]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/fec_mxc.c
env: Rename getenv/_f() to env_get()
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
1 /*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <dm.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 #include "fec_mxc.h"
19
20 #include <asm/io.h>
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
23
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/sys_proto.h>
27
28 DECLARE_GLOBAL_DATA_PTR;
29
30 /*
31 * Timeout the transfer after 5 mS. This is usually a bit more, since
32 * the code in the tightloops this timeout is used in adds some overhead.
33 */
34 #define FEC_XFER_TIMEOUT 5000
35
36 /*
37 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
38 * 64-byte alignment in the DMA RX FEC buffer.
39 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
40 * satisfies the alignment on other SoCs (32-bytes)
41 */
42 #define FEC_DMA_RX_MINALIGN 64
43
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51
52 /*
53 * The i.MX28 operates with packets in big endian. We need to swap them before
54 * sending and after receiving.
55 */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71
72 #undef DEBUG
73
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 int i;
78
79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 packet[i] = __swab32(packet[i]);
81 }
82 #endif
83
84 /* MII-interface related functions */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
86 uint8_t regaddr)
87 {
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
90 uint32_t start;
91 int val;
92
93 /*
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
96 */
97 writel(FEC_IEVENT_MII, &eth->ievent);
98 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
100
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 phy | reg, &eth->mii_data);
103
104 /* wait for the related interrupt */
105 start = get_timer(0);
106 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 printf("Read MDIO failed...\n");
109 return -1;
110 }
111 }
112
113 /* clear mii interrupt bit */
114 writel(FEC_IEVENT_MII, &eth->ievent);
115
116 /* it's now safe to read the PHY's register */
117 val = (unsigned short)readl(&eth->mii_data);
118 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
119 regaddr, val);
120 return val;
121 }
122
123 static void fec_mii_setspeed(struct ethernet_regs *eth)
124 {
125 /*
126 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
127 * and do not drop the Preamble.
128 *
129 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
130 * MII_SPEED) register that defines the MDIO output hold time. Earlier
131 * versions are RAZ there, so just ignore the difference and write the
132 * register always.
133 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
134 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
135 * output.
136 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
137 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
138 * holdtime cannot result in a value greater than 3.
139 */
140 u32 pclk = imx_get_fecclk();
141 u32 speed = DIV_ROUND_UP(pclk, 5000000);
142 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
143 #ifdef FEC_QUIRK_ENET_MAC
144 speed--;
145 #endif
146 writel(speed << 1 | hold << 8, &eth->mii_speed);
147 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
148 }
149
150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
151 uint8_t regaddr, uint16_t data)
152 {
153 uint32_t reg; /* convenient holder for the PHY register */
154 uint32_t phy; /* convenient holder for the PHY */
155 uint32_t start;
156
157 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
158 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
159
160 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
161 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
162
163 /* wait for the MII interrupt */
164 start = get_timer(0);
165 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
166 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
167 printf("Write MDIO failed...\n");
168 return -1;
169 }
170 }
171
172 /* clear MII interrupt bit */
173 writel(FEC_IEVENT_MII, &eth->ievent);
174 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
175 regaddr, data);
176
177 return 0;
178 }
179
180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
181 int regaddr)
182 {
183 return fec_mdio_read(bus->priv, phyaddr, regaddr);
184 }
185
186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
187 int regaddr, u16 data)
188 {
189 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
190 }
191
192 #ifndef CONFIG_PHYLIB
193 static int miiphy_restart_aneg(struct eth_device *dev)
194 {
195 int ret = 0;
196 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
197 struct fec_priv *fec = (struct fec_priv *)dev->priv;
198 struct ethernet_regs *eth = fec->bus->priv;
199
200 /*
201 * Wake up from sleep if necessary
202 * Reset PHY, then delay 300ns
203 */
204 #ifdef CONFIG_MX27
205 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
206 #endif
207 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
208 udelay(1000);
209
210 /* Set the auto-negotiation advertisement register bits */
211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 BMCR_ANENABLE | BMCR_ANRESTART);
216
217 if (fec->mii_postcall)
218 ret = fec->mii_postcall(fec->phy_id);
219
220 #endif
221 return ret;
222 }
223
224 #ifndef CONFIG_FEC_FIXED_SPEED
225 static int miiphy_wait_aneg(struct eth_device *dev)
226 {
227 uint32_t start;
228 int status;
229 struct fec_priv *fec = (struct fec_priv *)dev->priv;
230 struct ethernet_regs *eth = fec->bus->priv;
231
232 /* Wait for AN completion */
233 start = get_timer(0);
234 do {
235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 printf("%s: Autonegotiation timeout\n", dev->name);
237 return -1;
238 }
239
240 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
241 if (status < 0) {
242 printf("%s: Autonegotiation failed. status: %d\n",
243 dev->name, status);
244 return -1;
245 }
246 } while (!(status & BMSR_LSTATUS));
247
248 return 0;
249 }
250 #endif /* CONFIG_FEC_FIXED_SPEED */
251 #endif
252
253 static int fec_rx_task_enable(struct fec_priv *fec)
254 {
255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
256 return 0;
257 }
258
259 static int fec_rx_task_disable(struct fec_priv *fec)
260 {
261 return 0;
262 }
263
264 static int fec_tx_task_enable(struct fec_priv *fec)
265 {
266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
267 return 0;
268 }
269
270 static int fec_tx_task_disable(struct fec_priv *fec)
271 {
272 return 0;
273 }
274
275 /**
276 * Initialize receive task's buffer descriptors
277 * @param[in] fec all we know about the device yet
278 * @param[in] count receive buffer count to be allocated
279 * @param[in] dsize desired size of each receive buffer
280 * @return 0 on success
281 *
282 * Init all RX descriptors to default values.
