]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/fec_mxc.c
fec_mxc: cleanup and factor out MX27 dependencies
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
1 /*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34
35 DECLARE_GLOBAL_DATA_PTR;
36
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40
41 #undef DEBUG
42
43 struct nbuf {
44 uint8_t data[1500]; /**< actual data */
45 int length; /**< actual length */
46 int used; /**< buffer in use or not */
47 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
48 };
49
50 struct fec_priv gfec = {
51 .eth = (struct ethernet_regs *)IMX_FEC_BASE,
52 .xcv_type = MII100,
53 .rbd_base = NULL,
54 .rbd_index = 0,
55 .tbd_base = NULL,
56 .tbd_index = 0,
57 .bd = NULL,
58 .rdb_ptr = NULL,
59 .base_ptr = NULL,
60 };
61
62 /*
63 * MII-interface related functions
64 */
65 static int fec_miiphy_read(char *dev, uint8_t phyAddr, uint8_t regAddr,
66 uint16_t *retVal)
67 {
68 struct eth_device *edev = eth_get_dev_by_name(dev);
69 struct fec_priv *fec = (struct fec_priv *)edev->priv;
70
71 uint32_t reg; /* convenient holder for the PHY register */
72 uint32_t phy; /* convenient holder for the PHY */
73 uint32_t start;
74
75 /*
76 * reading from any PHY's register is done by properly
77 * programming the FEC's MII data register.
78 */
79 writel(FEC_IEVENT_MII, &fec->eth->ievent);
80 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
81 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
82
83 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
84 phy | reg, &fec->eth->mii_data);
85
86 /*
87 * wait for the related interrupt
88 */
89 start = get_timer_masked();
90 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
91 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
92 printf("Read MDIO failed...\n");
93 return -1;
94 }
95 }
96
97 /*
98 * clear mii interrupt bit
99 */
100 writel(FEC_IEVENT_MII, &fec->eth->ievent);
101
102 /*
103 * it's now safe to read the PHY's register
104 */
105 *retVal = readl(&fec->eth->mii_data);
106 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
107 regAddr, *retVal);
108 return 0;
109 }
110
111 static void fec_mii_setspeed(struct fec_priv *fec)
112 {
113 /*
114 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
115 * and do not drop the Preamble.
116 */
117 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
118 &fec->eth->mii_speed);
119 debug("fec_init: mii_speed %#lx\n",
120 fec->eth->mii_speed);
121 }
122 static int fec_miiphy_write(char *dev, uint8_t phyAddr, uint8_t regAddr,
123 uint16_t data)
124 {
125 struct eth_device *edev = eth_get_dev_by_name(dev);
126 struct fec_priv *fec = (struct fec_priv *)edev->priv;
127
128 uint32_t reg; /* convenient holder for the PHY register */
129 uint32_t phy; /* convenient holder for the PHY */
130 uint32_t start;
131
132 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
133 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
134
135 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
136 FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
137
138 /*
139 * wait for the MII interrupt
140 */
141 start = get_timer_masked();
142 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
143 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
144 printf("Write MDIO failed...\n");
145 return -1;
146 }
147 }
148
149 /*
150 * clear MII interrupt bit
151 */
152 writel(FEC_IEVENT_MII, &fec->eth->ievent);
153 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
154 regAddr, data);
155
156 return 0;
157 }
158
159 static int miiphy_restart_aneg(struct eth_device *dev)
160 {
161 /*
