]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/mvpp2.c
treewide: replace #include <asm/errno.h> with <linux/errno.h>
[people/ms/u-boot.git] / drivers / net / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33
34 DECLARE_GLOBAL_DATA_PTR;
35
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...) \
38 printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...) \
40 printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...) \
42 printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46 #define ETH_ALEN 6 /* Octets in one ethernet addr */
47
48 #define __verify_pcpu_ptr(ptr) \
49 do { \
50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
51 (void)__vpp_verify; \
52 } while (0)
53
54 #define VERIFY_PERCPU_PTR(__p) \
55 ({ \
56 __verify_pcpu_ptr(__p); \
57 (typeof(*(__p)) __kernel __force *)(__p); \
58 })
59
60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id() 0
62 #define num_present_cpus() 1
63 #define for_each_present_cpu(cpu) \
64 for ((cpu) = 0; (cpu) < 1; (cpu)++)
65
66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67
68 #define CONFIG_NR_CPUS 1
69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */
70
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP (2 + ETH_HLEN + 4 + 32)
73 #define MTU 1500
74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75
76 #define MVPP2_SMI_TIMEOUT 10000
77
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
82 #define MVPP2_RX_FIFO_INIT_REG 0x64
83
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
94 #define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
95 #define MVPP2_RXQ_POOL_LONG_OFFS 24
96 #define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
97 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
98 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
99 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
100
101 /* Parser Registers */
102 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
103 #define MVPP2_PRS_PORT_LU_MAX 0xf
104 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
105 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
106 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
107 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
108 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
109 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
110 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
111 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
112 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
113 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
114 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
115 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
116 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
117 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
118 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
119
120 /* Classifier Registers */
121 #define MVPP2_CLS_MODE_REG 0x1800
122 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
123 #define MVPP2_CLS_PORT_WAY_REG 0x1810
124 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
125 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
126 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
127 #define MVPP2_CLS_LKP_TBL_REG 0x1818
128 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
129 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
130 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
131 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
132 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
133 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
134 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
135 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
137 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
138 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
139 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
140
141 /* Descriptor Manager Top Registers */
142 #define MVPP2_RXQ_NUM_REG 0x2040
143 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
144 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
145 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
146 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
147 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
148 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
149 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
150 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
151 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
152 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
153 #define MVPP2_RXQ_THRESH_REG 0x204c
154 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
155 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
156 #define MVPP2_RXQ_INDEX_REG 0x2050
157 #define MVPP2_TXQ_NUM_REG 0x2080
158 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
159 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
160 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
161 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
162 #define MVPP2_TXQ_THRESH_REG 0x2094
163 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
164 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
165 #define MVPP2_TXQ_INDEX_REG 0x2098
166 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
167 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
168 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
169 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
170 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
171 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
172 #define MVPP2_TXQ_PENDING_REG 0x20a0
173 #define MVPP2_TXQ_PENDING_MASK 0x3fff
174 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
175 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
176 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
177 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
178 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
179 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
180 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
181 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
182 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
183 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
184 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
185 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
186 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
187 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
188 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
189 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
190
191 /* MBUS bridge registers */
192 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
193 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
194 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
195 #define MVPP2_BASE_ADDR_ENABLE 0x4060
196
197 /* Interrupt Cause and Mask registers */
198 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
199 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
200 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
201 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
202 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
203 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
204 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
205 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
206 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
207 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
208 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
209 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
210 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
211 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
212 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
213 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
214 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
215 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
216 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
217 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
218
219 /* Buffer Manager registers */
220 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
221 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
222 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
223 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
224 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
225 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
226 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
227 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
228 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
229 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
230 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
231 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
232 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
233 #define MVPP2_BM_START_MASK BIT(0)
234 #define MVPP2_BM_STOP_MASK BIT(1)
235 #define MVPP2_BM_STATE_MASK BIT(4)
236 #define MVPP2_BM_LOW_THRESH_OFFS 8
237 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
238 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
239 MVPP2_BM_LOW_THRESH_OFFS)
240 #define MVPP2_BM_HIGH_THRESH_OFFS 16
241 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
242 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
243 MVPP2_BM_HIGH_THRESH_OFFS)
244 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
245 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
246 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
247 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
248 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
249 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
250 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
251 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
252 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
253 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
254 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
255 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
256 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
257 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
258 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
259 #define MVPP2_BM_MC_RLS_REG 0x64c4
260 #define MVPP2_BM_MC_ID_MASK 0xfff
261 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
262
263 /* TX Scheduler registers */
264 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
265 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
266 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
267 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
268 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
269 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
270 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
271 #define MVPP2_TXP_MTU_MAX 0x7FFFF
272 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
273 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
274 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
275 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
276 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
277 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
278 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
279 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
280 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
281 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
282 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
283 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
284 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
285 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
286
287 /* TX general registers */
288 #define MVPP2_TX_SNOOP_REG 0x8800
289 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
290 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
291
292 /* LMS registers */
293 #define MVPP2_SRC_ADDR_MIDDLE 0x24
294 #define MVPP2_SRC_ADDR_HIGH 0x28
295 #define MVPP2_PHY_AN_CFG0_REG 0x34
296 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
297 #define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
298 0x400 + (port) * 0x400)
299 #define MVPP2_MIB_LATE_COLLISION 0x7c
300 #define MVPP2_ISR_SUM_MASK_REG 0x220c
301 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
302 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
303
304 /* Per-port registers */
305 #define MVPP2_GMAC_CTRL_0_REG 0x0
306 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
307 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
308 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
309 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
310 #define MVPP2_GMAC_CTRL_1_REG 0x4
311 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
312 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
313 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
314 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
315 #define MVPP2_GMAC_SA_LOW_OFFS 7
316 #define MVPP2_GMAC_CTRL_2_REG 0x8
317 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
318 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
319 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
320 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
321 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
322 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
323 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
324 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
325 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
326 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
327 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
328 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
329 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
330 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
331 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
332 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
333 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
334 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
335
336 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
337
338 /* Descriptor ring Macros */
339 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
340 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
341
342 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
343 #define MVPP2_SMI 0x0054
344 #define MVPP2_PHY_REG_MASK 0x1f
345 /* SMI register fields */
346 #define MVPP2_SMI_DATA_OFFS 0 /* Data */
347 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
348 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
349 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
350 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
351 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
352 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
353 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */
354
355 #define MVPP2_PHY_ADDR_MASK 0x1f
356 #define MVPP2_PHY_REG_MASK 0x1f
357
358 /* Various constants */
359
360 /* Coalescing */
361 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
362 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
363 #define MVPP2_RX_COAL_PKTS 32
364 #define MVPP2_RX_COAL_USEC 100
365
366 /* The two bytes Marvell header. Either contains a special value used
367 * by Marvell switches when a specific hardware mode is enabled (not
368 * supported by this driver) or is filled automatically by zeroes on
369 * the RX side. Those two bytes being at the front of the Ethernet
370 * header, they allow to have the IP header aligned on a 4 bytes
371 * boundary automatically: the hardware skips those two bytes on its
372 * own.
373 */
374 #define MVPP2_MH_SIZE 2
375 #define MVPP2_ETH_TYPE_LEN 2
376 #define MVPP2_PPPOE_HDR_SIZE 8
377 #define MVPP2_VLAN_TAG_LEN 4
378
379 /* Lbtd 802.3 type */
380 #define MVPP2_IP_LBDT_TYPE 0xfffa
381
382 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
383 #define MVPP2_TX_CSUM_MAX_SIZE 9800
384
385 /* Timeout constants */
386 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
387 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
388
389 #define MVPP2_TX_MTU_MAX 0x7ffff
390
391 /* Maximum number of T-CONTs of PON port */
392 #define MVPP2_MAX_TCONT 16
393
394 /* Maximum number of supported ports */
395 #define MVPP2_MAX_PORTS 4
396
397 /* Maximum number of TXQs used by single port */
398 #define MVPP2_MAX_TXQ 8
399
400 /* Maximum number of RXQs used by single port */
401 #define MVPP2_MAX_RXQ 8
402
403 /* Default number of TXQs in use */
404 #define MVPP2_DEFAULT_TXQ 1
405
406 /* Dfault number of RXQs in use */
407 #define MVPP2_DEFAULT_RXQ 1
408 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
409
410 /* Total number of RXQs available to all ports */
411 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
412
413 /* Max number of Rx descriptors */
414 #define MVPP2_MAX_RXD 16
415
416 /* Max number of Tx descriptors */
417 #define MVPP2_MAX_TXD 16
418
419 /* Amount of Tx descriptors that can be reserved at once by CPU */
420 #define MVPP2_CPU_DESC_CHUNK 64
421
422 /* Max number of Tx descriptors in each aggregated queue */
423 #define MVPP2_AGGR_TXQ_SIZE 256
424
425 /* Descriptor aligned size */
426 #define MVPP2_DESC_ALIGNED_SIZE 32
427
428 /* Descriptor alignment mask */
429 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
430
431 /* RX FIFO constants */
432 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
433 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
434 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
435
436 /* RX buffer constants */
437 #define MVPP2_SKB_SHINFO_SIZE \
438 0
439
440 #define MVPP2_RX_PKT_SIZE(mtu) \
441 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
442 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
443
444 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
445 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
446 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
447 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
448
449 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
450
451 /* IPv6 max L3 address size */
452 #define MVPP2_MAX_L3_ADDR_SIZE 16
453
454 /* Port flags */
455 #define MVPP2_F_LOOPBACK BIT(0)
456
457 /* Marvell tag types */
458 enum mvpp2_tag_type {
459 MVPP2_TAG_TYPE_NONE = 0,
460 MVPP2_TAG_TYPE_MH = 1,
461 MVPP2_TAG_TYPE_DSA = 2,
462 MVPP2_TAG_TYPE_EDSA = 3,
463 MVPP2_TAG_TYPE_VLAN = 4,
464 MVPP2_TAG_TYPE_LAST = 5
465 };
466
467 /* Parser constants */
468 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
469 #define MVPP2_PRS_TCAM_WORDS 6
470 #define MVPP2_PRS_SRAM_WORDS 4
471 #define MVPP2_PRS_FLOW_ID_SIZE 64