283 */
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
285 {
286 uint32_t size;
287 uint8_t *data;
288 int i;
289
290 /*
291 * Reload the RX descriptors with default values and wipe
292 * the RX buffers.
293 */
294 size = roundup(dsize, ARCH_DMA_MINALIGN);
295 for (i = 0; i < count; i++) {
296 data = (uint8_t *)fec->rbd_base[i].data_pointer;
297 memset(data, 0, dsize);
298 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
299
300 fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 fec->rbd_base[i].data_length = 0;
302 }
303
304 /* Mark the last RBD to close the ring. */
305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
306 fec->rbd_index = 0;
307
308 flush_dcache_range((unsigned)fec->rbd_base,
309 (unsigned)fec->rbd_base + size);
310 }
311
312 /**
313 * Initialize transmit task's buffer descriptors
314 * @param[in] fec all we know about the device yet
315 *
316 * Transmit buffers are created externally. We only have to init the BDs here.\n
317 * Note: There is a race condition in the hardware. When only one BD is in
318 * use it must be marked with the WRAP bit to use it for every transmitt.
319 * This bit in combination with the READY bit results into double transmit
320 * of each data buffer. It seems the state machine checks READY earlier then
321 * resetting it after the first transfer.
322 * Using two BDs solves this issue.
323 */
324 static void fec_tbd_init(struct fec_priv *fec)
325 {
326 unsigned addr = (unsigned)fec->tbd_base;
327 unsigned size = roundup(2 * sizeof(struct fec_bd),
328 ARCH_DMA_MINALIGN);
329
330 memset(fec->tbd_base, 0, size);
331 fec->tbd_base[0].status = 0;
332 fec->tbd_base[1].status = FEC_TBD_WRAP;
333 fec->tbd_index = 0;
334 flush_dcache_range(addr, addr + size);
335 }
336
337 /**
338 * Mark the given read buffer descriptor as free
339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340 * @param[in] prbd buffer descriptor to mark free again
341 */
342 static void fec_rbd_clean(int last, struct fec_bd *prbd)
343 {
344 unsigned short flags = FEC_RBD_EMPTY;
345 if (last)
346 flags |= FEC_RBD_WRAP;
347 writew(flags, &prbd->status);
348 writew(0, &prbd->data_length);
349 }
350
351 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
352 {
353 imx_get_mac_from_fuse(dev_id, mac);
354 return !is_valid_ethaddr(mac);
355 }
356
357 #ifdef CONFIG_DM_ETH
358 static int fecmxc_set_hwaddr(struct udevice *dev)
359 #else
360 static int fec_set_hwaddr(struct eth_device *dev)
361 #endif
362 {
363 #ifdef CONFIG_DM_ETH
364 struct fec_priv *fec = dev_get_priv(dev);
365 struct eth_pdata *pdata = dev_get_platdata(dev);
366 uchar *mac = pdata->enetaddr;
367 #else
368 uchar *mac = dev->enetaddr;
369 struct fec_priv *fec = (struct fec_priv *)dev->priv;
370 #endif
371
372 writel(0, &fec->eth->iaddr1);
373 writel(0, &fec->eth->iaddr2);
374 writel(0, &fec->eth->gaddr1);
375 writel(0, &fec->eth->gaddr2);
376
377 /* Set physical address */
378 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
379 &fec->eth->paddr1);
380 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
381
382 return 0;
383 }
384
385 /* Do initial configuration of the FEC registers */
386 static void fec_reg_setup(struct fec_priv *fec)
387 {
388 uint32_t rcntrl;
389
390 /* Set interrupt mask register */
391 writel(0x00000000, &fec->eth->imask);
392
393 /* Clear FEC-Lite interrupt event register(IEVENT) */
394 writel(0xffffffff, &fec->eth->ievent);
395
396 /* Set FEC-Lite receive control register(R_CNTRL): */
397
398 /* Start with frame length = 1518, common for all modes. */
399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 if (fec->xcv_type == RGMII)
403 rcntrl |= FEC_RCNTRL_RGMII;
404 else if (fec->xcv_type == RMII)
405 rcntrl |= FEC_RCNTRL_RMII;
406
407 writel(rcntrl, &fec->eth->r_cntrl);
408 }
409
410 /**
411 * Start the FEC engine
412 * @param[in] dev Our device to handle
413 */
414 #ifdef CONFIG_DM_ETH
415 static int fec_open(struct udevice *dev)
416 #else