162 * Wake up from sleep if necessary
163 * Reset PHY, then delay 300ns
164 */
165 #ifdef CONFIG_MX27
166 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_MIPGSR, 0x00FF);
167 #endif
168 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
169 PHY_BMCR_RESET);
170 udelay(1000);
171
172 /*
173 * Set the auto-negotiation advertisement register bits
174 */
175 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_ANAR,
176 PHY_ANLPAR_TXFD | PHY_ANLPAR_TX | PHY_ANLPAR_10FD |
177 PHY_ANLPAR_10 | PHY_ANLPAR_PSB_802_3);
178 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
179 PHY_BMCR_AUTON | PHY_BMCR_RST_NEG);
180
181 return 0;
182 }
183
184 static int miiphy_wait_aneg(struct eth_device *dev)
185 {
186 uint32_t start;
187 uint16_t status;
188
189 /*
190 * Wait for AN completion
191 */
192 start = get_timer_masked();
193 do {
194 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
195 printf("%s: Autonegotiation timeout\n", dev->name);
196 return -1;
197 }
198
199 if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
200 PHY_BMSR, &status)) {
201 printf("%s: Autonegotiation failed. status: 0x%04x\n",
202 dev->name, status);
203 return -1;
204 }
205 } while (!(status & PHY_BMSR_LS));
206
207 return 0;
208 }
209 static int fec_rx_task_enable(struct fec_priv *fec)
210 {
211 writel(1 << 24, &fec->eth->r_des_active);
212 return 0;
213 }
214
215 static int fec_rx_task_disable(struct fec_priv *fec)
216 {
217 return 0;
218 }
219
220 static int fec_tx_task_enable(struct fec_priv *fec)
221 {
222 writel(1 << 24, &fec->eth->x_des_active);
223 return 0;
224 }
225
226 static int fec_tx_task_disable(struct fec_priv *fec)
227 {
228 return 0;
229 }
230
231 /**
232 * Initialize receive task's buffer descriptors
233 * @param[in] fec all we know about the device yet
234 * @param[in] count receive buffer count to be allocated
235 * @param[in] size size of each receive buffer
236 * @return 0 on success
237 *
238 * For this task we need additional memory for the data buffers. And each
239 * data buffer requires some alignment. Thy must be aligned to a specific
240 * boundary each (DB_DATA_ALIGNMENT).
241 */
242 static int fec_rbd_init(struct fec_priv *fec, int count, int size)
243 {
244 int ix;
245 uint32_t p = 0;
246
247 /* reserve data memory and consider alignment */
248 if (fec->rdb_ptr == NULL)
249 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
250 p = (uint32_t)fec->rdb_ptr;
251 if (!p) {
252 puts("fec_mxc: not enough malloc memory\n");
253 return -ENOMEM;
254 }
255 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
256 p += DB_DATA_ALIGNMENT-1;
257 p &= ~(DB_DATA_ALIGNMENT-1);
258
259 for (ix = 0; ix < count; ix++) {
260 writel(p, &fec->rbd_base[ix].data_pointer);
261 p += size;
262 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
263 writew(0, &fec->rbd_base[ix].data_length);
264 }
265 /*
266 * mark the last RBD to close the ring
267 */
268 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
269 fec->rbd_index = 0;
270
271 return 0;
272 }
273
274 /**
275 * Initialize transmit task's buffer descriptors
276 * @param[in] fec all we know about the device yet
277 *
278 * Transmit buffers are created externally. We only have to init the BDs here.\n
279 * Note: There is a race condition in the hardware. When only one BD is in
280 * use it must be marked with the WRAP bit to use it for every transmitt.
281 * This bit in combination with the READY bit results into double transmit
282 * of each data buffer. It seems the state machine checks READY earlier then
283 * resetting it after the first transfer.
284 * Using two BDs solves this issue.