472 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
473 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
474 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
475 #define MVPP2_PRS_IPV4_HEAD 0x40
476 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
477 #define MVPP2_PRS_IPV4_MC 0xe0
478 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
479 #define MVPP2_PRS_IPV4_BC_MASK 0xff
480 #define MVPP2_PRS_IPV4_IHL 0x5
481 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
482 #define MVPP2_PRS_IPV6_MC 0xff
483 #define MVPP2_PRS_IPV6_MC_MASK 0xff
484 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
485 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
486 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
487 #define MVPP2_PRS_DBL_VLANS_MAX 100
488
489 /* Tcam structure:
490 * - lookup ID - 4 bits
491 * - port ID - 1 byte
492 * - additional information - 1 byte
493 * - header data - 8 bytes
494 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
495 */
496 #define MVPP2_PRS_AI_BITS 8
497 #define MVPP2_PRS_PORT_MASK 0xff
498 #define MVPP2_PRS_LU_MASK 0xf
499 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
500 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
501 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
502 (((offs) * 2) - ((offs) % 2) + 2)
503 #define MVPP2_PRS_TCAM_AI_BYTE 16
504 #define MVPP2_PRS_TCAM_PORT_BYTE 17
505 #define MVPP2_PRS_TCAM_LU_BYTE 20
506 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
507 #define MVPP2_PRS_TCAM_INV_WORD 5
508 /* Tcam entries ID */
509 #define MVPP2_PE_DROP_ALL 0
510 #define MVPP2_PE_FIRST_FREE_TID 1
511 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
512 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
513 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
514 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
515 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
516 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
517 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
518 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
519 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
520 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
521 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
522 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
523 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
524 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
525 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
526 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
527 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
528 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
529 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
530 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
531 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
532 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
533 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
534 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
535 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
536
537 /* Sram structure
538 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
539 */
540 #define MVPP2_PRS_SRAM_RI_OFFS 0
541 #define MVPP2_PRS_SRAM_RI_WORD 0
542 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
543 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
544 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
545 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
546 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
547 #define MVPP2_PRS_SRAM_UDF_OFFS 73
548 #define MVPP2_PRS_SRAM_UDF_BITS 8
549 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
550 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
551 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
552 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
553 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
554 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
555 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
556 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
557 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
558 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
559 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
560 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
561 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
562 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
563 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
564 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
565 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
566 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
567 #define MVPP2_PRS_SRAM_AI_OFFS 90
568 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
569 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
570 #define MVPP2_PRS_SRAM_AI_MASK 0xff
571 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
572 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
573 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
574 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
575
576 /* Sram result info bits assignment */
577 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
578 #define MVPP2_PRS_RI_DSA_MASK 0x2
579 #define MVPP2_PRS_RI_VLAN_MASK 0xc
580 #define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
581 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
582 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
583 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
584 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
585 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
586 #define MVPP2_PRS_RI_L2_CAST_MASK 0x600
587 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
588 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
589 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
590 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
591 #define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
592 #define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
593 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
594 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
595 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
596 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
597 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
598 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
599 #define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
600 #define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
601 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
602 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
603 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
604 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
605 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
606 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
607 #define MVPP2_PRS_RI_L4_TCP BIT(22)
608 #define MVPP2_PRS_RI_L4_UDP BIT(23)
609 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
610 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
611 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
612 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
613
614 /* Sram additional info bits assignment */
615 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
616 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
617 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
618 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
619 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
620 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
621 #define MVPP2_PRS_SINGLE_VLAN_AI 0
622 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
623
624 /* DSA/EDSA type */
625 #define MVPP2_PRS_TAGGED true
626 #define MVPP2_PRS_UNTAGGED false
627 #define MVPP2_PRS_EDSA true
628 #define MVPP2_PRS_DSA false
629
630 /* MAC entries, shadow udf */
631 enum mvpp2_prs_udf {
632 MVPP2_PRS_UDF_MAC_DEF,
633 MVPP2_PRS_UDF_MAC_RANGE,
634 MVPP2_PRS_UDF_L2_DEF,
635 MVPP2_PRS_UDF_L2_DEF_COPY,
636 MVPP2_PRS_UDF_L2_USER,
637 };
638
639 /* Lookup ID */
640 enum mvpp2_prs_lookup {
641 MVPP2_PRS_LU_MH,
642 MVPP2_PRS_LU_MAC,
643 MVPP2_PRS_LU_DSA,
644 MVPP2_PRS_LU_VLAN,
645 MVPP2_PRS_LU_L2,
646 MVPP2_PRS_LU_PPPOE,
647 MVPP2_PRS_LU_IP4,
648 MVPP2_PRS_LU_IP6,
649 MVPP2_PRS_LU_FLOWS,
650 MVPP2_PRS_LU_LAST,
651 };
652
653 /* L3 cast enum */
654 enum mvpp2_prs_l3_cast {
655 MVPP2_PRS_L3_UNI_CAST,
656 MVPP2_PRS_L3_MULTI_CAST,
657 MVPP2_PRS_L3_BROAD_CAST
658 };
659
660 /* Classifier constants */
661 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
662 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
663 #define MVPP2_CLS_LKP_TBL_SIZE 64
664
665 /* BM constants */
666 #define MVPP2_BM_POOLS_NUM 1
667 #define MVPP2_BM_LONG_BUF_NUM 16
668 #define MVPP2_BM_SHORT_BUF_NUM 16
669 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
670 #define MVPP2_BM_POOL_PTR_ALIGN 128
671 #define MVPP2_BM_SWF_LONG_POOL(port) 0
672
673 /* BM cookie (32 bits) definition */
674 #define MVPP2_BM_COOKIE_POOL_OFFS 8
675 #define MVPP2_BM_COOKIE_CPU_OFFS 24
676
677 /* BM short pool packet size
678 * These value assure that for SWF the total number
679 * of bytes allocated for each buffer will be 512
680 */
681 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
682
683 enum mvpp2_bm_type {
684 MVPP2_BM_FREE,
685 MVPP2_BM_SWF_LONG,
686 MVPP2_BM_SWF_SHORT
687 };
688
689 /* Definitions */
690
691 /* Shared Packet Processor resources */
692 struct mvpp2 {
693 /* Shared registers' base addresses */
694 void __iomem *base;
695 void __iomem *lms_base;
696
697 /* List of pointers to port structures */
698 struct mvpp2_port **port_list;
699
700 /* Aggregated TXQs */
701 struct mvpp2_tx_queue *aggr_txqs;
702
703 /* BM pools */
704 struct mvpp2_bm_pool *bm_pools;
705
706 /* PRS shadow table */
707 struct mvpp2_prs_shadow *prs_shadow;
708 /* PRS auxiliary table for double vlan entries control */
709 bool *prs_double_vlans;
710
711 /* Tclk value */
712 u32 tclk;
713
714 struct mii_dev *bus;
715 };
716
717 struct mvpp2_pcpu_stats {
718 u64 rx_packets;
719 u64 rx_bytes;
720 u64 tx_packets;
721 u64 tx_bytes;
722 };
723
724 struct mvpp2_port {
725 u8 id;
726
727 int irq;
728
729 struct mvpp2 *priv;
730
731 /* Per-port registers' base address */
732 void __iomem *base;
733
734 struct mvpp2_rx_queue **rxqs;
735 struct mvpp2_tx_queue **txqs;
736
737 int pkt_size;
738
739 u32 pending_cause_rx;
740
741 /* Per-CPU port control */
742 struct mvpp2_port_pcpu __percpu *pcpu;
743
744 /* Flags */
745 unsigned long flags;
746
747 u16 tx_ring_size;
748 u16 rx_ring_size;
749 struct mvpp2_pcpu_stats __percpu *stats;
750
751 struct phy_device *phy_dev;
752 phy_interface_t phy_interface;
753 int phy_node;
754 int phyaddr;
755 int init;
756 unsigned int link;
757 unsigned int duplex;
758 unsigned int speed;
759
760 struct mvpp2_bm_pool *pool_long;
761 struct mvpp2_bm_pool *pool_short;
762
763 /* Index of first port's physical RXQ */
764 u8 first_rxq;
765
766 u8 dev_addr[ETH_ALEN];
767 };
768
769 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
770 * layout of the transmit and reception DMA descriptors, and their
771 * layout is therefore defined by the hardware design
772 */
773
774 #define MVPP2_TXD_L3_OFF_SHIFT 0
775 #define MVPP2_TXD_IP_HLEN_SHIFT 8
776 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
777 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
778 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
779 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
780 #define MVPP2_TXD_L4_UDP BIT(24)
781 #define MVPP2_TXD_L3_IP6 BIT(26)
782 #define MVPP2_TXD_L_DESC BIT(28)
783 #define MVPP2_TXD_F_DESC BIT(29)
784
785 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
786 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
787 #define MVPP2_RXD_ERR_CRC 0x0
788 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
789 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
790 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
791 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
792 #define MVPP2_RXD_HWF_SYNC BIT(21)
793 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
794 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
795 #define MVPP2_RXD_L4_TCP BIT(25)
796 #define MVPP2_RXD_L4_UDP BIT(26)
797 #define MVPP2_RXD_L3_IP4 BIT(28)
798 #define MVPP2_RXD_L3_IP6 BIT(30)
799 #define MVPP2_RXD_BUF_HDR BIT(31)
800
801 struct mvpp2_tx_desc {
802 u32 command; /* Options used by HW for packet transmitting.*/
803 u8 packet_offset; /* the offset from the buffer beginning */
804 u8 phys_txq; /* destination queue ID */
805 u16 data_size; /* data size of transmitted packet in bytes */
806 u32 buf_phys_addr; /* physical addr of transmitted buffer */
807 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
808 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
809 u32 reserved2; /* reserved (for future use) */
810 };
811
812 struct mvpp2_rx_desc {
813 u32 status; /* info about received packet */
814 u16 reserved1; /* parser_info (for future use, PnC) */
815 u16 data_size; /* size of received packet in bytes */
816 u32 buf_phys_addr; /* physical address of the buffer */
817 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
818 u16 reserved2; /* gem_port_id (for future use, PON) */
819 u16 reserved3; /* csum_l4 (for future use, PnC) */
820 u8 reserved4; /* bm_qset (for future use, BM) */
821 u8 reserved5;
822 u16 reserved6; /* classify_info (for future use, PnC) */
823 u32 reserved7; /* flow_id (for future use, PnC) */
824 u32 reserved8;
825 };
826
827 /* Per-CPU Tx queue control */
828 struct mvpp2_txq_pcpu {
829 int cpu;
830
831 /* Number of Tx DMA descriptors in the descriptor ring */
832 int size;
833
834 /* Number of currently used Tx DMA descriptor in the
835 * descriptor ring
836 */
837 int count;
838
839 /* Number of Tx DMA descriptors reserved for each CPU */
840 int reserved_num;
841
842 /* Index of last TX DMA descriptor that was inserted */
843 int txq_put_index;
844
845 /* Index of the TX DMA descriptor to be cleaned up */
846 int txq_get_index;
847 };
848
849 struct mvpp2_tx_queue {
850 /* Physical number of this Tx queue */
851 u8 id;
852
853 /* Logical number of this Tx queue */
854 u8 log_id;
855
856 /* Number of Tx DMA descriptors in the descriptor ring */
857 int size;
858
859 /* Number of currently used Tx DMA descriptor in the descriptor ring */
860 int count;
861
862 /* Per-CPU control of physical Tx queues */
863 struct mvpp2_txq_pcpu __percpu *pcpu;
864
865 u32 done_pkts_coal;
866
867 /* Virtual address of thex Tx DMA descriptors array */
868 struct mvpp2_tx_desc *descs;
869
870 /* DMA address of the Tx DMA descriptors array */
871 dma_addr_t descs_phys;
872
873 /* Index of the last Tx DMA descriptor */
874 int last_desc;
875
876 /* Index of the next Tx DMA descriptor to process */
877 int next_desc_to_proc;
878 };
879
880 struct mvpp2_rx_queue {
881 /* RX queue number, in the range 0-31 for physical RXQs */
882 u8 id;
883
884 /* Num of rx descriptors in the rx descriptor ring */
885 int size;
886
887 u32 pkts_coal;
888 u32 time_coal;
889
890 /* Virtual address of the RX DMA descriptors array */
891 struct mvpp2_rx_desc *descs;
892
893 /* DMA address of the RX DMA descriptors array */
894 dma_addr_t descs_phys;
895
896 /* Index of the last RX DMA descriptor */
897 int last_desc;
898
899 /* Index of the next RX DMA descriptor to process */
900 int next_desc_to_proc;
901
902 /* ID of port to which physical RXQ is mapped */
903 int port;
904
905 /* Port's logic RXQ number to which physical RXQ is mapped */
906 int logic_rxq;
907 };
908
909 union mvpp2_prs_tcam_entry {
910 u32 word[MVPP2_PRS_TCAM_WORDS];
911 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
912 };
913
914 union mvpp2_prs_sram_entry {
915 u32 word[MVPP2_PRS_SRAM_WORDS];
916 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
917 };
918
919 struct mvpp2_prs_entry {
920 u32 index;
921 union mvpp2_prs_tcam_entry tcam;
922 union mvpp2_prs_sram_entry sram;
923 };
924
925 struct mvpp2_prs_shadow {
926 bool valid;
927 bool finish;
928
929 /* Lookup ID */
930 int lu;
931
932 /* User defined offset */
933 int udf;
934
935 /* Result info */
936 u32 ri;
937 u32 ri_mask;
938 };
939
940 struct mvpp2_cls_flow_entry {
941 u32 index;
942 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
943 };
944
945 struct mvpp2_cls_lookup_entry {
946 u32 lkpid;
947 u32 way;
948 u32 data;
949 };
950
951 struct mvpp2_bm_pool {
952 /* Pool number in the range 0-7 */
953 int id;
954 enum mvpp2_bm_type type;
955
956 /* Buffer Pointers Pool External (BPPE) size */
957 int size;
958 /* Number of buffers for this pool */
959 int buf_num;
960 /* Pool buffer size */
961 int buf_size;
962 /* Packet size */
963 int pkt_size;
964
965 /* BPPE virtual base address */
966 u32 *virt_addr;
967 /* BPPE physical base address */
968 dma_addr_t phys_addr;
969
970 /* Ports using BM pool */
971 u32 port_map;
972
973 /* Occupied buffers indicator */
974 int in_use_thresh;
975 };
976
977 struct mvpp2_buff_hdr {
978 u32 next_buff_phys_addr;
979 u32 next_buff_virt_addr;
980 u16 byte_count;
981 u16 info;
982 u8 reserved1; /* bm_qset (for future use, BM) */
983 };
984
985 /* Buffer header info bits */
986 #define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
987 #define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
988 #define MVPP2_B_HDR_INFO_LAST_OFFS 12
989 #define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
990 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
991 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
992
993 /* Static declaractions */
994
995 /* Number of RXQs used by single port */
996 static int rxq_number = MVPP2_DEFAULT_RXQ;
997 /* Number of TXQs used by single port */
998 static int txq_number = MVPP2_DEFAULT_TXQ;
999
1000 #define MVPP2_DRIVER_NAME "mvpp2"
1001 #define MVPP2_DRIVER_VERSION "1.0"
1002
1003 /*
1004 * U-Boot internal data, mostly uncached buffers for descriptors and data
1005 */
1006 struct buffer_location {
1007 struct mvpp2_tx_desc *aggr_tx_descs;
1008 struct mvpp2_tx_desc *tx_descs;
1009 struct mvpp2_rx_desc *rx_descs;
1010 u32 *bm_pool[MVPP2_BM_POOLS_NUM];
1011 u32 *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1012 int first_rxq;
1013 };
1014
1015 /*
1016 * All 4 interfaces use the same global buffer, since only one interface
1017 * can be enabled at once
1018 */
1019 static struct buffer_location buffer_loc;
1020
1021 /*
1022 * Page table entries are set to 1MB, or multiples of 1MB
1023 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1024 */
1025 #define BD_SPACE (1 << 20)
1026