417 static int fec_open(struct eth_device *edev)
418 #endif
419 {
420 #ifdef CONFIG_DM_ETH
421 struct fec_priv *fec = dev_get_priv(dev);
422 #else
423 struct fec_priv *fec = (struct fec_priv *)edev->priv;
424 #endif
425 int speed;
426 uint32_t addr, size;
427 int i;
428
429 debug("fec_open: fec_open(dev)\n");
430 /* full-duplex, heartbeat disabled */
431 writel(1 << 2, &fec->eth->x_cntrl);
432 fec->rbd_index = 0;
433
434 /* Invalidate all descriptors */
435 for (i = 0; i < FEC_RBD_NUM - 1; i++)
436 fec_rbd_clean(0, &fec->rbd_base[i]);
437 fec_rbd_clean(1, &fec->rbd_base[i]);
438
439 /* Flush the descriptors into RAM */
440 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
441 ARCH_DMA_MINALIGN);
442 addr = (uint32_t)fec->rbd_base;
443 flush_dcache_range(addr, addr + size);
444
445 #ifdef FEC_QUIRK_ENET_MAC
446 /* Enable ENET HW endian SWAP */
447 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
448 &fec->eth->ecntrl);
449 /* Enable ENET store and forward mode */
450 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
451 &fec->eth->x_wmrk);
452 #endif
453 /* Enable FEC-Lite controller */
454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
455 &fec->eth->ecntrl);
456
457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
458 udelay(100);
459
460 /* setup the MII gasket for RMII mode */
461 /* disable the gasket */
462 writew(0, &fec->eth->miigsk_enr);
463
464 /* wait for the gasket to be disabled */
465 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
466 udelay(2);
467
468 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
469 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
470
471 /* re-enable the gasket */
472 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
473
474 /* wait until MII gasket is ready */
475 int max_loops = 10;
476 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
477 if (--max_loops <= 0) {
478 printf("WAIT for MII Gasket ready timed out\n");
479 break;
480 }
481 }
482 #endif
483
484 #ifdef CONFIG_PHYLIB
485 {
486 /* Start up the PHY */
487 int ret = phy_startup(fec->phydev);
488
489 if (ret) {
490 printf("Could not initialize PHY %s\n",
491 fec->phydev->dev->name);
492 return ret;
493 }
494 speed = fec->phydev->speed;
495 }
496 #elif CONFIG_FEC_FIXED_SPEED
497 speed = CONFIG_FEC_FIXED_SPEED;
498 #else
499 miiphy_wait_aneg(edev);
500 speed = miiphy_speed(edev->name, fec->phy_id);
501 miiphy_duplex(edev->name, fec->phy_id);
502 #endif
503
504 #ifdef FEC_QUIRK_ENET_MAC
505 {
506 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
507 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
508 if (speed == _1000BASET)
509 ecr |= FEC_ECNTRL_SPEED;
510 else if (speed != _100BASET)
511 rcr |= FEC_RCNTRL_RMII_10T;
512 writel(ecr, &fec->eth->ecntrl);
513 writel(rcr, &fec->eth->r_cntrl);
514 }
515 #endif
516 debug("%s:Speed=%i\n", __func__, speed);
517
518 /* Enable SmartDMA receive task */
519 fec_rx_task_enable(fec);
520
521 udelay(100000);
522 return 0;
523 }
524
525 #ifdef CONFIG_DM_ETH
526 static int fecmxc_init(struct udevice *dev)
527 #else
528 static int fec_init(struct eth_device *dev, bd_t *bd)
529 #endif
530 {
531 #ifdef CONFIG_DM_ETH
532 struct fec_priv *fec = dev_get_priv(dev);
533 #else
534 struct fec_priv *fec = (struct fec_priv *)dev->priv;
535 #endif
536 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
537 int i;
538
539 /* Initialize MAC address */
540 #ifdef CONFIG_DM_ETH
541 fecmxc_set_hwaddr(dev);
542 #else
543 fec_set_hwaddr(dev);
544 #endif
545
546 /* Setup transmit descriptors, there are two in total. */
547 fec_tbd_init(fec);
548
549 /* Setup receive descriptors. */
550 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
551
552 fec_reg_setup(fec);
553
554 if (fec->xcv_type != SEVENWIRE)
555 fec_mii_setspeed(fec->bus->priv);
556
557 /* Set Opcode/Pause Duration Register */
558 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
559 writel(0x2, &fec->eth->x_wmrk);
560
561 /* Set multicast address filter */
562 writel(0x00000000, &fec->eth->gaddr1);