285 */
286 static void fec_tbd_init(struct fec_priv *fec)
287 {
288 writew(0x0000, &fec->tbd_base[0].status);
289 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
290 fec->tbd_index = 0;
291 }
292
293 /**
294 * Mark the given read buffer descriptor as free
295 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
296 * @param[in] pRbd buffer descriptor to mark free again
297 */
298 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
299 {
300 /*
301 * Reset buffer descriptor as empty
302 */
303 if (last)
304 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
305 else
306 writew(FEC_RBD_EMPTY, &pRbd->status);
307 /*
308 * no data in it
309 */
310 writew(0, &pRbd->data_length);
311 }
312
313 static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
314 {
315 /*
316 * The MX27 can store the mac address in internal eeprom
317 * This mechanism is not supported now by MX51
318 */
319 #ifdef CONFIG_MX51
320 return -1;
321 #else
322 struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
323 int i;
324
325 for (i = 0; i < 6; i++)
326 mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
327
328 return is_valid_ether_addr(mac);
329 #endif
330 }
331
332 static int fec_set_hwaddr(struct eth_device *dev)
333 {
334 uchar *mac = dev->enetaddr;
335 struct fec_priv *fec = (struct fec_priv *)dev->priv;
336
337 writel(0, &fec->eth->iaddr1);
338 writel(0, &fec->eth->iaddr2);
339 writel(0, &fec->eth->gaddr1);
340 writel(0, &fec->eth->gaddr2);
341
342 /*
343 * Set physical address
344 */
345 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
346 &fec->eth->paddr1);
347 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
348
349 return 0;
350 }
351
352 /**
353 * Start the FEC engine
354 * @param[in] dev Our device to handle
355 */
356 static int fec_open(struct eth_device *edev)
357 {
358 struct fec_priv *fec = (struct fec_priv *)edev->priv;
359
360 debug("fec_open: fec_open(dev)\n");
361 /* full-duplex, heartbeat disabled */
362 writel(1 << 2, &fec->eth->x_cntrl);
363 fec->rbd_index = 0;
364
365 /*
366 * Enable FEC-Lite controller
367 */
368 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
369 &fec->eth->ecntrl);
370
371 miiphy_wait_aneg(edev);
372 miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
373 miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
374
375 /*
376 * Enable SmartDMA receive task
377 */
378 fec_rx_task_enable(fec);
379
380 udelay(100000);
381 return 0;
382 }
383
384 static int fec_init(struct eth_device *dev, bd_t* bd)
385 {
386 uint32_t base;
387 struct fec_priv *fec = (struct fec_priv *)dev->priv;
388
389 /*
390 * reserve memory for both buffer descriptor chains at once
391 * Datasheet forces the startaddress of each chain is 16 byte
392 * aligned
393 */
394 if (fec->base_ptr == NULL)
395 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
396 sizeof(struct fec_bd) + DB_ALIGNMENT);
397 base = (uint32_t)fec->base_ptr;
398 if (!base) {
399 puts("fec_mxc: not enough malloc memory\n");
400 return -ENOMEM;
401 }
402 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
403 sizeof(struct fec_bd) + DB_ALIGNMENT);
404 base += (DB_ALIGNMENT-1);
405 base &= ~(DB_ALIGNMENT-1);
406
407 fec->rbd_base = (struct fec_bd *)base;
408
409 base += FEC_RBD_NUM * sizeof(struct fec_bd);
410
411 fec->tbd_base = (struct fec_bd *)base;
412
413 /*
414 * Set interrupt mask register
415 */
416 writel(0x00000000, &fec->eth->imask);
417
418 /*
419 * Clear FEC-Lite interrupt event register(IEVENT)
420 */
421 writel(0xffffffff, &fec->eth->ievent);
422
423
424 /*
425 * Set FEC-Lite receive control register(R_CNTRL):
426 */
427 if (fec->xcv_type == SEVENWIRE) {
428 /*
429 * Frame length=1518; 7-wire mode
430 */
431 writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