1027 /* Utility/helper methods */
1028
1029 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1030 {
1031 writel(data, priv->base + offset);
1032 }
1033
1034 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1035 {
1036 return readl(priv->base + offset);
1037 }
1038
1039 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1040 {
1041 txq_pcpu->txq_get_index++;
1042 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1043 txq_pcpu->txq_get_index = 0;
1044 }
1045
1046 /* Get number of physical egress port */
1047 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1048 {
1049 return MVPP2_MAX_TCONT + port->id;
1050 }
1051
1052 /* Get number of physical TXQ */
1053 static inline int mvpp2_txq_phys(int port, int txq)
1054 {
1055 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1056 }
1057
1058 /* Parser configuration routines */
1059
1060 /* Update parser tcam and sram hw entries */
1061 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1062 {
1063 int i;
1064
1065 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1066 return -EINVAL;
1067
1068 /* Clear entry invalidation bit */
1069 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1070
1071 /* Write tcam index - indirect access */
1072 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1073 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1074 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1075
1076 /* Write sram index - indirect access */
1077 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1078 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1079 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1080
1081 return 0;
1082 }
1083
1084 /* Read tcam entry from hw */
1085 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1086 {
1087 int i;
1088
1089 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1090 return -EINVAL;
1091
1092 /* Write tcam index - indirect access */
1093 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1094
1095 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1096 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1097 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1098 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1099
1100 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1101 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1102
1103 /* Write sram index - indirect access */
1104 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1105 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1106 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1107
1108 return 0;
1109 }
1110
1111 /* Invalidate tcam hw entry */
1112 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1113 {
1114 /* Write index - indirect access */
1115 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1116 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1117 MVPP2_PRS_TCAM_INV_MASK);
1118 }
1119
1120 /* Enable shadow table entry and set its lookup ID */
1121 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1122 {
1123 priv->prs_shadow[index].valid = true;
1124 priv->prs_shadow[index].lu = lu;
1125 }
1126
1127 /* Update ri fields in shadow table entry */
1128 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1129 unsigned int ri, unsigned int ri_mask)
1130 {
1131 priv->prs_shadow[index].ri_mask = ri_mask;
1132 priv->prs_shadow[index].ri = ri;
1133 }
1134
1135 /* Update lookup field in tcam sw entry */
1136 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1137 {
1138 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1139
1140 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1141 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1142 }
1143
1144 /* Update mask for single port in tcam sw entry */
1145 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1146 unsigned int port, bool add)
1147 {
1148 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1149
1150 if (add)
1151 pe->tcam.byte[enable_off] &= ~(1 << port);
1152 else
1153 pe->tcam.byte[enable_off] |= 1 << port;
1154 }
1155
1156 /* Update port map in tcam sw entry */
1157 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1158 unsigned int ports)
1159 {
1160 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1161 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1162
1163 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1164 pe->tcam.byte[enable_off] &= ~port_mask;
1165 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1166 }
1167
1168 /* Obtain port map from tcam sw entry */
1169 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1170 {
1171 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1172
1173 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1174 }
1175
1176 /* Set byte of data and its enable bits in tcam sw entry */
1177 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1178 unsigned int offs, unsigned char byte,
1179 unsigned char enable)
1180 {
1181 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1182 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1183 }
1184
1185 /* Get byte of data and its enable bits from tcam sw entry */
1186 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1187 unsigned int offs, unsigned char *byte,
1188 unsigned char *enable)
1189 {
1190 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1191 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1192 }
1193
1194 /* Set ethertype in tcam sw entry */
1195 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1196 unsigned short ethertype)
1197 {
1198 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1199 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1200 }
1201
1202 /* Set bits in sram sw entry */
1203 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1204 int val)
1205 {
1206 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1207 }
1208
1209 /* Clear bits in sram sw entry */
1210 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1211 int val)
1212 {
1213 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1214 }
1215
1216 /* Update ri bits in sram sw entry */
1217 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1218 unsigned int bits, unsigned int mask)
1219 {
1220 unsigned int i;
1221
1222 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1223 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1224
1225 if (!(mask & BIT(i)))
1226 continue;
1227
1228 if (bits & BIT(i))
1229 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1230 else
1231 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1232
1233 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1234 }
1235 }
1236
1237 /* Update ai bits in sram sw entry */
1238 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1239 unsigned int bits, unsigned int mask)
1240 {
1241 unsigned int i;
1242 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1243
1244 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1245
1246 if (!(mask & BIT(i)))
1247 continue;
1248
1249 if (bits & BIT(i))
1250 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1251 else
1252 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1253
1254 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1255 }
1256 }
1257
1258 /* Read ai bits from sram sw entry */
1259 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1260 {
1261 u8 bits;
1262 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1263 int ai_en_off = ai_off + 1;
1264 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1265
1266 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1267 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1268
1269 return bits;
1270 }
1271
1272 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1273 * lookup interation
1274 */
1275 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1276 unsigned int lu)
1277 {
1278 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1279
1280 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1281 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1282 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1283 }
1284
1285 /* In the sram sw entry set sign and value of the next lookup offset
1286 * and the offset value generated to the classifier
1287 */
1288 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1289 unsigned int op)
1290 {
1291 /* Set sign */
1292 if (shift < 0) {
1293 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1294 shift = 0 - shift;
1295 } else {
1296 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1297 }
1298
1299 /* Set value */
1300 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1301 (unsigned char)shift;
1302
1303 /* Reset and set operation */
1304 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1305 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1306 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1307
1308 /* Set base offset as current */
1309 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1310 }
1311
1312 /* In the sram sw entry set sign and value of the user defined offset
1313 * generated to the classifier
1314 */
1315 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1316 unsigned int type, int offset,
1317 unsigned int op)
1318 {
1319 /* Set sign */
1320 if (offset < 0) {
1321 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1322 offset = 0 - offset;
1323 } else {
1324 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1325 }
1326
1327 /* Set value */
1328 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1329 MVPP2_PRS_SRAM_UDF_MASK);
1330 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1331 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1332 MVPP2_PRS_SRAM_UDF_BITS)] &=
1333 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1334 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1335 MVPP2_PRS_SRAM_UDF_BITS)] |=
1336 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1337
1338 /* Set offset type */
1339 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1340 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1341 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1342
1343 /* Set offset operation */
1344 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1345 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1346 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1347
1348 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1349 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1350 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1351 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1352
1353 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1354 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1355 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1356
1357 /* Set base offset as current */
1358 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1359 }
1360
1361 /* Find parser flow entry */
1362 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1363 {
1364 struct mvpp2_prs_entry *pe;
1365 int tid;
1366
1367 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1368 if (!pe)
1369 return NULL;
1370 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1371
1372 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1373 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1374 u8 bits;
1375
1376 if (!priv->prs_shadow[tid].valid ||
1377 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1378 continue;
1379
1380 pe->index = tid;
1381 mvpp2_prs_hw_read(priv, pe);
1382 bits = mvpp2_prs_sram_ai_get(pe);
1383
1384 /* Sram store classification lookup ID in AI bits [5:0] */
1385 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1386 return pe;
1387 }
1388 kfree(pe);
1389
1390 return NULL;
1391 }
1392
1393 /* Return first free tcam index, seeking from start to end */
1394 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1395 unsigned char end)
1396 {
1397 int tid;
1398
1399 if (start > end)
1400 swap(start, end);
1401
1402 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1403 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1404
1405 for (tid = start; tid <= end; tid++) {
1406 if (!priv->prs_shadow[tid].valid)
1407 return tid;
1408 }
1409
1410 return -EINVAL;
1411 }
1412
1413 /* Enable/disable dropping all mac da's */
1414 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1415 {
1416 struct mvpp2_prs_entry pe;
1417
1418 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1419 /* Entry exist - update port only */
1420 pe.index = MVPP2_PE_DROP_ALL;
1421 mvpp2_prs_hw_read(priv, &pe);
1422 } else {
1423 /* Entry doesn't exist - create new */
1424 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1425 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1426 pe.index = MVPP2_PE_DROP_ALL;
1427
1428 /* Non-promiscuous mode for all ports - DROP unknown packets */
1429 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1430 MVPP2_PRS_RI_DROP_MASK);
1431
1432 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1433 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1434
1435 /* Update shadow table */
1436 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1437
1438 /* Mask all ports */
1439 mvpp2_prs_tcam_port_map_set(&pe, 0);
1440 }
1441
1442 /* Update port mask */
1443 mvpp2_prs_tcam_port_set(&pe, port, add);
1444
1445 mvpp2_prs_hw_write(priv, &pe);
1446 }
1447
1448 /* Set port to promiscuous mode */
1449 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1450 {
1451 struct mvpp2_prs_entry pe;
1452
1453 /* Promiscuous mode - Accept unknown packets */
1454
1455 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1456 /* Entry exist - update port only */
1457 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1458 mvpp2_prs_hw_read(priv, &pe);
1459 } else {
1460 /* Entry doesn't exist - create new */
1461 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1462 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1463 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1464
1465 /* Continue - set next lookup */
1466 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1467
1468 /* Set result info bits */
1469 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1470 MVPP2_PRS_RI_L2_CAST_MASK);
1471
1472 /* Shift to ethertype */
1473 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1474 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1475
1476 /* Mask all ports */
1477 mvpp2_prs_tcam_port_map_set(&pe, 0);
1478
1479 /* Update shadow table */
1480 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1481 }
1482
1483 /* Update port mask */
1484 mvpp2_prs_tcam_port_set(&pe, port, add);
1485
1486 mvpp2_prs_hw_write(priv, &pe);
1487 }
1488
1489 /* Accept multicast */
1490 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1491 bool add)
1492 {
1493 struct mvpp2_prs_entry pe;
1494 unsigned char da_mc;
1495
1496 /* Ethernet multicast address first byte is
1497 * 0x01 for IPv4 and 0x33 for IPv6
1498 */
1499 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1500
1501 if (priv->prs_shadow[index].valid) {
1502 /* Entry exist - update port only */
1503 pe.index = index;
1504 mvpp2_prs_hw_read(priv, &pe);
1505 } else {
1506 /* Entry doesn't exist - create new */
1507 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1508 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1509 pe.index = index;
1510
1511 /* Continue - set next lookup */
1512 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1513
1514 /* Set result info bits */
1515 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1516 MVPP2_PRS_RI_L2_CAST_MASK);
1517
1518 /* Update tcam entry data first byte */
1519 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1520
1521 /* Shift to ethertype */
1522 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1523 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1524
1525 /* Mask all ports */
1526 mvpp2_prs_tcam_port_map_set(&pe, 0);
1527
1528 /* Update shadow table */
1529 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1530 }
1531
1532 /* Update port mask */
1533 mvpp2_prs_tcam_port_set(&pe, port, add);
1534
1535 mvpp2_prs_hw_write(priv, &pe);
1536 }
1537
1538 /* Parser per-port initialization */
1539 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1540 int lu_max, int offset)
1541 {
1542 u32 val;
1543
1544 /* Set lookup ID */
1545 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1546 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1547 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1548 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1549
1550 /* Set maximum number of loops for packet received from port */
1551 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1552 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1553 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1554 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1555
1556 /* Set initial offset for packet header extraction for the first
1557 * searching loop
1558 */
1559 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1560 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1561 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1562 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1563 }
1564
1565 /* Default flow entries initialization for all ports */
1566 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1567 {
1568 struct mvpp2_prs_entry pe;
1569 int port;
1570
1571 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1572 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1573 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1574 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1575
1576 /* Mask all ports */
1577 mvpp2_prs_tcam_port_map_set(&pe, 0);
1578
1579 /* Set flow ID*/
1580 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1581 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1582
1583 /* Update shadow table and hw entry */
1584 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1585 mvpp2_prs_hw_write(priv, &pe);
1586 }
1587 }
1588
1589 /* Set default entry for Marvell Header field */
1590 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1591 {
1592 struct mvpp2_prs_entry pe;
1593
1594 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1595
1596 pe.index = MVPP2_PE_MH_DEFAULT;
1597 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1598 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1599 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1600 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1601
1602 /* Unmask all ports */
1603 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1604
1605 /* Update shadow table and hw entry */
1606 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1607 mvpp2_prs_hw_write(priv, &pe);
1608 }
1609
