]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tigon3.c
33cb447b1ec1f9e1b72f11d8a3d7928d9ad370f4
[people/ms/u-boot.git] / drivers / net / tigon3.c
1 /******************************************************************************/
2 /* */
3 /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */
4 /* Corporation. */
5 /* All rights reserved. */
6 /* */
7 /* This program is free software; you can redistribute it and/or modify */
8 /* it under the terms of the GNU General Public License as published by */
9 /* the Free Software Foundation, located in the file LICENSE. */
10 /* */
11 /* History: */
12 /******************************************************************************/
13 #include <common.h>
14 #include <asm/types.h>
15
16 #ifdef CONFIG_BMW
17 #include <mpc824x.h>
18 #endif
19 #include <malloc.h>
20 #include <linux/byteorder/big_endian.h>
21 #include "bcm570x_mm.h"
22
23 #define EMBEDDED 1
24 /******************************************************************************/
25 /* Local functions. */
26 /******************************************************************************/
27
28 LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice);
29 LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice);
30
31 static LM_STATUS LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE
32 RequestedMediaType,
33 PLM_MEDIA_TYPE pMediaType,
34 PLM_LINE_SPEED pLineSpeed,
35 PLM_DUPLEX_MODE pDuplexMode);
36
37 static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice);
38
39 __inline static LM_VOID LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice);
40 __inline static LM_VOID LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice);
41
42 static LM_STATUS LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
43 LM_REQUESTED_MEDIA_TYPE
44 RequestedMediaType);
45 static LM_STATUS LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
46 LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
47 static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice);
48 STATIC LM_STATUS LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
49 LM_UINT32 LocalPhyAd,
50 LM_UINT32 RemotePhyAd);
51 #if INCLUDE_TBI_SUPPORT
52 STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice);
53 STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice);
54 #endif
55 STATIC LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice);
56 STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid,
57 LM_UINT16 Ssid);
58 STATIC LM_STATUS LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
59 LM_PHYSICAL_ADDRESS BufferPhy,
60 LM_UINT32 BufferSize);
61 STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number);
62 STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice);
63 STATIC LM_STATUS LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice,
64 PLM_PACKET pPacket, PT3_SND_BD pSendBd);
65
66 /******************************************************************************/
67 /* External functions. */
68 /******************************************************************************/
69
70 LM_STATUS LM_LoadRlsFirmware (PLM_DEVICE_BLOCK pDevice);
71
72 /******************************************************************************/
73 /* Description: */
74 /* */
75 /* Return: */
76 /******************************************************************************/
77 LM_UINT32 LM_RegRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
78 {
79 LM_UINT32 Value32;
80
81 #if PCIX_TARGET_WORKAROUND
82 MM_ACQUIRE_UNDI_LOCK (pDevice);
83 #endif
84 MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
85 MM_ReadConfig32 (pDevice, T3_PCI_REG_DATA_REG, &Value32);
86 #if PCIX_TARGET_WORKAROUND
87 MM_RELEASE_UNDI_LOCK (pDevice);
88 #endif
89
90 return Value32;
91 } /* LM_RegRdInd */
92
93 /******************************************************************************/