563 writel(0x00000000, &fec->eth->gaddr2);
564
565 /* Do not access reserved register for i.MX6UL */
566 if (!is_mx6ul() && !is_mx6ull()) {
567 /* clear MIB RAM */
568 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
569 writel(0, i);
570
571 /* FIFO receive start register */
572 writel(0x520, &fec->eth->r_fstart);
573 }
574
575 /* size and address of each buffer */
576 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
577 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
578 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
579
580 #ifndef CONFIG_PHYLIB
581 if (fec->xcv_type != SEVENWIRE)
582 miiphy_restart_aneg(dev);
583 #endif
584 fec_open(dev);
585 return 0;
586 }
587
588 /**
589 * Halt the FEC engine
590 * @param[in] dev Our device to handle
591 */
592 #ifdef CONFIG_DM_ETH
593 static void fecmxc_halt(struct udevice *dev)
594 #else
595 static void fec_halt(struct eth_device *dev)
596 #endif
597 {
598 #ifdef CONFIG_DM_ETH
599 struct fec_priv *fec = dev_get_priv(dev);
600 #else
601 struct fec_priv *fec = (struct fec_priv *)dev->priv;
602 #endif
603 int counter = 0xffff;
604
605 /* issue graceful stop command to the FEC transmitter if necessary */
606 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
607 &fec->eth->x_cntrl);
608
609 debug("eth_halt: wait for stop regs\n");
610 /* wait for graceful stop to register */
611 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
612 udelay(1);
613
614 /* Disable SmartDMA tasks */
615 fec_tx_task_disable(fec);
616 fec_rx_task_disable(fec);
617
618 /*
619 * Disable the Ethernet Controller
620 * Note: this will also reset the BD index counter!
621 */
622 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
623 &fec->eth->ecntrl);
624 fec->rbd_index = 0;
625 fec->tbd_index = 0;
626 debug("eth_halt: done\n");
627 }
628
629 /**
630 * Transmit one frame
631 * @param[in] dev Our ethernet device to handle
632 * @param[in] packet Pointer to the data to be transmitted
633 * @param[in] length Data count in bytes
634 * @return 0 on success
635 */
636 #ifdef CONFIG_DM_ETH
637 static int fecmxc_send(struct udevice *dev, void *packet, int length)
638 #else
639 static int fec_send(struct eth_device *dev, void *packet, int length)
640 #endif
641 {
642 unsigned int status;
643 uint32_t size, end;
644 uint32_t addr;
645 int timeout = FEC_XFER_TIMEOUT;
646 int ret = 0;
647
648 /*
649 * This routine transmits one frame. This routine only accepts
650 * 6-byte Ethernet addresses.
651 */
652 #ifdef CONFIG_DM_ETH
653 struct fec_priv *fec = dev_get_priv(dev);
654 #else
655 struct fec_priv *fec = (struct fec_priv *)dev->priv;
656 #endif
657
658 /*
659 * Check for valid length of data.
660 */
661 if ((length > 1500) || (length <= 0)) {
662 printf("Payload (%d) too large\n", length);
663 return -1;
664 }
665
666 /*
667 * Setup the transmit buffer. We are always using the first buffer for
668 * transmission, the second will be empty and only used to stop the DMA
669 * engine. We also flush the packet to RAM here to avoid cache trouble.
670 */
671 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
672 swap_packet((uint32_t *)packet, length);
673 #endif
674
675 addr = (uint32_t)packet;
676 end = roundup(addr + length, ARCH_DMA_MINALIGN);
677 addr &= ~(ARCH_DMA_MINALIGN - 1);
678 flush_dcache_range(addr, end);
679
680 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
681 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
682
683 /*
684 * update BD's status now
685 * This block:
686 * - is always the last in a chain (means no chain)
687 * - should transmitt the CRC
688 * - might be the last BD in the list, so the address counter should
689 * wrap (-> keep the WRAP flag)
690 */
691 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
692 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
693 writew(status, &fec->tbd_base[fec->tbd_index].status);
694
695 /*
696 * Flush data cache. This code flushes both TX descriptors to RAM.
