struct e1000_hw *hw = nic->priv;
5063 int ret_val = 0;
5064
5065 ret_val = e1000_reset(nic);
5066 if (ret_val < 0) {
5067 if ((ret_val == -E1000_ERR_NOLINK) ||
5068 (ret_val == -E1000_ERR_TIMEOUT)) {
5069 E1000_ERR(hw->nic, "Valid Link not detected\n");
5070 } else {
5071 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5072 }
5073 return 0;
5074 }
5075 e1000_configure_tx(hw);
5076 e1000_setup_rctl(hw);
5077 e1000_configure_rx(hw);
5078 return 1;
5079 }
5080
5081 /******************************************************************************
5082 * Gets the current PCI bus type of hardware
5083 *
5084 * hw - Struct containing variables accessed by shared code
5085 *****************************************************************************/
5086 void e1000_get_bus_type(struct e1000_hw *hw)
5087 {
5088 uint32_t status;
5089
5090 switch (hw->mac_type) {
5091 case e1000_82542_rev2_0:
5092 case e1000_82542_rev2_1:
5093 hw->bus_type = e1000_bus_type_pci;
5094 break;
5095 case e1000_82571:
5096 case e1000_82572:
5097 case e1000_82573:
5098 case e1000_82574:
5099 case e1000_80003es2lan:
5100 hw->bus_type = e1000_bus_type_pci_express;
5101 break;
5102 case e1000_ich8lan:
5103 hw->bus_type = e1000_bus_type_pci_express;
5104 break;
5105 default:
5106 status = E1000_READ_REG(hw, STATUS);
5107 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5108 e1000_bus_type_pcix : e1000_bus_type_pci;
5109 break;
5110 }
5111 }
5112
5113 /* A list of all registered e1000 devices */
5114 static LIST_HEAD(e1000_hw_list);
5115
5116 /**************************************************************************
5117 PROBE - Look for an adapter, this routine's visible to the outside
5118 You should omit the last argument struct pci_device * for a non-PCI NIC
5119 ***************************************************************************/
5120 int
5121 e1000_initialize(bd_t * bis)
5122 {
5123 unsigned int i;
5124 pci_dev_t devno;
5125
5126 DEBUGFUNC();
5127
5128 /* Find and probe all the matching PCI devices */
5129 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5130 u32 val;
5131
5132 /*
5133 * These will never get freed due to errors, this allows us to
5134 * perform SPI EEPROM programming from U-boot, for example.
5135 */
5136 struct eth_device *nic = malloc(sizeof(*nic));
5137 struct e1000_hw *hw = malloc(sizeof(*hw));
5138 if (!nic || !hw) {
5139 printf("e1000#%u: Out of Memory!\n", i);
5140 free(nic);
5141 free(hw);
5142 continue;
5143 }
5144
5145 /* Make sure all of the fields are initially zeroed */
5146 memset(nic, 0, sizeof(*nic));
5147 memset(hw, 0, sizeof(*hw));
5148
5149 /* Assign the passed-in values */
5150 hw->cardnum = i;
5151 hw->pdev = devno;
5152 hw->nic = nic;
5153 nic->priv = hw;
5154
5155 /* Generate a card name */
5156 sprintf(nic->name, "e1000#%u", hw->cardnum);
5157
5158 /* Print a debug message with the IO base address */
5159 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5160 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5161
5162 /* Try to enable I/O accesses and bus-mastering */
5163 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5164 pci_write_config_dword(devno, PCI_COMMAND, val);
5165
5166 /* Make sure it worked */
5167 pci_read_config_dword(devno, PCI_COMMAND, &val);
5168 if (!(val & PCI_COMMAND_MEMORY)) {
5169 E1000_ERR(nic, "Can't enable I/O memory\n");
5170 continue;
5171 }
5172 if (!(val & PCI_COMMAND_MASTER)) {
5173 E1000_ERR(nic, "Can't enable bus-mastering\n");
5174 continue;
5175 }
5176
5177 /* Are these variables needed? */
5178 hw->fc = e1000_fc_default;
5179 hw->original_fc = e1000_fc_default;
5180 hw->autoneg_failed = 0;
5181 hw->autoneg = 1;
5182 hw->get_link_status = true;
5183 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5184 PCI_REGION_MEM);
5185 hw->mac_type = e1000_undefined;
5186
5187 /* MAC and Phy settings */
5188 if (e1000_sw_init(nic) < 0) {
5189 E1000_ERR(nic, "Software init failed\n");
5190 continue;
5191 }
5192 if (e1000_check_phy_reset_block(hw))
5193 E1000_ERR(nic, "PHY Reset is blocked!\n");
5194
5195 /* Basic init was OK, reset the hardware and allow SPI access */
5196 e1000_reset_hw(hw);
5197 list_add_tail(&hw->list_node, &e1000_hw_list);
5198
5199 /* Validate the EEPROM and get chipset information */
5200 #if !defined(CONFIG_MVBC_1G)
5201 if (e1000_init_eeprom_params(hw)) {
5202 E1000_ERR(nic, "EEPROM is invalid!\n");
5203 continue;
5204 }
5205 if (e1000_validate_eeprom_checksum(hw))
5206 continue;
5207 #endif
5208 e1000_read_mac_addr(nic);
5209 e1000_get_bus_type(hw);
5210
5211 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5212 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5213 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5214
5215 /* Set up the function pointers and register the device */
5216 nic->init = e1000_init;
5217 nic->recv = e1000_poll;
5218 nic->send = e1000_transmit;
5219 nic->halt = e1000_disable;
5220 eth_register(nic);
5221 }
5222
5223 return i;
5224 }
5225
5226 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5227 {
5228 struct e1000_hw *hw;
5229
5230 list_for_each_entry(hw, &e1000_hw_list, list_node)
5231 if (hw->cardnum == cardnum)
5232 return hw;
5233
5234 return NULL;
5235 }
5236
5237 #ifdef CONFIG_CMD_E1000
5238 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5239 int argc, char * const argv[])
5240 {
5241 struct e1000_hw *hw;
5242
5243 if (argc < 3) {
5244 cmd_usage(cmdtp);
5245 return 1;
5246 }
5247
5248 /* Make sure we can find the requested e1000 card */
5249 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5250 if (!hw) {
5251 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5252 return 1;
5253 }
5254
5255 if (!strcmp(argv[2], "print-mac-address")) {
5256 unsigned char *mac = hw->nic->enetaddr;
5257 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5258 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5259 return 0;
5260 }
5261
5262 #ifdef CONFIG_E1000_SPI
5263 /* Handle the "SPI" subcommand */
5264 if (!strcmp(argv[2], "spi"))
5265 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5266 #endif
5267
5268 cmd_usage(cmdtp);
5269 return 1;
5270 }
5271
5272 U_BOOT_CMD(
5273 e1000, 7, 0, do_e1000,
5274 "Intel e1000 controller management",
5275 /* */"<card#> print-mac-address\n"
5276 #ifdef CONFIG_E1000_SPI
5277 "e1000 <card#> spi show [<offset> [<length>]]\n"
5278 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5279 "e1000 <card#> spi program <addr> <offset> <length>\n"
5280 "e1000 <card#> spi checksum [update]\n"
5281 #endif
5282 " - Manage the Intel E1000 PCI device"
5283 );
5284 #endif /* not CONFIG_CMD_E1000 */