94 /* Description: */
95 /* */
96 /* Return: */
97 /******************************************************************************/
98 LM_VOID
99 LM_RegWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32)
100 {
101
102 #if PCIX_TARGET_WORKAROUND
103 MM_ACQUIRE_UNDI_LOCK (pDevice);
104 #endif
105 MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
106 MM_WriteConfig32 (pDevice, T3_PCI_REG_DATA_REG, Value32);
107 #if PCIX_TARGET_WORKAROUND
108 MM_RELEASE_UNDI_LOCK (pDevice);
109 #endif
110 } /* LM_RegWrInd */
111
112 /******************************************************************************/
113 /* Description: */
114 /* */
115 /* Return: */
116 /******************************************************************************/
117 LM_UINT32 LM_MemRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr)
118 {
119 LM_UINT32 Value32;
120
121 MM_ACQUIRE_UNDI_LOCK (pDevice);
122 #ifdef BIG_ENDIAN_HOST
123 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
124 Value32 = REG_RD (pDevice, PciCfg.MemWindowData);
125 /* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */
126 #else
127 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
128 MM_ReadConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
129 #endif
130 MM_RELEASE_UNDI_LOCK (pDevice);
131
132 return Value32;
133 } /* LM_MemRdInd */
134
135 /******************************************************************************/
136 /* Description: */
137 /* */
138 /* Return: */
139 /******************************************************************************/
140 LM_VOID
141 LM_MemWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr, LM_UINT32 Value32)
142 {
143 MM_ACQUIRE_UNDI_LOCK (pDevice);
144 #ifdef BIG_ENDIAN_HOST
145 REG_WR (pDevice, PciCfg.MemWindowBaseAddr, MemAddr);
146 REG_WR (pDevice, uIntMem.Mbuf[(MemAddr & 0x7fff) / 4], Value32);
147 #else
148 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
149 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32);
150 #endif
151 MM_RELEASE_UNDI_LOCK (pDevice);
152 } /* LM_MemWrInd */
153
154 /******************************************************************************/
155 /* Description: */
156 /* */
157 /* Return: */
158 /******************************************************************************/
159 LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice)
160 {
161 LM_STATUS Lmstatus;
162 PLM_PACKET pPacket;
163 PT3_RCV_BD pRcvBd;
164 LM_UINT32 StdBdAdded = 0;
165 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
166 LM_UINT32 JumboBdAdded = 0;
167 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
168
169 Lmstatus = LM_STATUS_SUCCESS;
170
171 pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
172 while (pPacket) {
173 switch (pPacket->u.Rx.RcvProdRing) {
174 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
175 case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
176 /* Initialize the buffer descriptor. */
177 pRcvBd =
178 &pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx];
179 pRcvBd->Flags =
180 RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING;
181 pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize;
182
183 /* Initialize the receive buffer pointer */
184 #if 0 /* Jimmy, deleted in new */
185 pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
186 pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
187 #endif
188 MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
189
190 /* The opaque field may point to an offset from a fix addr. */
191 pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
192 MM_UINT_PTR (pDevice->
193 pPacketDescBase));
194
195 /* Update the producer index. */
196 pDevice->RxJumboProdIdx =
197 (pDevice->RxJumboProdIdx +
198 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
199
200 JumboBdAdded++;
201 break;
202 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