1610 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1611 * multicast MAC addresses
1612 */
1613 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1614 {
1615 struct mvpp2_prs_entry pe;
1616
1617 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1618
1619 /* Non-promiscuous mode for all ports - DROP unknown packets */
1620 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1621 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1622
1623 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1624 MVPP2_PRS_RI_DROP_MASK);
1625 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1626 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1627
1628 /* Unmask all ports */
1629 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1630
1631 /* Update shadow table and hw entry */
1632 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1633 mvpp2_prs_hw_write(priv, &pe);
1634
1635 /* place holders only - no ports */
1636 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1637 mvpp2_prs_mac_promisc_set(priv, 0, false);
1638 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1639 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1640 }
1641
1642 /* Match basic ethertypes */
1643 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1644 {
1645 struct mvpp2_prs_entry pe;
1646 int tid;
1647
1648 /* Ethertype: PPPoE */
1649 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1650 MVPP2_PE_LAST_FREE_TID);
1651 if (tid < 0)
1652 return tid;
1653
1654 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1655 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1656 pe.index = tid;
1657
1658 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1659
1660 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1661 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1662 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1663 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1664 MVPP2_PRS_RI_PPPOE_MASK);
1665
1666 /* Update shadow table and hw entry */
1667 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1668 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1669 priv->prs_shadow[pe.index].finish = false;
1670 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
1671 MVPP2_PRS_RI_PPPOE_MASK);
1672 mvpp2_prs_hw_write(priv, &pe);
1673
1674 /* Ethertype: ARP */
1675 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1676 MVPP2_PE_LAST_FREE_TID);
1677 if (tid < 0)
1678 return tid;
1679
1680 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1681 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1682 pe.index = tid;
1683
1684 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
1685
1686 /* Generate flow in the next iteration*/
1687 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1688 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1689 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
1690 MVPP2_PRS_RI_L3_PROTO_MASK);
1691 /* Set L3 offset */
1692 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1693 MVPP2_ETH_TYPE_LEN,
1694 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1695
1696 /* Update shadow table and hw entry */
1697 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1698 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1699 priv->prs_shadow[pe.index].finish = true;
1700 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
1701 MVPP2_PRS_RI_L3_PROTO_MASK);
1702 mvpp2_prs_hw_write(priv, &pe);
1703
1704 /* Ethertype: LBTD */
1705 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1706 MVPP2_PE_LAST_FREE_TID);
1707 if (tid < 0)
1708 return tid;
1709
1710 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1711 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1712 pe.index = tid;
1713
1714 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
1715
1716 /* Generate flow in the next iteration*/
1717 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1718 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1719 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1720 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1721 MVPP2_PRS_RI_CPU_CODE_MASK |
1722 MVPP2_PRS_RI_UDF3_MASK);
1723 /* Set L3 offset */
1724 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1725 MVPP2_ETH_TYPE_LEN,
1726 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1727
1728 /* Update shadow table and hw entry */
1729 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1730 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1731 priv->prs_shadow[pe.index].finish = true;
1732 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1733 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1734 MVPP2_PRS_RI_CPU_CODE_MASK |
1735 MVPP2_PRS_RI_UDF3_MASK);
1736 mvpp2_prs_hw_write(priv, &pe);
1737
1738 /* Ethertype: IPv4 without options */
1739 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1740 MVPP2_PE_LAST_FREE_TID);
1741 if (tid < 0)
1742 return tid;
1743
1744 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1745 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1746 pe.index = tid;
1747
1748 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
1749 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1750 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
1751 MVPP2_PRS_IPV4_HEAD_MASK |
1752 MVPP2_PRS_IPV4_IHL_MASK);
1753
1754 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1755 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
1756 MVPP2_PRS_RI_L3_PROTO_MASK);
1757 /* Skip eth_type + 4 bytes of IP header */
1758 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
1759 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1760 /* Set L3 offset */
1761 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1762 MVPP2_ETH_TYPE_LEN,
1763 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1764
1765 /* Update shadow table and hw entry */
1766 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1767 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1768 priv->prs_shadow[pe.index].finish = false;
1769 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
1770 MVPP2_PRS_RI_L3_PROTO_MASK);
1771 mvpp2_prs_hw_write(priv, &pe);
1772
1773 /* Ethertype: IPv4 with options */
1774 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1775 MVPP2_PE_LAST_FREE_TID);
1776 if (tid < 0)
1777 return tid;
1778
1779 pe.index = tid;
1780
1781 /* Clear tcam data before updating */
1782 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
1783 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
1784
1785 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1786 MVPP2_PRS_IPV4_HEAD,
1787 MVPP2_PRS_IPV4_HEAD_MASK);
1788
1789 /* Clear ri before updating */
1790 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1791 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1792 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
1793 MVPP2_PRS_RI_L3_PROTO_MASK);
1794
1795 /* Update shadow table and hw entry */
1796 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1797 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1798 priv->prs_shadow[pe.index].finish = false;
1799 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
1800 MVPP2_PRS_RI_L3_PROTO_MASK);
1801 mvpp2_prs_hw_write(priv, &pe);
1802
1803 /* Ethertype: IPv6 without options */
1804 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1805 MVPP2_PE_LAST_FREE_TID);
1806 if (tid < 0)
1807 return tid;
1808
1809 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1810 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1811 pe.index = tid;
1812
1813 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
1814
1815 /* Skip DIP of IPV6 header */
1816 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
1817 MVPP2_MAX_L3_ADDR_SIZE,
1818 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1819 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
1820 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
1821 MVPP2_PRS_RI_L3_PROTO_MASK);
1822 /* Set L3 offset */
1823 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1824 MVPP2_ETH_TYPE_LEN,
1825 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1826
1827 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1828 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1829 priv->prs_shadow[pe.index].finish = false;
1830 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
1831 MVPP2_PRS_RI_L3_PROTO_MASK);
1832 mvpp2_prs_hw_write(priv, &pe);
1833
1834 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
1835 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1836 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1837 pe.index = MVPP2_PE_ETH_TYPE_UN;
1838
1839 /* Unmask all ports */
1840 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1841
1842 /* Generate flow in the next iteration*/
1843 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1844 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1845 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
1846 MVPP2_PRS_RI_L3_PROTO_MASK);
1847 /* Set L3 offset even it's unknown L3 */
1848 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1849 MVPP2_ETH_TYPE_LEN,
1850 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1851
1852 /* Update shadow table and hw entry */
1853 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1854 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1855 priv->prs_shadow[pe.index].finish = true;
1856 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
1857 MVPP2_PRS_RI_L3_PROTO_MASK);
1858 mvpp2_prs_hw_write(priv, &pe);
1859
1860 return 0;
1861 }
1862
1863 /* Parser default initialization */
1864 static int mvpp2_prs_default_init(struct udevice *dev,
1865 struct mvpp2 *priv)
1866 {
1867 int err, index, i;
1868
1869 /* Enable tcam table */
1870 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
1871
1872 /* Clear all tcam and sram entries */
1873 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
1874 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1875 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1876 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
1877
1878 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
1879 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1880 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
1881 }
1882
1883 /* Invalidate all tcam entries */
1884 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
1885 mvpp2_prs_hw_inv(priv, index);
1886
1887 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
1888 sizeof(struct mvpp2_prs_shadow),
1889 GFP_KERNEL);
1890 if (!priv->prs_shadow)
1891 return -ENOMEM;
1892
1893 /* Always start from lookup = 0 */
1894 for (index = 0; index < MVPP2_MAX_PORTS; index++)
1895 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
1896 MVPP2_PRS_PORT_LU_MAX, 0);
1897
1898 mvpp2_prs_def_flow_init(priv);
1899
1900 mvpp2_prs_mh_init(priv);
1901
1902 mvpp2_prs_mac_init(priv);
1903
1904 err = mvpp2_prs_etype_init(priv);
1905 if (err)
1906 return err;
1907
1908 return 0;
1909 }
1910
1911 /* Compare MAC DA with tcam entry data */
1912 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
1913 const u8 *da, unsigned char *mask)
1914 {
1915 unsigned char tcam_byte, tcam_mask;
1916 int index;
1917
1918 for (index = 0; index < ETH_ALEN; index++) {
1919 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
1920 if (tcam_mask != mask[index])
1921 return false;
1922
1923 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
1924 return false;
1925 }
1926
1927 return true;
1928 }
1929
1930 /* Find tcam entry with matched pair <MAC DA, port> */
1931 static struct mvpp2_prs_entry *
1932 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
1933 unsigned char *mask, int udf_type)
1934 {
1935 struct mvpp2_prs_entry *pe;
1936 int tid;
1937
1938 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1939 if (!pe)
1940 return NULL;
1941 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
1942
1943 /* Go through the all entires with MVPP2_PRS_LU_MAC */
1944 for (tid = MVPP2_PE_FIRST_FREE_TID;
1945 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1946 unsigned int entry_pmap;
1947
1948 if (!priv->prs_shadow[tid].valid ||
1949 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
1950 (priv->prs_shadow[tid].udf != udf_type))
1951 continue;
1952
1953 pe->index = tid;
1954 mvpp2_prs_hw_read(priv, pe);
1955 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
1956
1957 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
1958 entry_pmap == pmap)
1959 return pe;
1960 }
1961 kfree(pe);
1962
1963 return NULL;
1964 }
1965
1966 /* Update parser's mac da entry */
1967 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
1968 const u8 *da, bool add)
1969 {
1970 struct mvpp2_prs_entry *pe;
1971 unsigned int pmap, len, ri;
1972 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1973 int tid;
1974
1975 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
1976 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
1977 MVPP2_PRS_UDF_MAC_DEF);
1978
1979 /* No such entry */
1980 if (!pe) {
1981 if (!add)
1982 return 0;
1983
1984 /* Create new TCAM entry */
1985 /* Find first range mac entry*/
1986 for (tid = MVPP2_PE_FIRST_FREE_TID;
1987 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
1988 if (priv->prs_shadow[tid].valid &&
1989 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
1990 (priv->prs_shadow[tid].udf ==
1991 MVPP2_PRS_UDF_MAC_RANGE))
1992 break;
1993
1994 /* Go through the all entries from first to last */
1995 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1996 tid - 1);
1997 if (tid < 0)
1998 return tid;
1999
2000 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2001 if (!pe)
2002 return -1;
2003 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2004 pe->index = tid;
2005
2006 /* Mask all ports */
2007 mvpp2_prs_tcam_port_map_set(pe, 0);
2008 }
2009
2010 /* Update port mask */
2011 mvpp2_prs_tcam_port_set(pe, port, add);
2012
2013 /* Invalidate the entry if no ports are left enabled */
2014 pmap = mvpp2_prs_tcam_port_map_get(pe);
2015 if (pmap == 0) {
2016 if (add) {
2017 kfree(pe);
2018 return -1;
2019 }
2020 mvpp2_prs_hw_inv(priv, pe->index);
2021 priv->prs_shadow[pe->index].valid = false;
2022 kfree(pe);
2023 return 0;
2024 }
2025
2026 /* Continue - set next lookup */
2027 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2028
2029 /* Set match on DA */
2030 len = ETH_ALEN;
2031 while (len--)
2032 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2033
2034 /* Set result info bits */
2035 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2036
2037 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2038 MVPP2_PRS_RI_MAC_ME_MASK);
2039 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2040 MVPP2_PRS_RI_MAC_ME_MASK);
2041
2042 /* Shift to ethertype */
2043 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2044 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2045
2046 /* Update shadow table and hw entry */
2047 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2048 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2049 mvpp2_prs_hw_write(priv, pe);
2050
2051 kfree(pe);
2052
2053 return 0;
2054 }
2055
2056 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2057 {
2058 int err;
2059
2060 /* Remove old parser entry */
2061 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2062 false);
2063 if (err)
2064 return err;
2065
2066 /* Add new parser entry */
2067 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2068 if (err)
2069 return err;
2070
2071 /* Set addr in the device */
2072 memcpy(port->dev_addr, da, ETH_ALEN);
2073
2074 return 0;
2075 }
2076
2077 /* Set prs flow for the port */
2078 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2079 {
2080 struct mvpp2_prs_entry *pe;
2081 int tid;
2082
2083 pe = mvpp2_prs_flow_find(port->priv, port->id);
2084
2085 /* Such entry not exist */
2086 if (!pe) {
2087 /* Go through the all entires from last to first */
2088 tid = mvpp2_prs_tcam_first_free(port->priv,
2089 MVPP2_PE_LAST_FREE_TID,
2090 MVPP2_PE_FIRST_FREE_TID);
2091 if (tid < 0)
2092 return tid;
2093
2094 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2095 if (!pe)
2096 return -ENOMEM;
2097
2098 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2099 pe->index = tid;
2100
2101 /* Set flow ID*/
2102 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2103 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2104
2105 /* Update shadow table */
2106 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2107 }
2108
2109 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2110 mvpp2_prs_hw_write(port->priv, pe);
2111 kfree(pe);
2112
2113 return 0;
2114 }
2115
2116 /* Classifier configuration routines */
2117
2118 /* Update classification flow table registers */
2119 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2120 struct mvpp2_cls_flow_entry *fe)
2121 {
2122 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2123 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2124 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2125 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2126 }
2127
2128 /* Update classification lookup table register */
2129 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2130 struct mvpp2_cls_lookup_entry *le)
2131 {
2132 u32 val;
2133
2134 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2135 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2136 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2137 }
2138
2139 /* Classifier default initialization */
2140 static void mvpp2_cls_init(struct mvpp2 *priv)
2141 {
2142 struct mvpp2_cls_lookup_entry le;
2143 struct mvpp2_cls_flow_entry fe;
2144 int index;
2145
2146 /* Enable classifier */
2147 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2148
2149 /* Clear classifier flow table */
2150 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2151 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2152 fe.index = index;
2153 mvpp2_cls_flow_write(priv, &fe);
2154 }
2155
2156 /* Clear classifier lookup table */
2157 le.data = 0;
2158 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2159 le.lkpid = index;
2160 le.way = 0;
2161 mvpp2_cls_lookup_write(priv, &le);
2162
2163 le.way = 1;
2164 mvpp2_cls_lookup_write(priv, &le);
2165 }
2166 }
2167
2168 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2169 {
2170 struct mvpp2_cls_lookup_entry le;
2171 u32 val;
2172
2173 /* Set way for the port */
2174 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2175 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2176 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2177
2178 /* Pick the entry to be accessed in lookup ID decoding table
2179 * according to the way and lkpid.