697 * After this code, the descriptors will be safely in RAM and we
698 * can start DMA.
699 */
700 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
701 addr = (uint32_t)fec->tbd_base;
702 flush_dcache_range(addr, addr + size);
703
704 /*
705 * Below we read the DMA descriptor's last four bytes back from the
706 * DRAM. This is important in order to make sure that all WRITE
707 * operations on the bus that were triggered by previous cache FLUSH
708 * have completed.
709 *
710 * Otherwise, on MX28, it is possible to observe a corruption of the
711 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
712 * for the bus structure of MX28. The scenario is as follows:
713 *
714 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
715 * to DRAM due to flush_dcache_range()
716 * 2) ARM core writes the FEC registers via AHB_ARB2
717 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
718 *
719 * Note that 2) does sometimes finish before 1) due to reordering of
720 * WRITE accesses on the AHB bus, therefore triggering 3) before the
721 * DMA descriptor is fully written into DRAM. This results in occasional
722 * corruption of the DMA descriptor.
723 */
724 readl(addr + size - 4);
725
726 /* Enable SmartDMA transmit task */
727 fec_tx_task_enable(fec);
728
729 /*
730 * Wait until frame is sent. On each turn of the wait cycle, we must
731 * invalidate data cache to see what's really in RAM. Also, we need
732 * barrier here.
733 */
734 while (--timeout) {
735 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
736 break;
737 }
738
739 if (!timeout) {
740 ret = -EINVAL;
741 goto out;
742 }
743
744 /*
745 * The TDAR bit is cleared when the descriptors are all out from TX
746 * but on mx6solox we noticed that the READY bit is still not cleared
747 * right after TDAR.
748 * These are two distinct signals, and in IC simulation, we found that
749 * TDAR always gets cleared prior than the READY bit of last BD becomes
750 * cleared.
751 * In mx6solox, we use a later version of FEC IP. It looks like that
752 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
753 * version.
754 *
755 * Fix this by polling the READY bit of BD after the TDAR polling,
756 * which covers the mx6solox case and does not harm the other SoCs.
757 */
758 timeout = FEC_XFER_TIMEOUT;
759 while (--timeout) {
760 invalidate_dcache_range(addr, addr + size);
761 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
762 FEC_TBD_READY))
763 break;
764 }
765
766 if (!timeout)
767 ret = -EINVAL;
768
769 out:
770 debug("fec_send: status 0x%x index %d ret %i\n",
771 readw(&fec->tbd_base[fec->tbd_index].status),
772 fec->tbd_index, ret);
773 /* for next transmission use the other buffer */
774 if (fec->tbd_index)
775 fec->tbd_index = 0;
776 else
777 fec->tbd_index = 1;
778
779 return ret;
780 }
781
782 /**
783 * Pull one frame from the card
784 * @param[in] dev Our ethernet device to handle
785 * @return Length of packet read
786 */
787 #ifdef CONFIG_DM_ETH
788 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
789 #else
790 static int fec_recv(struct eth_device *dev)
791 #endif
792 {
793 #ifdef CONFIG_DM_ETH
794 struct fec_priv *fec = dev_get_priv(dev);
795 #else
796 struct fec_priv *fec = (struct fec_priv *)dev->priv;
797 #endif
798 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
799 unsigned long ievent;
800 int frame_length, len = 0;
801 uint16_t bd_status;
802 uint32_t addr, size, end;
803 int i;
804 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
805
806 /* Check if any critical events have happened */
807 ievent = readl(&fec->eth->ievent);
808 writel(ievent, &fec->eth->ievent);
809 debug("fec_recv: ievent 0x%lx\n", ievent);
810 if (ievent & FEC_IEVENT_BABR) {
811 #ifdef CONFIG_DM_ETH
812 fecmxc_halt(dev);
813 fecmxc_init(dev);
814 #else
815 fec_halt(dev);
816 fec_init(dev, fec->bd);
817 #endif
818 printf("some error: 0x%08lx\n", ievent);
819 return 0;
820 }
821 if (ievent & FEC_IEVENT_HBERR) {
822 /* Heartbeat error */
823 writel(0x00000001 | readl(&fec->eth->x_cntrl),
824 &fec->eth->x_cntrl);
825 }
826 if (ievent & FEC_IEVENT_GRA) {
827 /* Graceful stop complete */
828 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
829 #ifdef CONFIG_DM_ETH
830 fecmxc_halt(dev);
831 #else
832 fec_halt(dev);
833 #endif
834 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
835 &fec->eth->x_cntrl);
836 #ifdef CONFIG_DM_ETH
837 fecmxc_init(dev);
838 #else
839 fec_init(dev, fec->bd);
840 #endif
841 }
842 }
843
844 /*
845 * Read the buffer status. Before the status can be read, the data cache
846 * must be invalidated, because the data in RAM might have been changed
847 * by DMA. The descriptors are properly aligned to cachelines so there's
848 * no need to worry they'd overlap.