203
204 case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
205 /* Initialize the buffer descriptor. */
206 pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx];
207 pRcvBd->Flags = RCV_BD_FLAG_END;
208 pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE;
209
210 /* Initialize the receive buffer pointer */
211 #if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */
212 pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
213 pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
214 #endif
215 MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
216
217 /* The opaque field may point to an offset from a fix addr. */
218 pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
219 MM_UINT_PTR (pDevice->
220 pPacketDescBase));
221
222 /* Update the producer index. */
223 pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) &
224 T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
225
226 StdBdAdded++;
227 break;
228
229 case T3_UNKNOWN_RCV_PROD_RING:
230 default:
231 Lmstatus = LM_STATUS_FAILURE;
232 break;
233 } /* switch */
234
235 /* Bail out if there is any error. */
236 if (Lmstatus != LM_STATUS_SUCCESS) {
237 break;
238 }
239
240 pPacket =
241 (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
242 } /* while */
243
244 wmb ();
245 /* Update the procedure index. */
246 if (StdBdAdded) {
247 MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low,
248 pDevice->RxStdProdIdx);
249 }
250 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
251 if (JumboBdAdded) {
252 MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low,
253 pDevice->RxJumboProdIdx);
254 }
255 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
256
257 return Lmstatus;
258 } /* LM_QueueRxPackets */
259
260 /******************************************************************************/
261 /* Description: */
262 /* */
263 /* Return: */
264 /******************************************************************************/
265 STATIC LM_VOID LM_NvramInit (PLM_DEVICE_BLOCK pDevice)
266 {
267 LM_UINT32 Value32;
268 LM_UINT32 j;
269
270 /* Intialize clock period and state machine. */
271 Value32 = SEEPROM_ADDR_CLK_PERD (SEEPROM_CLOCK_PERIOD) |
272 SEEPROM_ADDR_FSM_RESET;
273 REG_WR (pDevice, Grc.EepromAddr, Value32);
274
275 for (j = 0; j < 100; j++) {
276 MM_Wait (10);
277 }
278
279 /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
280 Value32 = REG_RD (pDevice, Grc.LocalCtrl);
281 REG_WR (pDevice, Grc.LocalCtrl,
282 Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
283
284 /* Set the 5701 compatibility mode if we are using EEPROM. */
285 if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
286 T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
287 Value32 = REG_RD (pDevice, Nvram.Config1);
288 if ((Value32 & FLASH_INTERFACE_ENABLE) == 0) {
289 /* Use the new interface to read EEPROM. */
290 Value32 &= ~FLASH_COMPAT_BYPASS;
291
292 REG_WR (pDevice, Nvram.Config1, Value32);
293 }
294 }
295 } /* LM_NvRamInit */
296
297 /******************************************************************************/
298 /* Description: */
299 /* */
300 /* Return: */
301 /******************************************************************************/
302 STATIC LM_STATUS
303 LM_EepromRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
304 {
305 LM_UINT32 Value32;
306 LM_UINT32 Addr;
307 LM_UINT32 Dev;
308 LM_UINT32 j;
309
310 if (Offset > SEEPROM_CHIP_SIZE) {
311 return LM_STATUS_FAILURE;
312 }
313
314 Dev = Offset / SEEPROM_CHIP_SIZE;
315 Addr = Offset % SEEPROM_CHIP_SIZE;
316
317 Value32 = REG_RD (pDevice, Grc.EepromAddr);
318 Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK |
319 SEEPROM_ADDR_RW_MASK);
320 REG_WR (pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID (Dev) |
321 SEEPROM_ADDR_ADDRESS (Addr) | SEEPROM_ADDR_START |