2180 */
2181 le.lkpid = port->id;
2182 le.way = 0;
2183 le.data = 0;
2184
2185 /* Set initial CPU queue for receiving packets */
2186 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2187 le.data |= port->first_rxq;
2188
2189 /* Disable classification engines */
2190 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2191
2192 /* Update lookup ID table entry */
2193 mvpp2_cls_lookup_write(port->priv, &le);
2194 }
2195
2196 /* Set CPU queue number for oversize packets */
2197 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2198 {
2199 u32 val;
2200
2201 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2202 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2203
2204 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2205 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2206
2207 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2208 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2209 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2210 }
2211
2212 /* Buffer Manager configuration routines */
2213
2214 /* Create pool */
2215 static int mvpp2_bm_pool_create(struct udevice *dev,
2216 struct mvpp2 *priv,
2217 struct mvpp2_bm_pool *bm_pool, int size)
2218 {
2219 u32 val;
2220
2221 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2222 bm_pool->phys_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2223 if (!bm_pool->virt_addr)
2224 return -ENOMEM;
2225
2226 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
2227 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2228 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2229 return -ENOMEM;
2230 }
2231
2232 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2233 bm_pool->phys_addr);
2234 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2235
2236 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2237 val |= MVPP2_BM_START_MASK;
2238 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2239
2240 bm_pool->type = MVPP2_BM_FREE;
2241 bm_pool->size = size;
2242 bm_pool->pkt_size = 0;
2243 bm_pool->buf_num = 0;
2244
2245 return 0;
2246 }
2247
2248 /* Set pool buffer size */
2249 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2250 struct mvpp2_bm_pool *bm_pool,
2251 int buf_size)
2252 {
2253 u32 val;
2254
2255 bm_pool->buf_size = buf_size;
2256
2257 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2258 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2259 }
2260
2261 /* Free all buffers from the pool */
2262 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2263 struct mvpp2_bm_pool *bm_pool)
2264 {
2265 bm_pool->buf_num = 0;
2266 }
2267
2268 /* Cleanup pool */
2269 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2270 struct mvpp2 *priv,
2271 struct mvpp2_bm_pool *bm_pool)
2272 {
2273 u32 val;
2274
2275 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2276 if (bm_pool->buf_num) {
2277 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2278 return 0;
2279 }
2280
2281 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2282 val |= MVPP2_BM_STOP_MASK;
2283 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2284
2285 return 0;
2286 }
2287
2288 static int mvpp2_bm_pools_init(struct udevice *dev,
2289 struct mvpp2 *priv)
2290 {
2291 int i, err, size;
2292 struct mvpp2_bm_pool *bm_pool;
2293
2294 /* Create all pools with maximum size */
2295 size = MVPP2_BM_POOL_SIZE_MAX;
2296 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2297 bm_pool = &priv->bm_pools[i];
2298 bm_pool->id = i;
2299 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2300 if (err)
2301 goto err_unroll_pools;
2302 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2303 }
2304 return 0;
2305
2306 err_unroll_pools:
2307 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2308 for (i = i - 1; i >= 0; i--)
2309 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2310 return err;
2311 }
2312
2313 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2314 {
2315 int i, err;
2316
2317 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2318 /* Mask BM all interrupts */
2319 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2320 /* Clear BM cause register */
2321 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2322 }
2323
2324 /* Allocate and initialize BM pools */
2325 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2326 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2327 if (!priv->bm_pools)
2328 return -ENOMEM;
2329
2330 err = mvpp2_bm_pools_init(dev, priv);
2331 if (err < 0)
2332 return err;
2333 return 0;
2334 }
2335
2336 /* Attach long pool to rxq */
2337 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2338 int lrxq, int long_pool)
2339 {
2340 u32 val;
2341 int prxq;
2342
2343 /* Get queue physical ID */
2344 prxq = port->rxqs[lrxq]->id;
2345
2346 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2347 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
2348 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
2349 MVPP2_RXQ_POOL_LONG_MASK);
2350
2351 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2352 }
2353
2354 /* Set pool number in a BM cookie */
2355 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2356 {
2357 u32 bm;
2358
2359 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2360 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2361
2362 return bm;
2363 }
2364
2365 /* Get pool number from a BM cookie */
2366 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
2367 {
2368 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2369 }
2370
2371 /* Release buffer to BM */
2372 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2373 u32 buf_phys_addr, u32 buf_virt_addr)
2374 {
2375 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
2376 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
2377 }
2378
2379 /* Refill BM pool */
2380 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2381 u32 phys_addr, u32 cookie)
2382 {
2383 int pool = mvpp2_bm_cookie_pool_get(bm);
2384
2385 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
2386 }
2387
2388 /* Allocate buffers for the pool */
2389 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2390 struct mvpp2_bm_pool *bm_pool, int buf_num)
2391 {
2392 int i;
2393 u32 bm;
2394
2395 if (buf_num < 0 ||
2396 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2397 netdev_err(port->dev,
2398 "cannot allocate %d buffers for pool %d\n",
2399 buf_num, bm_pool->id);
2400 return 0;
2401 }
2402
2403 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
2404 for (i = 0; i < buf_num; i++) {
2405 mvpp2_pool_refill(port, bm, (u32)buffer_loc.rx_buffer[i],
2406 (u32)buffer_loc.rx_buffer[i]);
2407 }
2408
2409 /* Update BM driver with number of buffers added to pool */
2410 bm_pool->buf_num += i;
2411 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2412
2413 return i;
2414 }
2415
2416 /* Notify the driver that BM pool is being used as specific type and return the
2417 * pool pointer on success
2418 */
2419 static struct mvpp2_bm_pool *
2420 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2421 int pkt_size)
2422 {
2423 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2424 int num;
2425
2426 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2427 netdev_err(port->dev, "mixing pool types is forbidden\n");
2428 return NULL;
2429 }
2430
2431 if (new_pool->type == MVPP2_BM_FREE)
2432 new_pool->type = type;
2433
2434 /* Allocate buffers in case BM pool is used as long pool, but packet
2435 * size doesn't match MTU or BM pool hasn't being used yet
2436 */
2437 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2438 (new_pool->pkt_size == 0)) {
2439 int pkts_num;
2440
2441 /* Set default buffer number or free all the buffers in case
2442 * the pool is not empty
2443 */
2444 pkts_num = new_pool->buf_num;
2445 if (pkts_num == 0)
2446 pkts_num = type == MVPP2_BM_SWF_LONG ?
2447 MVPP2_BM_LONG_BUF_NUM :
2448 MVPP2_BM_SHORT_BUF_NUM;
2449 else
2450 mvpp2_bm_bufs_free(NULL,
2451 port->priv, new_pool);
2452
2453 new_pool->pkt_size = pkt_size;
2454
2455 /* Allocate buffers for this pool */
2456 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2457 if (num != pkts_num) {
2458 dev_err(dev, "pool %d: %d of %d allocated\n",
2459 new_pool->id, num, pkts_num);
2460 return NULL;
2461 }
2462 }
2463
2464 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2465 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2466
2467 return new_pool;
2468 }
2469
2470 /* Initialize pools for swf */
2471 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2472 {
2473 int rxq;
2474
2475 if (!port->pool_long) {
2476 port->pool_long =
2477 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2478 MVPP2_BM_SWF_LONG,
2479 port->pkt_size);
2480 if (!port->pool_long)
2481 return -ENOMEM;
2482
2483 port->pool_long->port_map |= (1 << port->id);
2484
2485 for (rxq = 0; rxq < rxq_number; rxq++)
2486 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2487 }
2488
2489 return 0;
2490 }
2491
2492 /* Port configuration routines */
2493
2494 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2495 {
2496 u32 val;
2497
2498 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2499
2500 switch (port->phy_interface) {
2501 case PHY_INTERFACE_MODE_SGMII:
2502 val |= MVPP2_GMAC_INBAND_AN_MASK;
2503 break;
2504 case PHY_INTERFACE_MODE_RGMII:
2505 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2506 default:
2507 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2508 }
2509
2510 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2511 }
2512
2513 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2514 {
2515 u32 val;
2516
2517 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2518 val |= MVPP2_GMAC_FC_ADV_EN;
2519 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2520 }
2521
2522 static void mvpp2_port_enable(struct mvpp2_port *port)
2523 {
2524 u32 val;
2525
2526 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2527 val |= MVPP2_GMAC_PORT_EN_MASK;
2528 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2529 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2530 }
2531
2532 static void mvpp2_port_disable(struct mvpp2_port *port)
2533 {
2534 u32 val;
2535
2536 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2537 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2538 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2539 }
2540
2541 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2542 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2543 {
2544 u32 val;
2545
2546 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2547 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2548 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2549 }
2550
2551 /* Configure loopback port */
2552 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2553 {
2554 u32 val;
2555
2556 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2557
2558 if (port->speed == 1000)
2559 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2560 else
2561 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2562
2563 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2564 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2565 else
2566 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2567
2568 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2569 }
2570
2571 static void mvpp2_port_reset(struct mvpp2_port *port)
2572 {
2573 u32 val;
2574
2575 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2576 ~MVPP2_GMAC_PORT_RESET_MASK;
2577 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2578
2579 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2580 MVPP2_GMAC_PORT_RESET_MASK)
2581 continue;
2582 }
2583
2584 /* Change maximum receive size of the port */
2585 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2586 {
2587 u32 val;
2588
2589 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2590 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2591 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2592 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2593 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2594 }
2595
2596 /* Set defaults to the MVPP2 port */
2597 static void mvpp2_defaults_set(struct mvpp2_port *port)
2598 {
2599 int tx_port_num, val, queue, ptxq, lrxq;
2600
2601 /* Configure port to loopback if needed */
2602 if (port->flags & MVPP2_F_LOOPBACK)
2603 mvpp2_port_loopback_set(port);
2604
2605 /* Update TX FIFO MIN Threshold */
2606 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2607 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
2608 /* Min. TX threshold must be less than minimal packet length */
2609 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
2610 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2611
2612 /* Disable Legacy WRR, Disable EJP, Release from reset */
2613 tx_port_num = mvpp2_egress_port(port);
2614 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
2615 tx_port_num);
2616 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
2617
2618 /* Close bandwidth for all queues */
2619 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
2620 ptxq = mvpp2_txq_phys(port->id, queue);
2621 mvpp2_write(port->priv,
2622 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
2623 }
2624
2625 /* Set refill period to 1 usec, refill tokens
2626 * and bucket size to maximum
2627 */
2628 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
2629 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
2630 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
2631 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
2632 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
2633 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
2634 val = MVPP2_TXP_TOKEN_SIZE_MAX;
2635 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2636
2637 /* Set MaximumLowLatencyPacketSize value to 256 */
2638 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
2639 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
2640 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
2641
2642 /* Enable Rx cache snoop */
2643 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2644 queue = port->rxqs[lrxq]->id;
2645 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2646 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
2647 MVPP2_SNOOP_BUF_HDR_MASK;
2648 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2649 }
2650 }
2651
2652 /* Enable/disable receiving packets */
2653 static void mvpp2_ingress_enable(struct mvpp2_port *port)
2654 {
2655 u32 val;
2656 int lrxq, queue;
2657
2658 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2659 queue = port->rxqs[lrxq]->id;
2660 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2661 val &= ~MVPP2_RXQ_DISABLE_MASK;
2662 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2663 }
2664 }
2665
2666 static void mvpp2_ingress_disable(struct mvpp2_port *port)
2667 {
2668 u32 val;
2669 int lrxq, queue;
2670
2671 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2672 queue = port->rxqs[lrxq]->id;
2673 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2674 val |= MVPP2_RXQ_DISABLE_MASK;
2675 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2676 }
2677 }
2678
2679 /* Enable transmit via physical egress queue
2680 * - HW starts take descriptors from DRAM
2681 */
2682 static void mvpp2_egress_enable(struct mvpp2_port *port)
2683 {
2684 u32 qmap;
2685 int queue;
2686 int tx_port_num = mvpp2_egress_port(port);
2687
2688 /* Enable all initialized TXs. */
2689 qmap = 0;
2690 for (queue = 0; queue < txq_number; queue++) {
2691 struct mvpp2_tx_queue *txq = port->txqs[queue];
2692
2693 if (txq->descs != NULL)
2694 qmap |= (1 << queue);
2695 }
2696
2697 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2698 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
2699 }
2700
2701 /* Disable transmit via physical egress queue
2702 * - HW doesn't take descriptors from DRAM
2703 */
2704 static void mvpp2_egress_disable(struct mvpp2_port *port)
2705 {
2706 u32 reg_data;
2707 int delay;
2708 int tx_port_num = mvpp2_egress_port(port);
2709
2710 /* Issue stop command for active channels only */
2711 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2712 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
2713 MVPP2_TXP_SCHED_ENQ_MASK;
2714 if (reg_data != 0)
2715 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
2716 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
2717
2718 /* Wait for all Tx activity to terminate. */
2719 delay = 0;
2720 do {
2721 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
2722 netdev_warn(port->dev,
2723 "Tx stop timed out, status=0x%08x\n",
2724 reg_data);
2725 break;
2726 }
2727 mdelay(1);
2728 delay++;
2729
2730 /* Check port TX Command register that all
2731 * Tx queues are stopped
2732 */
2733 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
2734 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
2735 }
2736
2737 /* Rx descriptors helper methods */
2738
2739 /* Get number of Rx descriptors occupied by received packets */
2740 static inline int
2741 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
2742 {
2743 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
2744
2745 return val & MVPP2_RXQ_OCCUPIED_MASK;
2746 }
2747
2748 /* Update Rx queue status with the number of occupied and available
2749 * Rx descriptor slots.
2750 */
2751 static inline void
2752 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
2753 int used_count, int free_count)
2754 {
2755 /* Decrement the number of used descriptors and increment count
2756 * increment the number of free descriptors.
2757 */
2758 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
2759
2760 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
2761 }
2762
2763 /* Get pointer to next RX descriptor to be processed by SW */
2764 static inline struct mvpp2_rx_desc *
2765 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
2766 {
2767 int rx_desc = rxq->next_desc_to_proc;
2768
2769 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
2770 prefetch(rxq->descs + rxq->next_desc_to_proc);
2771 return rxq->descs + rx_desc;
2772 }
2773
2774 /* Set rx queue offset */
2775 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
2776 int prxq, int offset)
2777 {
2778 u32 val;
2779
2780 /* Convert offset from bytes to units of 32 bytes */
2781 offset = offset >> 5;
2782
2783 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2784 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
2785
2786 /* Offset is in */
2787 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
2788 MVPP2_RXQ_PACKET_OFFSET_MASK);
2789
2790 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2791 }
2792
2793 /* Obtain BM cookie information from descriptor */
2794 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
2795 {
2796 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
2797 MVPP2_RXD_BM_POOL_ID_OFFS;
2798 int cpu = smp_processor_id();
2799
2800 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
2801 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
2802 }
2803
2804 /* Tx descriptors helper methods */
2805
2806 /* Get number of Tx descriptors waiting to be transmitted by HW */
2807 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
2808 struct mvpp2_tx_queue *txq)
2809 {
2810 u32 val;
2811
2812 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
2813 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
2814
2815 return val & MVPP2_TXQ_PENDING_MASK;
2816 }
2817
2818 /* Get pointer to next Tx descriptor to be processed (send) by HW */
2819 static struct mvpp2_tx_desc *
2820 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
2821 {
2822 int tx_desc = txq->next_desc_to_proc;
2823
2824 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
2825 return txq->descs + tx_desc;
2826 }
2827
2828 /* Update HW with number of aggregated Tx descriptors to be sent */
2829 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
2830 {
2831 /* aggregated access - relevant TXQ number is written in TX desc */
2832 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
2833 }
2834
2835 /* Get number of sent descriptors and decrement counter.