849 *
850 * WARNING: By invalidating the descriptor here, we also invalidate
851 * the descriptors surrounding this one. Therefore we can NOT change the
852 * contents of this descriptor nor the surrounding ones. The problem is
853 * that in order to mark the descriptor as processed, we need to change
854 * the descriptor. The solution is to mark the whole cache line when all
855 * descriptors in the cache line are processed.
856 */
857 addr = (uint32_t)rbd;
858 addr &= ~(ARCH_DMA_MINALIGN - 1);
859 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
860 invalidate_dcache_range(addr, addr + size);
861
862 bd_status = readw(&rbd->status);
863 debug("fec_recv: status 0x%x\n", bd_status);
864
865 if (!(bd_status & FEC_RBD_EMPTY)) {
866 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
867 ((readw(&rbd->data_length) - 4) > 14)) {
868 /* Get buffer address and size */
869 addr = readl(&rbd->data_pointer);
870 frame_length = readw(&rbd->data_length) - 4;
871 /* Invalidate data cache over the buffer */
872 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 addr &= ~(ARCH_DMA_MINALIGN - 1);
874 invalidate_dcache_range(addr, end);
875
876 /* Fill the buffer and pass it to upper layers */
877 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
878 swap_packet((uint32_t *)addr, frame_length);
879 #endif
880 memcpy(buff, (char *)addr, frame_length);
881 net_process_received_packet(buff, frame_length);
882 len = frame_length;
883 } else {
884 if (bd_status & FEC_RBD_ERR)
885 printf("error frame: 0x%08x 0x%08x\n",
886 addr, bd_status);
887 }
888
889 /*
890 * Free the current buffer, restart the engine and move forward
891 * to the next buffer. Here we check if the whole cacheline of
892 * descriptors was already processed and if so, we mark it free
893 * as whole.
894 */
895 size = RXDESC_PER_CACHELINE - 1;
896 if ((fec->rbd_index & size) == size) {
897 i = fec->rbd_index - size;
898 addr = (uint32_t)&fec->rbd_base[i];
899 for (; i <= fec->rbd_index ; i++) {
900 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
901 &fec->rbd_base[i]);
902 }
903 flush_dcache_range(addr,
904 addr + ARCH_DMA_MINALIGN);
905 }
906
907 fec_rx_task_enable(fec);
908 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
909 }
910 debug("fec_recv: stop\n");
911
912 return len;
913 }
914
915 static void fec_set_dev_name(char *dest, int dev_id)
916 {
917 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
918 }
919
920 static int fec_alloc_descs(struct fec_priv *fec)
921 {
922 unsigned int size;
923 int i;
924 uint8_t *data;
925
926 /* Allocate TX descriptors. */
927 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
928 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
929 if (!fec->tbd_base)
930 goto err_tx;
931
932 /* Allocate RX descriptors. */
933 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
934 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
935 if (!fec->rbd_base)
936 goto err_rx;
937
938 memset(fec->rbd_base, 0, size);
939
940 /* Allocate RX buffers. */
941
942 /* Maximum RX buffer size. */
943 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
944 for (i = 0; i < FEC_RBD_NUM; i++) {
945 data = memalign(FEC_DMA_RX_MINALIGN, size);
946 if (!data) {
947 printf("%s: error allocating rxbuf %d\n", __func__, i);
948 goto err_ring;
949 }
950
951 memset(data, 0, size);
952
953 fec->rbd_base[i].data_pointer = (uint32_t)data;
954 fec->rbd_base[i].status = FEC_RBD_EMPTY;
955 fec->rbd_base[i].data_length = 0;
956 /* Flush the buffer to memory. */
957 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
958 }
959
960 /* Mark the last RBD to close the ring. */
961 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
962
963 fec->rbd_index = 0;
964 fec->tbd_index = 0;
965
966 return 0;
967
968 err_ring:
969 for (; i >= 0; i--)
970 free((void *)fec->rbd_base[i].data_pointer);
971 free(fec->rbd_base);
972 err_rx:
973 free(fec->tbd_base);
974 err_tx:
975 return -ENOMEM;
976 }
977
978 static void fec_free_descs(struct fec_priv *fec)
979 {
980 int i;
981
982 for (i = 0; i < FEC_RBD_NUM; i++)
983 free((void *)fec->rbd_base[i].data_pointer);
984 free(fec->rbd_base);
985 free(fec->tbd_base);
986 }
987
988 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
989 {
990 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
991 struct mii_dev *bus;
992 int ret;
993
994 bus = mdio_alloc();
995 if (!bus) {
996 printf("mdio_alloc failed\n");
997 return NULL;
998 }
999 bus->read = fec_phy_read;
1000 bus->write = fec_phy_write;
1001 bus->priv = eth;
1002 fec_set_dev_name(bus->name, dev_id);
1003
1004 ret = mdio_register(bus);
1005 if (ret) {
1006 printf("mdio_register failed\n");
1007 free(bus);
1008 return NULL;
1009 }
1010 fec_mii_setspeed(eth);
1011 return bus;
1012 }
1013
1014 #ifndef CONFIG_DM_ETH
1015 #ifdef CONFIG_PHYLIB
1016 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1017 struct mii_dev *bus, struct phy_device *phydev)
1018 #else
1019 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1020 struct mii_dev *bus, int phy_id)
1021 #endif
1022 {
1023 struct eth_device *edev;
1024 struct fec_priv *fec;
1025 unsigned char ethaddr[6];
1026 char mac[16];
1027 uint32_t start;
1028 int ret = 0;
1029
1030 /* create and fill edev struct */
1031 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1032 if (!edev) {
1033 puts("fec_mxc: not enough malloc memory for eth_device\n");
1034 ret = -ENOMEM;
1035 goto err1;
1036 }
1037
1038 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1039 if (!fec) {
1040 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1041 ret = -ENOMEM;
1042 goto err2;
1043 }
1044
1045 memset(edev, 0, sizeof(*edev));
1046 memset(fec, 0, sizeof(*fec));
1047
1048 ret = fec_alloc_descs(fec);
1049 if (ret)
1050 goto err3;
1051
1052 edev->priv = fec;
1053 edev->init = fec_init;
1054 edev->send = fec_send;
1055 edev->recv = fec_recv;
1056 edev->halt = fec_halt;
1057 edev->write_hwaddr = fec_set_hwaddr;
1058
1059 fec->eth = (struct ethernet_regs *)base_addr;
1060 fec->bd = bd;
1061
1062 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1063
1064 /* Reset chip. */
1065 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1066 start = get_timer(0);
1067 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1068 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1069 printf("FEC MXC: Timeout resetting chip\n");
1070 goto err4;
1071 }
1072 udelay(10);
1073 }
1074
1075 fec_reg_setup(fec);
1076 fec_set_dev_name(edev->name, dev_id);
1077 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1078 fec->bus = bus;
1079 fec_mii_setspeed(bus->priv);
1080 #ifdef CONFIG_PHYLIB
1081 fec->phydev = phydev;
1082 phy_connect_dev(phydev, edev);
1083 /* Configure phy */
1084 phy_config(phydev);
1085 #else
1086 fec->phy_id = phy_id;
1087 #endif
1088 eth_register(edev);
1089 /* only support one eth device, the index number pointed by dev_id */
1090 edev->index = fec->dev_id;
1091
1092 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1093 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1094 memcpy(edev->enetaddr, ethaddr, 6);
1095 if (fec->dev_id)
1096 sprintf(mac, "eth%daddr", fec->dev_id);
1097 else
1098 strcpy(mac, "ethaddr");
1099 if (!env_get(mac))
1100 eth_env_set_enetaddr(mac, ethaddr);
1101 }
1102 return ret;
1103 err4:
1104 fec_free_descs(fec);
1105 err3:
1106 free(fec);
1107 err2:
1108 free(edev);
1109 err1:
1110 return ret;
1111 }
1112
1113 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1114 {
1115 uint32_t base_mii;
1116 struct mii_dev *bus = NULL;
1117 #ifdef CONFIG_PHYLIB
1118 struct phy_device *phydev = NULL;
1119 #endif
1120 int ret;
1121
1122 #ifdef CONFIG_MX28
1123 /*
1124 * The i.MX28 has two ethernet interfaces, but they are not equal.
1125 * Only the first one can access the MDIO bus.