322 SEEPROM_ADDR_READ);
323
324 for (j = 0; j < 1000; j++) {
325 Value32 = REG_RD (pDevice, Grc.EepromAddr);
326 if (Value32 & SEEPROM_ADDR_COMPLETE) {
327 break;
328 }
329 MM_Wait (10);
330 }
331
332 if (Value32 & SEEPROM_ADDR_COMPLETE) {
333 Value32 = REG_RD (pDevice, Grc.EepromData);
334 *pData = Value32;
335
336 return LM_STATUS_SUCCESS;
337 }
338
339 return LM_STATUS_FAILURE;
340 } /* LM_EepromRead */
341
342 /******************************************************************************/
343 /* Description: */
344 /* */
345 /* Return: */
346 /******************************************************************************/
347 STATIC LM_STATUS
348 LM_NvramRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
349 {
350 LM_UINT32 Value32;
351 LM_STATUS Status;
352 LM_UINT32 j;
353
354 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
355 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
356 Status = LM_EepromRead (pDevice, Offset, pData);
357 } else {
358 /* Determine if we have flash or EEPROM. */
359 Value32 = REG_RD (pDevice, Nvram.Config1);
360 if (Value32 & FLASH_INTERFACE_ENABLE) {
361 if (Value32 & FLASH_SSRAM_BUFFERRED_MODE) {
362 Offset = ((Offset / BUFFERED_FLASH_PAGE_SIZE) <<
363 BUFFERED_FLASH_PAGE_POS) +
364 (Offset % BUFFERED_FLASH_PAGE_SIZE);
365 }
366 }
367
368 REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
369 for (j = 0; j < 1000; j++) {
370 if (REG_RD (pDevice, Nvram.SwArb) & SW_ARB_GNT1) {
371 break;
372 }
373 MM_Wait (20);
374 }
375 if (j == 1000) {
376 return LM_STATUS_FAILURE;
377 }
378
379 /* Read from flash or EEPROM with the new 5703/02 interface. */
380 REG_WR (pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK);
381
382 REG_WR (pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT |
383 NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
384
385 /* Wait for the done bit to clear. */
386 for (j = 0; j < 500; j++) {
387 MM_Wait (10);
388
389 Value32 = REG_RD (pDevice, Nvram.Cmd);
390 if (!(Value32 & NVRAM_CMD_DONE)) {
391 break;
392 }
393 }
394
395 /* Wait for the done bit. */
396 if (!(Value32 & NVRAM_CMD_DONE)) {
397 for (j = 0; j < 500; j++) {
398 MM_Wait (10);
399
400 Value32 = REG_RD (pDevice, Nvram.Cmd);
401 if (Value32 & NVRAM_CMD_DONE) {
402 MM_Wait (10);
403
404 *pData =
405 REG_RD (pDevice, Nvram.ReadData);
406
407 /* Change the endianess. */
408 *pData =
409 ((*pData & 0xff) << 24) |
410 ((*pData & 0xff00) << 8) |
411 ((*pData & 0xff0000) >> 8) |
412 ((*pData >> 24) & 0xff);
413
414 break;
415 }
416 }
417 }
418
419 REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1);
420 if (Value32 & NVRAM_CMD_DONE) {
421 Status = LM_STATUS_SUCCESS;
422 } else {
423 Status = LM_STATUS_FAILURE;
424 }
425 }
426
427 return Status;
428 } /* LM_NvramRead */
429
430 STATIC void LM_ReadVPD (PLM_DEVICE_BLOCK pDevice)
431 {
432 LM_UINT32 Vpd_arr[256 / 4];
433 LM_UINT8 *Vpd = (LM_UINT8 *) & Vpd_arr[0];
434 LM_UINT32 *Vpd_dptr = &Vpd_arr[0];
435 LM_UINT32 Value32;
436 unsigned int j;
437
438 /* Read PN from VPD */
439 for (j = 0; j < 256; j += 4, Vpd_dptr++) {
440 if (LM_NvramRead (pDevice, 0x100 + j, &Value32) !=
441 LM_STATUS_SUCCESS) {
442 printf ("BCM570x: LM_ReadVPD: VPD read failed"
443 " (no EEPROM onboard)\n");
444 return;
445 }
446 *Vpd_dptr = cpu_to_le32 (Value32);
447 }
448 for (j = 0; j < 256;) {
449 unsigned int Vpd_r_len;
450 unsigned int Vpd_r_end;
451
452 if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91)) {
453 j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8);
454 } else if (Vpd[j] == 0x90) {
455 Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8);
456 j += 3;
457 Vpd_r_end = Vpd_r_len + j;
458 while (j < Vpd_r_end) {
459 if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N')) {
460 unsigned int len = Vpd[j + 2];
461
462 if (len <= 24) {
463 memcpy (pDevice->PartNo,