2836 * The number of sent descriptors is returned.
2837 * Per-CPU access
2838 */
2839 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
2840 struct mvpp2_tx_queue *txq)
2841 {
2842 u32 val;
2843
2844 /* Reading status reg resets transmitted descriptor counter */
2845 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
2846
2847 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
2848 MVPP2_TRANSMITTED_COUNT_OFFSET;
2849 }
2850
2851 static void mvpp2_txq_sent_counter_clear(void *arg)
2852 {
2853 struct mvpp2_port *port = arg;
2854 int queue;
2855
2856 for (queue = 0; queue < txq_number; queue++) {
2857 int id = port->txqs[queue]->id;
2858
2859 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
2860 }
2861 }
2862
2863 /* Set max sizes for Tx queues */
2864 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
2865 {
2866 u32 val, size, mtu;
2867 int txq, tx_port_num;
2868
2869 mtu = port->pkt_size * 8;
2870 if (mtu > MVPP2_TXP_MTU_MAX)
2871 mtu = MVPP2_TXP_MTU_MAX;
2872
2873 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
2874 mtu = 3 * mtu;
2875
2876 /* Indirect access to registers */
2877 tx_port_num = mvpp2_egress_port(port);
2878 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2879
2880 /* Set MTU */
2881 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
2882 val &= ~MVPP2_TXP_MTU_MAX;
2883 val |= mtu;
2884 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
2885
2886 /* TXP token size and all TXQs token size must be larger that MTU */
2887 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
2888 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
2889 if (size < mtu) {
2890 size = mtu;
2891 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
2892 val |= size;
2893 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2894 }
2895
2896 for (txq = 0; txq < txq_number; txq++) {
2897 val = mvpp2_read(port->priv,
2898 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
2899 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
2900
2901 if (size < mtu) {
2902 size = mtu;
2903 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
2904 val |= size;
2905 mvpp2_write(port->priv,
2906 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
2907 val);
2908 }
2909 }
2910 }
2911
2912 /* Free Tx queue skbuffs */
2913 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
2914 struct mvpp2_tx_queue *txq,
2915 struct mvpp2_txq_pcpu *txq_pcpu, int num)
2916 {
2917 int i;
2918
2919 for (i = 0; i < num; i++)
2920 mvpp2_txq_inc_get(txq_pcpu);
2921 }
2922
2923 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
2924 u32 cause)
2925 {
2926 int queue = fls(cause) - 1;
2927
2928 return port->rxqs[queue];
2929 }
2930
2931 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
2932 u32 cause)
2933 {
2934 int queue = fls(cause) - 1;
2935
2936 return port->txqs[queue];
2937 }
2938
2939 /* Rx/Tx queue initialization/cleanup methods */
2940
2941 /* Allocate and initialize descriptors for aggr TXQ */
2942 static int mvpp2_aggr_txq_init(struct udevice *dev,
2943 struct mvpp2_tx_queue *aggr_txq,
2944 int desc_num, int cpu,
2945 struct mvpp2 *priv)
2946 {
2947 /* Allocate memory for TX descriptors */
2948 aggr_txq->descs = buffer_loc.aggr_tx_descs;
2949 aggr_txq->descs_phys = (dma_addr_t)buffer_loc.aggr_tx_descs;
2950 if (!aggr_txq->descs)
2951 return -ENOMEM;
2952
2953 /* Make sure descriptor address is cache line size aligned */
2954 BUG_ON(aggr_txq->descs !=
2955 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2956
2957 aggr_txq->last_desc = aggr_txq->size - 1;
2958
2959 /* Aggr TXQ no reset WA */
2960 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
2961 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
2962
2963 /* Set Tx descriptors queue starting address */
2964 /* indirect access */
2965 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
2966 aggr_txq->descs_phys);
2967 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
2968
2969 return 0;
2970 }
2971
2972 /* Create a specified Rx queue */
2973 static int mvpp2_rxq_init(struct mvpp2_port *port,
2974 struct mvpp2_rx_queue *rxq)
2975
2976 {
2977 rxq->size = port->rx_ring_size;
2978
2979 /* Allocate memory for RX descriptors */
2980 rxq->descs = buffer_loc.rx_descs;
2981 rxq->descs_phys = (dma_addr_t)buffer_loc.rx_descs;
2982 if (!rxq->descs)
2983 return -ENOMEM;
2984
2985 BUG_ON(rxq->descs !=
2986 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2987
2988 rxq->last_desc = rxq->size - 1;
2989
2990 /* Zero occupied and non-occupied counters - direct access */
2991 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
2992
2993 /* Set Rx descriptors queue starting address - indirect access */
2994 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
2995 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
2996 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
2997 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
2998
2999 /* Set Offset */
3000 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
3001
3002 /* Add number of descriptors ready for receiving packets */
3003 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
3004
3005 return 0;
3006 }
3007
3008 /* Push packets received by the RXQ to BM pool */
3009 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
3010 struct mvpp2_rx_queue *rxq)
3011 {
3012 int rx_received, i;
3013
3014 rx_received = mvpp2_rxq_received(port, rxq->id);
3015 if (!rx_received)
3016 return;
3017
3018 for (i = 0; i < rx_received; i++) {
3019 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
3020 u32 bm = mvpp2_bm_cookie_build(rx_desc);
3021
3022 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3023 rx_desc->buf_cookie);
3024 }
3025 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
3026 }
3027
3028 /* Cleanup Rx queue */
3029 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
3030 struct mvpp2_rx_queue *rxq)
3031 {
3032 mvpp2_rxq_drop_pkts(port, rxq);
3033
3034 rxq->descs = NULL;
3035 rxq->last_desc = 0;
3036 rxq->next_desc_to_proc = 0;
3037 rxq->descs_phys = 0;
3038
3039 /* Clear Rx descriptors queue starting address and size;
3040 * free descriptor number
3041 */
3042 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3043 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3044 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
3045 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
3046 }
3047
3048 /* Create and initialize a Tx queue */
3049 static int mvpp2_txq_init(struct mvpp2_port *port,
3050 struct mvpp2_tx_queue *txq)
3051 {
3052 u32 val;
3053 int cpu, desc, desc_per_txq, tx_port_num;
3054 struct mvpp2_txq_pcpu *txq_pcpu;
3055
3056 txq->size = port->tx_ring_size;
3057
3058 /* Allocate memory for Tx descriptors */
3059 txq->descs = buffer_loc.tx_descs;
3060 txq->descs_phys = (dma_addr_t)buffer_loc.tx_descs;
3061 if (!txq->descs)
3062 return -ENOMEM;
3063
3064 /* Make sure descriptor address is cache line size aligned */
3065 BUG_ON(txq->descs !=
3066 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3067
3068 txq->last_desc = txq->size - 1;
3069
3070 /* Set Tx descriptors queue starting address - indirect access */
3071 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3072 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
3073 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
3074 MVPP2_TXQ_DESC_SIZE_MASK);
3075 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
3076 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
3077 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
3078 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3079 val &= ~MVPP2_TXQ_PENDING_MASK;
3080 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
3081
3082 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
3083 * for each existing TXQ.
3084 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
3085 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
3086 */
3087 desc_per_txq = 16;
3088 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
3089 (txq->log_id * desc_per_txq);
3090
3091 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
3092 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
3093 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
3094
3095 /* WRR / EJP configuration - indirect access */
3096 tx_port_num = mvpp2_egress_port(port);
3097 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3098
3099 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
3100 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
3101 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
3102 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
3103 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
3104
3105 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
3106 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
3107 val);
3108
3109 for_each_present_cpu(cpu) {
3110 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3111 txq_pcpu->size = txq->size;
3112 }
3113
3114 return 0;
3115 }
3116
3117 /* Free allocated TXQ resources */
3118 static void mvpp2_txq_deinit(struct mvpp2_port *port,
3119 struct mvpp2_tx_queue *txq)
3120 {
3121 txq->descs = NULL;
3122 txq->last_desc = 0;
3123 txq->next_desc_to_proc = 0;
3124 txq->descs_phys = 0;
3125
3126 /* Set minimum bandwidth for disabled TXQs */
3127 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
3128
3129 /* Set Tx descriptors queue starting address and size */
3130 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3131 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
3132 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
3133 }
3134
3135 /* Cleanup Tx ports */
3136 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
3137 {
3138 struct mvpp2_txq_pcpu *txq_pcpu;
3139 int delay, pending, cpu;
3140 u32 val;
3141
3142 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3143 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3144 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3145 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3146
3147 /* The napi queue has been stopped so wait for all packets
3148 * to be transmitted.
3149 */
3150 delay = 0;
3151 do {
3152 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
3153 netdev_warn(port->dev,
3154 "port %d: cleaning queue %d timed out\n",
3155 port->id, txq->log_id);
3156 break;
3157 }
3158 mdelay(1);
3159 delay++;
3160
3161 pending = mvpp2_txq_pend_desc_num_get(port, txq);
3162 } while (pending);
3163
3164 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3165 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3166
3167 for_each_present_cpu(cpu) {
3168 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3169
3170 /* Release all packets */
3171 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
3172
3173 /* Reset queue */
3174 txq_pcpu->count = 0;
3175 txq_pcpu->txq_put_index = 0;
3176 txq_pcpu->txq_get_index = 0;
3177 }
3178 }
3179
3180 /* Cleanup all Tx queues */
3181 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
3182 {
3183 struct mvpp2_tx_queue *txq;
3184 int queue;
3185 u32 val;
3186
3187 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
3188
3189 /* Reset Tx ports and delete Tx queues */
3190 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
3191 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3192
3193 for (queue = 0; queue < txq_number; queue++) {
3194 txq = port->txqs[queue];
3195 mvpp2_txq_clean(port, txq);
3196 mvpp2_txq_deinit(port, txq);
3197 }
3198
3199 mvpp2_txq_sent_counter_clear(port);
3200
3201 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
3202 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3203 }
3204
3205 /* Cleanup all Rx queues */
3206 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
3207 {
3208 int queue;
3209
3210 for (queue = 0; queue < rxq_number; queue++)
3211 mvpp2_rxq_deinit(port, port->rxqs[queue]);
3212 }
3213
3214 /* Init all Rx queues for port */
3215 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
3216 {
3217 int queue, err;
3218
3219 for (queue = 0; queue < rxq_number; queue++) {
3220 err = mvpp2_rxq_init(port, port->rxqs[queue]);
3221 if (err)
3222 goto err_cleanup;
3223 }
3224 return 0;
3225
3226 err_cleanup:
3227 mvpp2_cleanup_rxqs(port);
3228 return err;
3229 }
3230
3231 /* Init all tx queues for port */
3232 static int mvpp2_setup_txqs(struct mvpp2_port *port)
3233 {
3234 struct mvpp2_tx_queue *txq;
3235 int queue, err;
3236
3237 for (queue = 0; queue < txq_number; queue++) {
3238 txq = port->txqs[queue];
3239 err = mvpp2_txq_init(port, txq);
3240 if (err)
3241 goto err_cleanup;
3242 }
3243
3244 mvpp2_txq_sent_counter_clear(port);
3245 return 0;
3246
3247 err_cleanup:
3248 mvpp2_cleanup_txqs(port);
3249 return err;
3250 }
3251
3252 /* Adjust link */
3253 static void mvpp2_link_event(struct mvpp2_port *port)
3254 {
3255 struct phy_device *phydev = port->phy_dev;
3256 int status_change = 0;
3257 u32 val;
3258
3259 if (phydev->link) {
3260 if ((port->speed != phydev->speed) ||
3261 (port->duplex != phydev->duplex)) {
3262 u32 val;
3263
3264 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3265 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
3266 MVPP2_GMAC_CONFIG_GMII_SPEED |
3267 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3268 MVPP2_GMAC_AN_SPEED_EN |
3269 MVPP2_GMAC_AN_DUPLEX_EN);
3270
3271 if (phydev->duplex)
3272 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
3273
3274 if (phydev->speed == SPEED_1000)
3275 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