432 } else {
433 /*
434 * Frame length=1518; MII mode;
435 */
436 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
437
438 fec_mii_setspeed(fec);
439 }
440 /*
441 * Set Opcode/Pause Duration Register
442 */
443 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
444 writel(0x2, &fec->eth->x_wmrk);
445 /*
446 * Set multicast address filter
447 */
448 writel(0x00000000, &fec->eth->gaddr1);
449 writel(0x00000000, &fec->eth->gaddr2);
450
451
452 /* clear MIB RAM */
453 long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
454 while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
455 *mib_ptr++ = 0;
456
457 /* FIFO receive start register */
458 writel(0x520, &fec->eth->r_fstart);
459
460 /* size and address of each buffer */
461 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
462 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
463 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
464
465 /*
466 * Initialize RxBD/TxBD rings
467 */
468 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
469 free(fec->base_ptr);
470 fec->base_ptr = NULL;
471 return -ENOMEM;
472 }
473 fec_tbd_init(fec);
474
475
476 if (fec->xcv_type != SEVENWIRE)
477 miiphy_restart_aneg(dev);
478
479 fec_open(dev);
480 fec_set_hwaddr(dev);
481 return 0;
482 }
483
484 /**
485 * Halt the FEC engine
486 * @param[in] dev Our device to handle
487 */
488 static void fec_halt(struct eth_device *dev)
489 {
490 struct fec_priv *fec = &gfec;
491 int counter = 0xffff;
492
493 /*
494 * issue graceful stop command to the FEC transmitter if necessary
495 */
496 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
497 &fec->eth->x_cntrl);
498
499 debug("eth_halt: wait for stop regs\n");
500 /*
501 * wait for graceful stop to register
502 */
503 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
504 udelay(1);
505
506 /*
507 * Disable SmartDMA tasks
508 */
509 fec_tx_task_disable(fec);
510 fec_rx_task_disable(fec);
511
512 /*
513 * Disable the Ethernet Controller
514 * Note: this will also reset the BD index counter!
515 */
516 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
517 fec->rbd_index = 0;
518 fec->tbd_index = 0;
519 debug("eth_halt: done\n");
520 }
521
522 /**
523 * Transmit one frame
524 * @param[in] dev Our ethernet device to handle
525 * @param[in] packet Pointer to the data to be transmitted
526 * @param[in] length Data count in bytes
527 * @return 0 on success
528 */
529 static int fec_send(struct eth_device *dev, volatile void* packet, int length)
530 {
531 unsigned int status;
532
533 /*
534 * This routine transmits one frame. This routine only accepts
535 * 6-byte Ethernet addresses.
536 */
537 struct fec_priv *fec = (struct fec_priv *)dev->priv;
538
539 /*
540 * Check for valid length of data.
541 */
542 if ((length > 1500) || (length <= 0)) {
543 printf("Payload (%d) too large\n", length);
544 return -1;
545 }
546
547 /*
548 * Setup the transmit buffer
549 * Note: We are always using the first buffer for transmission,
550 * the second will be empty and only used to stop the DMA engine
551 */
552 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
553 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
554 /*
555 * update BD's status now
556 * This block:
557 * - is always the last in a chain (means no chain)
558 * - should transmitt the CRC
559 * - might be the last BD in the list, so the address counter should
560 * wrap (-> keep the WRAP flag)
561 */
562 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
563 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
564 writew(status, &fec->tbd_base[fec->tbd_index].status);
565
566 /*
567 * Enable SmartDMA transmit task
568 */
569 fec_tx_task_enable(fec);
570
571 /*
572 * wait until frame is sent .