464 &Vpd[j + 3], len);
465 }
466 break;
467 } else {
468 if (Vpd[j + 2] == 0) {
469 break;
470 }
471 j = j + Vpd[j + 2];
472 }
473 }
474 break;
475 } else {
476 break;
477 }
478 }
479 }
480
481 STATIC void LM_ReadBootCodeVersion (PLM_DEVICE_BLOCK pDevice)
482 {
483 LM_UINT32 Value32, offset, ver_offset;
484 int i;
485
486 if (LM_NvramRead (pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS)
487 return;
488 if (Value32 != 0xaa559966)
489 return;
490 if (LM_NvramRead (pDevice, 0xc, &offset) != LM_STATUS_SUCCESS)
491 return;
492
493 offset = ((offset & 0xff) << 24) | ((offset & 0xff00) << 8) |
494 ((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff);
495 if (LM_NvramRead (pDevice, offset, &Value32) != LM_STATUS_SUCCESS)
496 return;
497 if ((Value32 == 0x0300000e) &&
498 (LM_NvramRead (pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS)
499 && (Value32 == 0)) {
500
501 if (LM_NvramRead (pDevice, offset + 8, &ver_offset) !=
502 LM_STATUS_SUCCESS)
503 return;
504 ver_offset = ((ver_offset & 0xff0000) >> 8) |
505 ((ver_offset >> 24) & 0xff);
506 for (i = 0; i < 16; i += 4) {
507 if (LM_NvramRead
508 (pDevice, offset + ver_offset + i,
509 &Value32) != LM_STATUS_SUCCESS) {
510 return;
511 }
512 *((LM_UINT32 *) & pDevice->BootCodeVer[i]) =
513 cpu_to_le32 (Value32);
514 }
515 } else {
516 char c;
517
518 if (LM_NvramRead (pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS)
519 return;
520
521 i = 0;
522 c = ((Value32 & 0xff0000) >> 16);
523
524 if (c < 10) {
525 pDevice->BootCodeVer[i++] = c + '0';
526 } else {
527 pDevice->BootCodeVer[i++] = (c / 10) + '0';
528 pDevice->BootCodeVer[i++] = (c % 10) + '0';
529 }
530 pDevice->BootCodeVer[i++] = '.';
531 c = (Value32 & 0xff000000) >> 24;
532 if (c < 10) {
533 pDevice->BootCodeVer[i++] = c + '0';
534 } else {
535 pDevice->BootCodeVer[i++] = (c / 10) + '0';
536 pDevice->BootCodeVer[i++] = (c % 10) + '0';
537 }
538 pDevice->BootCodeVer[i] = 0;
539 }
540 }
541
542 STATIC void LM_GetBusSpeed (PLM_DEVICE_BLOCK pDevice)
543 {
544 LM_UINT32 PciState = pDevice->PciState;
545 LM_UINT32 ClockCtrl;
546 char *SpeedStr = "";
547
548 if (PciState & T3_PCI_STATE_32BIT_PCI_BUS) {
549 strcpy (pDevice->BusSpeedStr, "32-bit ");
550 } else {
551 strcpy (pDevice->BusSpeedStr, "64-bit ");
552 }
553 if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) {
554 strcat (pDevice->BusSpeedStr, "PCI ");
555 if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED) {
556 SpeedStr = "66MHz";
557 } else {
558 SpeedStr = "33MHz";
559 }
560 } else {
561 strcat (pDevice->BusSpeedStr, "PCIX ");
562 if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE) {
563 SpeedStr = "133MHz";
564 } else {
565 ClockCtrl = REG_RD (pDevice, PciCfg.ClockCtrl) & 0x1f;
566 switch (ClockCtrl) {
567 case 0:
568 SpeedStr = "33MHz";
569 break;
570
571 case 2:
572 SpeedStr = "50MHz";
573 break;
574
575 case 4:
576 SpeedStr = "66MHz";
577 break;
578
579 case 6:
580 SpeedStr = "100MHz";
581 break;
582
583 case 7:
584 SpeedStr = "133MHz";
585 break;
586 }
587 }
588 }
589 strcat (pDevice->BusSpeedStr, SpeedStr);
590 }
591
592 /******************************************************************************/
593 /* Description: */
594 /* This routine initializes default parameters and reads the PCI */
595 /* configurations. */
596 /* */
597 /* Return: */
598 /* LM_STATUS_SUCCESS */
599 /******************************************************************************/
600 LM_STATUS LM_GetAdapterInfo (PLM_DEVICE_BLOCK pDevice)
601 {
602 PLM_ADAPTER_INFO pAdapterInfo;
603 LM_UINT32 Value32;
604 LM_STATUS Status;
605 LM_UINT32 j;
606 LM_UINT32 EeSigFound;
607 LM_UINT32 EePhyTypeSerdes = 0;
608 LM_UINT32 EePhyLedMode = 0;
609 LM_UINT32 EePhyId = 0;
610
611 /* Get Device Id and Vendor Id */
612 Status = MM_ReadConfig32 (pDevice, PCI_VENDOR_ID_REG, &Value32);