3276 else if (phydev->speed == SPEED_100)
3277 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
3278
3279 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3280
3281 port->duplex = phydev->duplex;
3282 port->speed = phydev->speed;
3283 }
3284 }
3285
3286 if (phydev->link != port->link) {
3287 if (!phydev->link) {
3288 port->duplex = -1;
3289 port->speed = 0;
3290 }
3291
3292 port->link = phydev->link;
3293 status_change = 1;
3294 }
3295
3296 if (status_change) {
3297 if (phydev->link) {
3298 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3299 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
3300 MVPP2_GMAC_FORCE_LINK_DOWN);
3301 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3302 mvpp2_egress_enable(port);
3303 mvpp2_ingress_enable(port);
3304 } else {
3305 mvpp2_ingress_disable(port);
3306 mvpp2_egress_disable(port);
3307 }
3308 }
3309 }
3310
3311 /* Main RX/TX processing routines */
3312
3313 /* Display more error info */
3314 static void mvpp2_rx_error(struct mvpp2_port *port,
3315 struct mvpp2_rx_desc *rx_desc)
3316 {
3317 u32 status = rx_desc->status;
3318
3319 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
3320 case MVPP2_RXD_ERR_CRC:
3321 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
3322 status, rx_desc->data_size);
3323 break;
3324 case MVPP2_RXD_ERR_OVERRUN:
3325 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
3326 status, rx_desc->data_size);
3327 break;
3328 case MVPP2_RXD_ERR_RESOURCE:
3329 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
3330 status, rx_desc->data_size);
3331 break;
3332 }
3333 }
3334
3335 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
3336 static int mvpp2_rx_refill(struct mvpp2_port *port,
3337 struct mvpp2_bm_pool *bm_pool,
3338 u32 bm, u32 phys_addr)
3339 {
3340 mvpp2_pool_refill(port, bm, phys_addr, phys_addr);
3341 return 0;
3342 }
3343
3344 /* Set hw internals when starting port */
3345 static void mvpp2_start_dev(struct mvpp2_port *port)
3346 {
3347 mvpp2_gmac_max_rx_size_set(port);
3348 mvpp2_txp_max_tx_size_set(port);
3349
3350 mvpp2_port_enable(port);
3351 }
3352
3353 /* Set hw internals when stopping port */
3354 static void mvpp2_stop_dev(struct mvpp2_port *port)
3355 {
3356 /* Stop new packets from arriving to RXQs */
3357 mvpp2_ingress_disable(port);
3358
3359 mvpp2_egress_disable(port);
3360 mvpp2_port_disable(port);
3361 }
3362
3363 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
3364 {
3365 struct phy_device *phy_dev;
3366
3367 if (!port->init || port->link == 0) {
3368 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
3369 port->phy_interface);
3370 port->phy_dev = phy_dev;
3371 if (!phy_dev) {
3372 netdev_err(port->dev, "cannot connect to phy\n");
3373 return -ENODEV;
3374 }
3375 phy_dev->supported &= PHY_GBIT_FEATURES;
3376 phy_dev->advertising = phy_dev->supported;
3377
3378 port->phy_dev = phy_dev;
3379 port->link = 0;
3380 port->duplex = 0;
3381 port->speed = 0;
3382
3383 phy_config(phy_dev);
3384 phy_startup(phy_dev);
3385 if (!phy_dev->link) {
3386 printf("%s: No link\n", phy_dev->dev->name);
3387 return -1;
3388 }
3389
3390 port->init = 1;
3391 } else {
3392 mvpp2_egress_enable(port);
3393 mvpp2_ingress_enable(port);
3394 }
3395
3396 return 0;
3397 }
3398
3399 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
3400 {
3401 unsigned char mac_bcast[ETH_ALEN] = {
3402 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3403 int err;
3404
3405 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
3406 if (err) {
3407 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
3408 return err;
3409 }
3410 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
3411 port->dev_addr, true);
3412 if (err) {
3413 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
3414 return err;
3415 }
3416 err = mvpp2_prs_def_flow(port);
3417 if (err) {
3418 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
3419 return err;
3420 }
3421
3422 /* Allocate the Rx/Tx queues */
3423 err = mvpp2_setup_rxqs(port);
3424 if (err) {
3425 netdev_err(port->dev, "cannot allocate Rx queues\n");
3426 return err;
3427 }
3428
3429 err = mvpp2_setup_txqs(port);
3430 if (err) {
3431 netdev_err(port->dev, "cannot allocate Tx queues\n");
3432 return err;
3433 }
3434
3435 err = mvpp2_phy_connect(dev, port);
3436 if (err < 0)
3437 return err;
3438
3439 mvpp2_link_event(port);
3440
3441 mvpp2_start_dev(port);
3442
3443 return 0;
3444 }
3445
3446 /* No Device ops here in U-Boot */
3447
3448 /* Driver initialization */
3449
3450 static void mvpp2_port_power_up(struct mvpp2_port *port)
3451 {
3452 mvpp2_port_mii_set(port);
3453 mvpp2_port_periodic_xon_disable(port);
3454 mvpp2_port_fc_adv_enable(port);
3455 mvpp2_port_reset(port);
3456 }
3457
3458 /* Initialize port HW */
3459 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
3460 {
3461 struct mvpp2 *priv = port->priv;
3462 struct mvpp2_txq_pcpu *txq_pcpu;
3463 int queue, cpu, err;
3464
3465 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
3466 return -EINVAL;
3467
3468 /* Disable port */
3469 mvpp2_egress_disable(port);
3470 mvpp2_port_disable(port);
3471
3472 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
3473 GFP_KERNEL);
3474 if (!port->txqs)
3475 return -ENOMEM;
3476
3477 /* Associate physical Tx queues to this port and initialize.
3478 * The mapping is predefined.
3479 */
3480 for (queue = 0; queue < txq_number; queue++) {
3481 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
3482 struct mvpp2_tx_queue *txq;
3483
3484 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
3485 if (!txq)
3486 return -ENOMEM;
3487
3488 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
3489 GFP_KERNEL);
3490 if (!txq->pcpu)
3491 return -ENOMEM;
3492
3493 txq->id = queue_phy_id;
3494 txq->log_id = queue;
3495 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
3496 for_each_present_cpu(cpu) {
3497 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3498 txq_pcpu->cpu = cpu;
3499 }
3500
3501 port->txqs[queue] = txq;
3502 }
3503
3504 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
3505 GFP_KERNEL);
3506 if (!port->rxqs)
3507 return -ENOMEM;
3508
3509 /* Allocate and initialize Rx queue for this port */
3510 for (queue = 0; queue < rxq_number; queue++) {
3511 struct mvpp2_rx_queue *rxq;
3512
3513 /* Map physical Rx queue to port's logical Rx queue */
3514 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
3515 if (!rxq)
3516 return -ENOMEM;
3517 /* Map this Rx queue to a physical queue */
3518 rxq->id = port->first_rxq + queue;
3519 rxq->port = port->id;
3520 rxq->logic_rxq = queue;
3521
3522 port->rxqs[queue] = rxq;
3523 }
3524
3525 /* Configure Rx queue group interrupt for this port */
3526 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), CONFIG_MV_ETH_RXQ);
3527
3528 /* Create Rx descriptor rings */
3529 for (queue = 0; queue < rxq_number; queue++) {
3530 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
3531
3532 rxq->size = port->rx_ring_size;
3533 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
3534 rxq->time_coal = MVPP2_RX_COAL_USEC;
3535 }
3536
3537 mvpp2_ingress_disable(port);
3538
3539 /* Port default configuration */
3540 mvpp2_defaults_set(port);
3541
3542 /* Port's classifier configuration */
3543 mvpp2_cls_oversize_rxq_set(port);
3544 mvpp2_cls_port_config(port);
3545
3546 /* Provide an initial Rx packet size */
3547 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
3548
3549 /* Initialize pools for swf */
3550 err = mvpp2_swf_bm_pool_init(port);
3551 if (err)
3552 return err;
3553
3554 return 0;
3555 }
3556
3557 /* Ports initialization */
3558 static int mvpp2_port_probe(struct udevice *dev,
3559 struct mvpp2_port *port,
3560 int port_node,
3561 struct mvpp2 *priv,
3562 int *next_first_rxq)
3563 {
3564 int phy_node;
3565 u32 id;
3566 u32 phyaddr;
3567 const char *phy_mode_str;
3568 int phy_mode = -1;
3569 int priv_common_regs_num = 2;
3570 int err;
3571
3572 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
3573 if (phy_node < 0) {
3574 dev_err(&pdev->dev, "missing phy\n");
3575 return -ENODEV;
3576 }
3577
3578 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
3579 if (phy_mode_str)
3580 phy_mode = phy_get_interface_by_name(phy_mode_str);
3581 if (phy_mode == -1) {
3582 dev_err(&pdev->dev, "incorrect phy mode\n");
3583 return -EINVAL;
3584 }
3585
3586 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
3587 if (id == -1) {
3588 dev_err(&pdev->dev, "missing port-id value\n");
3589 return -EINVAL;
3590 }
3591
3592 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
3593
3594 port->priv = priv;
3595 port->id = id;
3596 port->first_rxq = *next_first_rxq;
3597 port->phy_node = phy_node;
3598 port->phy_interface = phy_mode;
3599 port->phyaddr = phyaddr;
3600
3601 port->base = (void __iomem *)dev_get_addr_index(dev->parent,
3602 priv_common_regs_num
3603 + id);
3604 if (IS_ERR(port->base))
3605 return PTR_ERR(port->base);
3606
3607 port->tx_ring_size = MVPP2_MAX_TXD;
3608 port->rx_ring_size = MVPP2_MAX_RXD;
3609
3610 err = mvpp2_port_init(dev, port);
3611 if (err < 0) {
3612 dev_err(&pdev->dev, "failed to init port %d\n", id);
3613 return err;
3614 }
3615 mvpp2_port_power_up(port);
3616
3617 /* Increment the first Rx queue number to be used by the next port */
3618 *next_first_rxq += CONFIG_MV_ETH_RXQ;
3619 priv->port_list[id] = port;
3620 return 0;
3621 }
3622
3623 /* Initialize decoding windows */
3624 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
3625 struct mvpp2 *priv)
3626 {
3627 u32 win_enable;
3628 int i;
3629
3630 for (i = 0; i < 6; i++) {
3631 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
3632 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
3633
3634 if (i < 4)
3635 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
3636 }
3637
3638 win_enable = 0;
3639
3640 for (i = 0; i < dram->num_cs; i++) {
3641 const struct mbus_dram_window *cs = dram->cs + i;
3642
3643 mvpp2_write(priv, MVPP2_WIN_BASE(i),
3644 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
3645 dram->mbus_dram_target_id);
3646
3647 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
3648 (cs->size - 1) & 0xffff0000);
3649
3650 win_enable |= (1 << i);
3651 }
3652
3653 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
3654 }
3655
3656 /* Initialize Rx FIFO's */
3657 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
3658 {
3659 int port;
3660
3661 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3662 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3663 MVPP2_RX_FIFO_PORT_DATA_SIZE);
3664 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3665 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
3666 }
3667
3668 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
3669 MVPP2_RX_FIFO_PORT_MIN_PKT);
3670 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
3671 }
3672
3673 /* Initialize network controller common part HW */
3674 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
3675 {
3676 const struct mbus_dram_target_info *dram_target_info;
3677 int err, i;
3678 u32 val;
3679
3680 /* Checks for hardware constraints (U-Boot uses only one rxq) */
3681 if ((rxq_number > MVPP2_MAX_RXQ) || (txq_number > MVPP2_MAX_TXQ)) {
3682 dev_err(&pdev->dev, "invalid queue size parameter\n");
3683 return -EINVAL;
3684 }
3685
3686 /* MBUS windows configuration */
3687 dram_target_info = mvebu_mbus_dram_info();
3688 if (dram_target_info)
3689 mvpp2_conf_mbus_windows(dram_target_info, priv);
3690
3691 /* Disable HW PHY polling */
3692 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3693 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
3694 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3695
3696 /* Allocate and initialize aggregated TXQs */
3697 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
3698 sizeof(struct mvpp2_tx_queue),
3699 GFP_KERNEL);
3700 if (!priv->aggr_txqs)
3701 return -ENOMEM;
3702
3703 for_each_present_cpu(i) {
3704 priv->aggr_txqs[i].id = i;
3705 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
3706 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
3707 MVPP2_AGGR_TXQ_SIZE, i, priv);
3708 if (err < 0)
3709 return err;
3710 }
3711
3712 /* Rx Fifo Init */
3713 mvpp2_rx_fifo_init(priv);
3714
3715 /* Reset Rx queue group interrupt configuration */
3716 for (i = 0; i < MVPP2_MAX_PORTS; i++)
3717 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i),
3718 CONFIG_MV_ETH_RXQ);
3719
3720 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
3721 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
3722
3723 /* Allow cache snoop when transmiting packets */
3724 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
3725
3726 /* Buffer Manager initialization */
3727 err = mvpp2_bm_init(dev, priv);
3728 if (err < 0)
3729 return err;
3730
3731 /* Parser default initialization */
3732 err = mvpp2_prs_default_init(dev, priv);
3733 if (err < 0)
3734 return err;
3735
3736 /* Classifier default initialization */
3737 mvpp2_cls_init(priv);
3738
3739 return 0;
3740 }
3741
3742 /* SMI / MDIO functions */
3743
3744 static int smi_wait_ready(struct mvpp2 *priv)
3745 {
3746 u32 timeout = MVPP2_SMI_TIMEOUT;
3747 u32 smi_reg;
3748
3749 /* wait till the SMI is not busy */
3750 do {
3751 /* read smi register */
3752 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3753 if (timeout-- == 0) {
3754 printf("Error: SMI busy timeout\n");
3755 return -EFAULT;
3756 }
3757 } while (smi_reg & MVPP2_SMI_BUSY);
3758
3759 return 0;
3760 }
3761
3762 /*
3763 * mpp2_mdio_read - miiphy_read callback function.