573 */
574 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
575 udelay(1);
576 }
577 debug("fec_send: status 0x%x index %d\n",
578 readw(&fec->tbd_base[fec->tbd_index].status),
579 fec->tbd_index);
580 /* for next transmission use the other buffer */
581 if (fec->tbd_index)
582 fec->tbd_index = 0;
583 else
584 fec->tbd_index = 1;
585
586 return 0;
587 }
588
589 /**
590 * Pull one frame from the card
591 * @param[in] dev Our ethernet device to handle
592 * @return Length of packet read
593 */
594 static int fec_recv(struct eth_device *dev)
595 {
596 struct fec_priv *fec = (struct fec_priv *)dev->priv;
597 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
598 unsigned long ievent;
599 int frame_length, len = 0;
600 struct nbuf *frame;
601 uint16_t bd_status;
602 uchar buff[FEC_MAX_PKT_SIZE];
603
604 /*
605 * Check if any critical events have happened
606 */
607 ievent = readl(&fec->eth->ievent);
608 writel(ievent, &fec->eth->ievent);
609 debug("fec_recv: ievent 0x%x\n", ievent);
610 if (ievent & FEC_IEVENT_BABR) {
611 fec_halt(dev);
612 fec_init(dev, fec->bd);
613 printf("some error: 0x%08lx\n", ievent);
614 return 0;
615 }
616 if (ievent & FEC_IEVENT_HBERR) {
617 /* Heartbeat error */
618 writel(0x00000001 | readl(&fec->eth->x_cntrl),
619 &fec->eth->x_cntrl);
620 }
621 if (ievent & FEC_IEVENT_GRA) {
622 /* Graceful stop complete */
623 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
624 fec_halt(dev);
625 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
626 &fec->eth->x_cntrl);
627 fec_init(dev, fec->bd);
628 }
629 }
630
631 /*
632 * ensure reading the right buffer status
633 */
634 bd_status = readw(&rbd->status);
635 debug("fec_recv: status 0x%x\n", bd_status);
636
637 if (!(bd_status & FEC_RBD_EMPTY)) {
638 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
639 ((readw(&rbd->data_length) - 4) > 14)) {
640 /*
641 * Get buffer address and size
642 */
643 frame = (struct nbuf *)readl(&rbd->data_pointer);
644 frame_length = readw(&rbd->data_length) - 4;
645 /*
646 * Fill the buffer and pass it to upper layers
647 */
648 memcpy(buff, frame->data, frame_length);
649 NetReceive(buff, frame_length);
650 len = frame_length;
651 } else {
652 if (bd_status & FEC_RBD_ERR)
653 printf("error frame: 0x%08lx 0x%08x\n",
654 (ulong)rbd->data_pointer,
655 bd_status);
656 }
657 /*
658 * free the current buffer, restart the engine
659 * and move forward to the next buffer
660 */
661 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
662 fec_rx_task_enable(fec);
663 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
664 }
665 debug("fec_recv: stop\n");
666
667 return len;
668 }
669
670 static int fec_probe(bd_t *bd)
671 {
672 struct eth_device *edev;
673 struct fec_priv *fec = &gfec;
674 unsigned char ethaddr[6];
675
676 /* create and fill edev struct */
677 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
678 if (!edev) {
679 puts("fec_mxc: not enough malloc memory\n");
680 return -ENOMEM;
681 }
682 edev->priv = fec;
683 edev->init = fec_init;
684 edev->send = fec_send;
685 edev->recv = fec_recv;
686 edev->halt = fec_halt;
687
688 fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
689 fec->bd = bd;
690
691 fec->xcv_type = MII100;
692
693 /* Reset chip. */
694 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
695 while (readl(&fec->eth->ecntrl) & 1)
696 udelay(10);
697
698 /*
699 * Set interrupt mask register
700 */
701 writel(0x00000000, &fec->eth->imask);
702
703 /*
704 * Clear FEC-Lite interrupt event register(IEVENT)
705 */
706 writel(0xffffffff, &fec->eth->ievent);
707
708 /*
709 * Set FEC-Lite receive control register(R_CNTRL):
710 */
711 /*
712 * Frame length=1518; MII mode;
713 */
714 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
715 fec_mii_setspeed(fec);
716
717 sprintf(edev->name, "FEC_MXC");
718
719 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
720
721 eth_register(edev);
722
723 if (fec_get_hwaddr(edev, ethaddr) == 0) {
724 printf("got MAC address from EEPROM: %pM\n", ethaddr);
725 memcpy(edev->enetaddr, ethaddr, 6);
726 fec_set_hwaddr(edev);
727 }
728
729 return 0;
730 }
731
732 int fecmxc_initialize(bd_t *bd)
733 {
734 int lout = 1;
735
736 debug("eth_init: fec_probe(bd)\n");
737 lout = fec_probe(bd);
738
739 return lout;
740 }