613 if (Status != LM_STATUS_SUCCESS) {
614 return Status;
615 }
616 pDevice->PciVendorId = (LM_UINT16) Value32;
617 pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
618
619 /* If we are not getting the write adapter, exit. */
620 if ((Value32 != T3_PCI_ID_BCM5700) &&
621 (Value32 != T3_PCI_ID_BCM5701) &&
622 (Value32 != T3_PCI_ID_BCM5702) &&
623 (Value32 != T3_PCI_ID_BCM5702x) &&
624 (Value32 != T3_PCI_ID_BCM5702FE) &&
625 (Value32 != T3_PCI_ID_BCM5703) &&
626 (Value32 != T3_PCI_ID_BCM5703x) && (Value32 != T3_PCI_ID_BCM5704)) {
627 return LM_STATUS_FAILURE;
628 }
629
630 Status = MM_ReadConfig32 (pDevice, PCI_REV_ID_REG, &Value32);
631 if (Status != LM_STATUS_SUCCESS) {
632 return Status;
633 }
634 pDevice->PciRevId = (LM_UINT8) Value32;
635
636 /* Get IRQ. */
637 Status = MM_ReadConfig32 (pDevice, PCI_INT_LINE_REG, &Value32);
638 if (Status != LM_STATUS_SUCCESS) {
639 return Status;
640 }
641 pDevice->Irq = (LM_UINT8) Value32;
642
643 /* Get interrupt pin. */
644 pDevice->IntPin = (LM_UINT8) (Value32 >> 8);
645
646 /* Get chip revision id. */
647 Status = MM_ReadConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
648 pDevice->ChipRevId = Value32 >> 16;
649
650 /* Get subsystem vendor. */
651 Status =
652 MM_ReadConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
653 if (Status != LM_STATUS_SUCCESS) {
654 return Status;
655 }
656 pDevice->SubsystemVendorId = (LM_UINT16) Value32;
657
658 /* Get PCI subsystem id. */
659 pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
660
661 /* Get the cache line size. */
662 MM_ReadConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
663 pDevice->CacheLineSize = (LM_UINT8) Value32;
664 pDevice->SavedCacheLineReg = Value32;
665
666 if (pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
667 pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
668 pDevice->ChipRevId != T3_CHIP_ID_5704_A0) {
669 pDevice->UndiFix = FALSE;
670 }
671 #if !PCIX_TARGET_WORKAROUND
672 pDevice->UndiFix = FALSE;
673 #endif
674 /* Map the memory base to system address space. */
675 if (!pDevice->UndiFix) {
676 Status = MM_MapMemBase (pDevice);
677 if (Status != LM_STATUS_SUCCESS) {
678 return Status;
679 }
680 /* Initialize the memory view pointer. */
681 pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
682 }
683 #if PCIX_TARGET_WORKAROUND
684 /* store whether we are in PCI are PCI-X mode */
685 pDevice->EnablePciXFix = FALSE;
686
687 MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
688 if ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) {
689 /* Enable PCI-X workaround only if we are running on 5700 BX. */
690 if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
691 pDevice->EnablePciXFix = TRUE;
692 }
693 }
694 if (pDevice->UndiFix) {
695 pDevice->EnablePciXFix = TRUE;
696 }
697 #endif
698 /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
699 /* management register may be clobbered which may cause the */
700 /* BCM5700 to go into D3 state. While in this state, we will */
701 /* not have memory mapped register access. As a workaround, we */
702 /* need to restore the device to D0 state. */
703 MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
704 Value32 |= T3_PM_PME_ASSERTED;
705 Value32 &= ~T3_PM_POWER_STATE_MASK;
706 Value32 |= T3_PM_POWER_STATE_D0;
707 MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
708
709 /* read the current PCI command word */
710 MM_ReadConfig32 (pDevice, PCI_COMMAND_REG, &Value32);
711
712 /* Make sure bus-mastering is enabled. */
713 Value32 |= PCI_BUSMASTER_ENABLE;
714
715 #if PCIX_TARGET_WORKAROUND
716 /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
717 are enabled */
718 if (pDevice->EnablePciXFix == TRUE) {
719 Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
720 PCI_PARITY_ERROR_ENABLE);
721 }
722 if (pDevice->UndiFix) {
723 Value32 &= ~PCI_MEM_SPACE_ENABLE;