3764 *
3765 * Returns 16bit phy register value, or 0xffff on error
3766 */
3767 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
3768 {
3769 struct mvpp2 *priv = bus->priv;
3770 u32 smi_reg;
3771 u32 timeout;
3772
3773 /* check parameters */
3774 if (addr > MVPP2_PHY_ADDR_MASK) {
3775 printf("Error: Invalid PHY address %d\n", addr);
3776 return -EFAULT;
3777 }
3778
3779 if (reg > MVPP2_PHY_REG_MASK) {
3780 printf("Err: Invalid register offset %d\n", reg);
3781 return -EFAULT;
3782 }
3783
3784 /* wait till the SMI is not busy */
3785 if (smi_wait_ready(priv) < 0)
3786 return -EFAULT;
3787
3788 /* fill the phy address and regiser offset and read opcode */
3789 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3790 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
3791 | MVPP2_SMI_OPCODE_READ;
3792
3793 /* write the smi register */
3794 writel(smi_reg, priv->lms_base + MVPP2_SMI);
3795
3796 /* wait till read value is ready */
3797 timeout = MVPP2_SMI_TIMEOUT;
3798
3799 do {
3800 /* read smi register */
3801 smi_reg = readl(priv->lms_base + MVPP2_SMI);
3802 if (timeout-- == 0) {
3803 printf("Err: SMI read ready timeout\n");
3804 return -EFAULT;
3805 }
3806 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
3807
3808 /* Wait for the data to update in the SMI register */
3809 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
3810 ;
3811
3812 return readl(priv->lms_base + MVPP2_SMI) & MVPP2_SMI_DATA_MASK;
3813 }
3814
3815 /*
3816 * mpp2_mdio_write - miiphy_write callback function.
3817 *
3818 * Returns 0 if write succeed, -EINVAL on bad parameters
3819 * -ETIME on timeout
3820 */
3821 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
3822 u16 value)
3823 {
3824 struct mvpp2 *priv = bus->priv;
3825 u32 smi_reg;
3826
3827 /* check parameters */
3828 if (addr > MVPP2_PHY_ADDR_MASK) {
3829 printf("Error: Invalid PHY address %d\n", addr);
3830 return -EFAULT;
3831 }
3832
3833 if (reg > MVPP2_PHY_REG_MASK) {
3834 printf("Err: Invalid register offset %d\n", reg);
3835 return -EFAULT;
3836 }
3837
3838 /* wait till the SMI is not busy */
3839 if (smi_wait_ready(priv) < 0)
3840 return -EFAULT;
3841
3842 /* fill the phy addr and reg offset and write opcode and data */
3843 smi_reg = value << MVPP2_SMI_DATA_OFFS;
3844 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3845 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
3846 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
3847
3848 /* write the smi register */
3849 writel(smi_reg, priv->lms_base + MVPP2_SMI);
3850
3851 return 0;
3852 }
3853
3854 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
3855 {
3856 struct mvpp2_port *port = dev_get_priv(dev);
3857 struct mvpp2_rx_desc *rx_desc;
3858 struct mvpp2_bm_pool *bm_pool;
3859 dma_addr_t phys_addr;
3860 u32 bm, rx_status;
3861 int pool, rx_bytes, err;
3862 int rx_received;
3863 struct mvpp2_rx_queue *rxq;
3864 u32 cause_rx_tx, cause_rx, cause_misc;
3865 u8 *data;
3866
3867 cause_rx_tx = mvpp2_read(port->priv,
3868 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
3869 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
3870 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
3871 if (!cause_rx_tx && !cause_misc)
3872 return 0;
3873
3874 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
3875
3876 /* Process RX packets */
3877 cause_rx |= port->pending_cause_rx;
3878 rxq = mvpp2_get_rx_queue(port, cause_rx);
3879
3880 /* Get number of received packets and clamp the to-do */
3881 rx_received = mvpp2_rxq_received(port, rxq->id);
3882
3883 /* Return if no packets are received */
3884 if (!rx_received)
3885 return 0;
3886
3887 rx_desc = mvpp2_rxq_next_desc_get(rxq);
3888 rx_status = rx_desc->status;
3889 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
3890 phys_addr = rx_desc->buf_phys_addr;
3891
3892 bm = mvpp2_bm_cookie_build(rx_desc);
3893 pool = mvpp2_bm_cookie_pool_get(bm);
3894 bm_pool = &port->priv->bm_pools[pool];
3895
3896 /* Check if buffer header is used */
3897 if (rx_status & MVPP2_RXD_BUF_HDR)
3898 return 0;
3899
3900 /* In case of an error, release the requested buffer pointer
3901 * to the Buffer Manager. This request process is controlled
3902 * by the hardware, and the information about the buffer is
3903 * comprised by the RX descriptor.
3904 */
3905 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
3906 mvpp2_rx_error(port, rx_desc);
3907 /* Return the buffer to the pool */
3908 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3909 rx_desc->buf_cookie);
3910 return 0;
3911 }
3912
3913 err = mvpp2_rx_refill(port, bm_pool, bm, phys_addr);
3914 if (err) {
3915 netdev_err(port->dev, "failed to refill BM pools\n");
3916 return 0;
3917 }
3918
3919 /* Update Rx queue management counters */
3920 mb();
3921 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
3922
3923 /* give packet to stack - skip on first n bytes */
3924 data = (u8 *)phys_addr + 2 + 32;
3925
3926 if (rx_bytes <= 0)
3927 return 0;
3928
3929 /*
3930 * No cache invalidation needed here, since the rx_buffer's are
3931 * located in a uncached memory region
3932 */
3933 *packetp = data;
3934
3935 return rx_bytes;
3936 }
3937
3938 /* Drain Txq */
3939 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
3940 int enable)
3941 {
3942 u32 val;
3943
3944 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3945 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3946 if (enable)
3947 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3948 else
3949 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3950 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3951 }
3952
3953 static int mvpp2_send(struct udevice *dev, void *packet, int length)
3954 {
3955 struct mvpp2_port *port = dev_get_priv(dev);
3956 struct mvpp2_tx_queue *txq, *aggr_txq;
3957 struct mvpp2_tx_desc *tx_desc;
3958 int tx_done;
3959 int timeout;
3960
3961 txq = port->txqs[0];
3962 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
3963
3964 /* Get a descriptor for the first part of the packet */
3965 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
3966 tx_desc->phys_txq = txq->id;
3967 tx_desc->data_size = length;
3968 tx_desc->packet_offset = (u32)packet & MVPP2_TX_DESC_ALIGN;
3969 tx_desc->buf_phys_addr = (u32)packet & ~MVPP2_TX_DESC_ALIGN;
3970 /* First and Last descriptor */
3971 tx_desc->command = MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
3972 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
3973
3974 /* Flush tx data */
3975 flush_dcache_range((u32)packet, (u32)packet + length);
3976
3977 /* Enable transmit */
3978 mb();
3979 mvpp2_aggr_txq_pend_desc_add(port, 1);
3980
3981 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3982
3983 timeout = 0;
3984 do {
3985 if (timeout++ > 10000) {
3986 printf("timeout: packet not sent from aggregated to phys TXQ\n");
3987 return 0;
3988 }
3989 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
3990 } while (tx_done);
3991
3992 /* Enable TXQ drain */
3993 mvpp2_txq_drain(port, txq, 1);
3994
3995 timeout = 0;
3996 do {
3997 if (timeout++ > 10000) {
3998 printf("timeout: packet not sent\n");
3999 return 0;
4000 }
4001 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4002 } while (!tx_done);
4003
4004 /* Disable TXQ drain */
4005 mvpp2_txq_drain(port, txq, 0);
4006
4007 return 0;
4008 }
4009
4010 static int mvpp2_start(struct udevice *dev)
4011 {
4012 struct eth_pdata *pdata = dev_get_platdata(dev);
4013 struct mvpp2_port *port = dev_get_priv(dev);
4014
4015 /* Load current MAC address */
4016 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
4017
4018 /* Reconfigure parser accept the original MAC address */
4019 mvpp2_prs_update_mac_da(port, port->dev_addr);
4020
4021 mvpp2_port_power_up(port);
4022
4023 mvpp2_open(dev, port);
4024
4025 return 0;
4026 }
4027
4028 static void mvpp2_stop(struct udevice *dev)
4029 {
4030 struct mvpp2_port *port = dev_get_priv(dev);
4031
4032 mvpp2_stop_dev(port);
4033 mvpp2_cleanup_rxqs(port);
4034 mvpp2_cleanup_txqs(port);
4035 }
4036
4037 static int mvpp2_probe(struct udevice *dev)
4038 {
4039 struct mvpp2_port *port = dev_get_priv(dev);
4040 struct mvpp2 *priv = dev_get_priv(dev->parent);
4041 int err;
4042
4043 /* Initialize network controller */
4044 err = mvpp2_init(dev, priv);
4045 if (err < 0) {
4046 dev_err(&pdev->dev, "failed to initialize controller\n");
4047 return err;
4048 }
4049
4050 return mvpp2_port_probe(dev, port, dev->of_offset, priv,
4051 &buffer_loc.first_rxq);
4052 }
4053
4054 static const struct eth_ops mvpp2_ops = {
4055 .start = mvpp2_start,
4056 .send = mvpp2_send,
4057 .recv = mvpp2_recv,
4058 .stop = mvpp2_stop,
4059 };
4060
4061 static struct driver mvpp2_driver = {
4062 .name = "mvpp2",
4063 .id = UCLASS_ETH,
4064 .probe = mvpp2_probe,
4065 .ops = &mvpp2_ops,
4066 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
4067 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
4068 };
4069
4070 /*
4071 * Use a MISC device to bind the n instances (child nodes) of the
4072 * network base controller in UCLASS_ETH.
4073 */
4074 static int mvpp2_base_probe(struct udevice *dev)
4075 {
4076 struct mvpp2 *priv = dev_get_priv(dev);
4077 struct mii_dev *bus;
4078 void *bd_space;
4079 u32 size = 0;
4080 int i;
4081
4082 /*
4083 * U-Boot special buffer handling:
4084 *
4085 * Allocate buffer area for descs and rx_buffers. This is only
4086 * done once for all interfaces. As only one interface can
4087 * be active. Make this area DMA-safe by disabling the D-cache
4088 */
4089
4090 /* Align buffer area for descs and rx_buffers to 1MiB */
4091 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
4092 mmu_set_region_dcache_behaviour((u32)bd_space, BD_SPACE, DCACHE_OFF);
4093
4094 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
4095 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
4096
4097 buffer_loc.tx_descs = (struct mvpp2_tx_desc *)((u32)bd_space + size);
4098 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
4099
4100 buffer_loc.rx_descs = (struct mvpp2_rx_desc *)((u32)bd_space + size);
4101 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
4102
4103 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4104 buffer_loc.bm_pool[i] = (u32 *)((u32)bd_space + size);
4105 size += MVPP2_BM_POOL_SIZE_MAX * sizeof(u32);
4106 }
4107
4108 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
4109 buffer_loc.rx_buffer[i] = (u32 *)((u32)bd_space + size);
4110 size += RX_BUFFER_SIZE;
4111 }
4112
4113 /* Save base addresses for later use */
4114 priv->base = (void *)dev_get_addr_index(dev, 0);
4115 if (IS_ERR(priv->base))
4116 return PTR_ERR(priv->base);
4117
4118 priv->lms_base = (void *)dev_get_addr_index(dev, 1);
4119 if (IS_ERR(priv->lms_base))
4120 return PTR_ERR(priv->lms_base);
4121
4122 /* Finally create and register the MDIO bus driver */
4123 bus = mdio_alloc();
4124 if (!bus) {
4125 printf("Failed to allocate MDIO bus\n");
4126 return -ENOMEM;
4127 }
4128
4129 bus->read = mpp2_mdio_read;
4130 bus->write = mpp2_mdio_write;
4131 snprintf(bus->name, sizeof(bus->name), dev->name);
4132 bus->priv = (void *)priv;
4133 priv->bus = bus;
4134
4135 return mdio_register(bus);
4136 }
4137
4138 static int mvpp2_base_bind(struct udevice *parent)
4139 {
4140 const void *blob = gd->fdt_blob;
4141 int node = parent->of_offset;
4142 struct uclass_driver *drv;
4143 struct udevice *dev;
4144 struct eth_pdata *plat;
4145 char *name;
4146 int subnode;
4147 u32 id;
4148
4149 /* Lookup eth driver */
4150 drv = lists_uclass_lookup(UCLASS_ETH);
4151 if (!drv) {
4152 puts("Cannot find eth driver\n");
4153 return -ENOENT;
4154 }
4155
4156 fdt_for_each_subnode(blob, subnode, node) {
4157 /* Skip disabled ports */
4158 if (!fdtdec_get_is_enabled(blob, subnode))
4159 continue;
4160
4161 plat = calloc(1, sizeof(*plat));
4162 if (!plat)
4163 return -ENOMEM;
4164
4165 id = fdtdec_get_int(blob, subnode, "port-id", -1);
4166
4167 name = calloc(1, 16);
4168 sprintf(name, "mvpp2-%d", id);
4169
4170 /* Create child device UCLASS_ETH and bind it */
4171 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
4172 dev->of_offset = subnode;
4173 }
4174
4175 return 0;
4176 }
4177
4178 static const struct udevice_id mvpp2_ids[] = {
4179 { .compatible = "marvell,armada-375-pp2" },
4180 { }
4181 };
4182
4183 U_BOOT_DRIVER(mvpp2_base) = {
4184 .name = "mvpp2_base",
4185 .id = UCLASS_MISC,
4186 .of_match = mvpp2_ids,
4187 .bind = mvpp2_base_bind,
4188 .probe = mvpp2_base_probe,
4189 .priv_auto_alloc_size = sizeof(struct mvpp2),
4190 };