1126 */
1127 base_mii = MXS_ENET0_BASE;
1128 #else
1129 base_mii = addr;
1130 #endif
1131 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1132 bus = fec_get_miibus(base_mii, dev_id);
1133 if (!bus)
1134 return -ENOMEM;
1135 #ifdef CONFIG_PHYLIB
1136 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1137 if (!phydev) {
1138 mdio_unregister(bus);
1139 free(bus);
1140 return -ENOMEM;
1141 }
1142 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1143 #else
1144 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1145 #endif
1146 if (ret) {
1147 #ifdef CONFIG_PHYLIB
1148 free(phydev);
1149 #endif
1150 mdio_unregister(bus);
1151 free(bus);
1152 }
1153 return ret;
1154 }
1155
1156 #ifdef CONFIG_FEC_MXC_PHYADDR
1157 int fecmxc_initialize(bd_t *bd)
1158 {
1159 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1160 IMX_FEC_BASE);
1161 }
1162 #endif
1163
1164 #ifndef CONFIG_PHYLIB
1165 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1166 {
1167 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1168 fec->mii_postcall = cb;
1169 return 0;
1170 }
1171 #endif
1172
1173 #else
1174
1175 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1176 {
1177 struct fec_priv *priv = dev_get_priv(dev);
1178 struct eth_pdata *pdata = dev_get_platdata(dev);
1179
1180 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1181 }
1182
1183 static const struct eth_ops fecmxc_ops = {
1184 .start = fecmxc_init,
1185 .send = fecmxc_send,
1186 .recv = fecmxc_recv,
1187 .stop = fecmxc_halt,
1188 .write_hwaddr = fecmxc_set_hwaddr,
1189 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
1190 };
1191
1192 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1193 {
1194 struct phy_device *phydev;
1195 int mask = 0xffffffff;
1196
1197 #ifdef CONFIG_PHYLIB
1198 mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1199 #endif
1200
1201 phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1202 if (!phydev)
1203 return -ENODEV;
1204
1205 phy_connect_dev(phydev, dev);
1206
1207 priv->phydev = phydev;
1208 phy_config(phydev);
1209
1210 return 0;
1211 }
1212
1213 static int fecmxc_probe(struct udevice *dev)
1214 {
1215 struct eth_pdata *pdata = dev_get_platdata(dev);
1216 struct fec_priv *priv = dev_get_priv(dev);
1217 struct mii_dev *bus = NULL;
1218 int dev_id = -1;
1219 uint32_t start;
1220 int ret;
1221
1222 ret = fec_alloc_descs(priv);
1223 if (ret)
1224 return ret;
1225
1226 /* Reset chip. */
1227 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1228 &priv->eth->ecntrl);
1229 start = get_timer(0);
1230 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1231 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1232 printf("FEC MXC: Timeout reseting chip\n");
1233 goto err_timeout;
1234 }
1235 udelay(10);
1236 }
1237
1238 fec_reg_setup(priv);
1239 priv->dev_id = (dev_id == -1) ? 0 : dev_id;
1240
1241 bus = fec_get_miibus(dev, dev_id);
1242 if (!bus) {
1243 ret = -ENOMEM;
1244 goto err_mii;
1245 }
1246
1247 priv->bus = bus;
1248 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1249 priv->interface = pdata->phy_interface;
1250 ret = fec_phy_init(priv, dev);
1251 if (ret)
1252 goto err_phy;
1253
1254 return 0;
1255
1256 err_timeout:
1257 free(priv->phydev);
1258 err_phy:
1259 mdio_unregister(bus);
1260 free(bus);
1261 err_mii:
1262 fec_free_descs(priv);
1263 return ret;
1264 }
1265
1266 static int fecmxc_remove(struct udevice *dev)
1267 {
1268 struct fec_priv *priv = dev_get_priv(dev);
1269
1270 free(priv->phydev);
1271 fec_free_descs(priv);
1272 mdio_unregister(priv->bus);
1273 mdio_free(priv->bus);
1274
1275 return 0;
1276 }
1277
1278 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1279 {
1280 struct eth_pdata *pdata = dev_get_platdata(dev);
1281 struct fec_priv *priv = dev_get_priv(dev);
1282 const char *phy_mode;
1283
1284 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1285 priv->eth = (struct ethernet_regs *)pdata->iobase;
1286
1287 pdata->phy_interface = -1;
1288 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1289 NULL);
1290 if (phy_mode)
1291 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1292 if (pdata->phy_interface == -1) {
1293 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1294 return -EINVAL;
1295 }
1296
1297 /* TODO
1298 * Need to get the reset-gpio and related properties from DT
1299 * and implemet the enet reset code on .probe call
1300 */
1301
1302 return 0;
1303 }
1304
1305 static const struct udevice_id fecmxc_ids[] = {
1306 { .compatible = "fsl,imx6q-fec" },
1307 { }
1308 };
1309
1310 U_BOOT_DRIVER(fecmxc_gem) = {
1311 .name = "fecmxc",
1312 .id = UCLASS_ETH,
1313 .of_match = fecmxc_ids,
1314 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1315 .probe = fecmxc_probe,
1316 .remove = fecmxc_remove,
1317 .ops = &fecmxc_ops,
1318 .priv_auto_alloc_size = sizeof(struct fec_priv),
1319 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1320 };
1321 #endif