724 }
725 #endif
726
727 if (pDevice->EnableMWI) {
728 Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
729 } else {
730 Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
731 }
732
733 /* Error out if mem-mapping is NOT enabled for PCI systems */
734 if (!(Value32 | PCI_MEM_SPACE_ENABLE)) {
735 return LM_STATUS_FAILURE;
736 }
737
738 /* save the value we are going to write into the PCI command word */
739 pDevice->PciCommandStatusWords = Value32;
740
741 Status = MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, Value32);
742 if (Status != LM_STATUS_SUCCESS) {
743 return Status;
744 }
745
746 /* Set power state to D0. */
747 LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
748
749 #ifdef BIG_ENDIAN_PCI
750 pDevice->MiscHostCtrl =
751 MISC_HOST_CTRL_MASK_PCI_INT |
752 MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
753 MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
754 MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
755 #else /* No CPU Swap modes for PCI IO */
756
757 /* Setup the mode registers. */
758 pDevice->MiscHostCtrl =
759 MISC_HOST_CTRL_MASK_PCI_INT |
760 MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
761 #ifdef BIG_ENDIAN_HOST
762 MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
763 #endif /* BIG_ENDIAN_HOST */
764 MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
765 MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
766 #endif /* !BIG_ENDIAN_PCI */
767
768 /* write to PCI misc host ctr first in order to enable indirect accesses */
769 MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
770 pDevice->MiscHostCtrl);
771
772 REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl);
773
774 #ifdef BIG_ENDIAN_PCI
775 Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
776 #else
777 /* No CPU Swap modes for PCI IO */
778 #ifdef BIG_ENDIAN_HOST
779 Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
780 GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
781 #else
782 Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
783 #endif
784 #endif /* !BIG_ENDIAN_PCI */
785
786 REG_WR (pDevice, Grc.Mode, Value32);
787
788 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
789 REG_WR (pDevice, Grc.LocalCtrl,
790 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
791 GRC_MISC_LOCAL_CTRL_GPIO_OE1);
792 }
793 MM_Wait (40);
794
795 /* Enable indirect memory access */
796 REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
797
798 if (REG_RD (pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK) {
799 REG_WR (pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK |
800 T3_PCI_SELECT_ALTERNATE_CLOCK);
801 REG_WR (pDevice, PciCfg.ClockCtrl,
802 T3_PCI_SELECT_ALTERNATE_CLOCK);
803 MM_Wait (40); /* required delay is 27usec */
804 }
805 REG_WR (pDevice, PciCfg.ClockCtrl, 0);
806 REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
807
808 #if PCIX_TARGET_WORKAROUND
809 MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
810 if ((pDevice->EnablePciXFix == FALSE) &&
811 ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) {
812 if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
813 pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
814 pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
815 pDevice->ChipRevId == T3_CHIP_ID_5701_B5) {
816 __raw_writel (0,
817 &(pDevice->pMemView->uIntMem.
818 MemBlock32K[0x300]));
819 __raw_writel (0,
820 &(pDevice->pMemView->uIntMem.
821 MemBlock32K[0x301]));
822 __raw_writel (0xffffffff,
823 &(pDevice->pMemView->uIntMem.
824 MemBlock32K[0x301]));
825 if (__raw_readl
826 (&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
827 {
828 pDevice->EnablePciXFix = TRUE;
829 }
830 }
831 }
832 #endif
833 #if 1
834 /*
835 * This code was at the beginning of else block below, but that's
836 * a bug if node address in shared memory.
837 */
838 MM_Wait (50);
839 LM_NvramInit (pDevice);
840 #endif
841 /* Get the node address. First try to get in from the shared memory. */
842 /* If the signature is not present, then get it from the NVRAM. */
843 Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
844 if ((Value32 >> 16) == 0x484b) {
845
846 pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
847 pDevice->NodeAddress[1] = (LM_UINT8) Value32;
848
849 Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_LOW_MAILBOX);
850
851 pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
852 pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
853 pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
854 pDevice->NodeAddress[5] = (LM_UINT8) Value32;
855
856 Status = LM_STATUS_SUCCESS;
857 } else {
858 Status = LM_NvramRead (pDevice, 0x7c, &Value32);
859 if (Status == LM_STATUS_SUCCESS) {
860 pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16);
861 pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24);
862
863 Status = LM_NvramRead (pDevice, 0x80, &Value32);
864
865 pDevice->NodeAddress[2] = (LM_UINT8) Value32;
866 pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8);
867 pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16);
868 pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24);
869 }
870 }
871
872 /* Assign a default address. */
873 if (Status != LM_STATUS_SUCCESS) {
874 #ifndef EMBEDDED
875 printk (KERN_ERR
876 "Cannot get MAC addr from NVRAM. Using default.\n");
877 #endif
878 pDevice->NodeAddress[0] = 0x00;
879 pDevice->NodeAddress[1] = 0x10;
880 pDevice->NodeAddress[2] = 0x18;
881 pDevice->NodeAddress[3] = 0x68;
882 pDevice->NodeAddress[4] = 0x61;
883 pDevice->NodeAddress[5] = 0x76;
884 }
885
886 pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0];
887 pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1];
888 pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2];
889 pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3];
890 pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4];
891 pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5];
892
893 /* Initialize the default values. */
894 pDevice->NoTxPseudoHdrChksum = FALSE;
895 pDevice->NoRxPseudoHdrChksum = FALSE;
896 pDevice->NicSendBd = FALSE;
897 pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
898 pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
899 pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
900 pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
901 pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
902 pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
903 pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
904 pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
905 pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
906 pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
907 pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
908 pDevice->EnableMWI = FALSE;
909 pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
910 pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
911 pDevice->DisableAutoNeg = FALSE;
912 pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
913 pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
914 pDevice->LedMode = LED_MODE_AUTO;
915 pDevice->ResetPhyOnInit = TRUE;
916 pDevice->DelayPciGrant = TRUE;
917 pDevice->UseTaggedStatus = FALSE;
918 pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE;
919
920 pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO;
921 pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO;
922 pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO;
923
924 pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO;
925 pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
926 pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
927 pDevice->EnableTbi = FALSE;
928 #if INCLUDE_TBI_SUPPORT
929 pDevice->PollTbiLink = BAD_DEFAULT_VALUE;
930 #endif
931
932 switch (T3_ASIC_REV (pDevice->ChipRevId)) {
933 case T3_ASIC_REV_5704:
934 pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
935 pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
936 break;
937 default:
938 pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
939 pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
940 break;
941 }
942
943 pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
944 pDevice->QueueRxPackets = TRUE;
945
946 pDevice->EnableWireSpeed = TRUE;
947
948 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
949 pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
950 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
951
952 /* Make this is a known adapter. */
953 pAdapterInfo = LM_GetAdapterInfoBySsid (pDevice->SubsystemVendorId,
954 pDevice->SubsystemId);
955
956 pDevice->BondId = REG_RD (pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
957 if (pDevice->BondId != GRC_MISC_BD_ID_5700 &&
958 pDevice->BondId != GRC_MISC_BD_ID_5701 &&
959 pDevice->BondId != GRC_MISC_BD_ID_5702FE &&
960 pDevice->BondId != GRC_MISC_BD_ID_5703 &&
961 pDevice->BondId != GRC_MISC_BD_ID_5703S &&
962 pDevice->BondId != GRC_MISC_BD_ID_5704 &&
963 pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE) {
964 return LM_STATUS_UNKNOWN_ADAPTER;
965 }
966
967 pDevice->SplitModeEnable = SPLIT_MODE_DISABLE;
968 if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) &&
969 (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)) {
970 pDevice->SplitModeEnable = SPLIT_MODE_ENABLE;
971 pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ;
972 }
973
974 /* Get Eeprom info. */
975 Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_SIG_ADDR);
976 if (Value32 == T3_NIC_DATA_SIG) {
977 EeSigFound = TRUE;
978 Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
979
980 /* Determine PHY type. */
981 switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) {
982 case T3_NIC_CFG_PHY_TYPE_COPPER:
983 EePhyTypeSerdes = FALSE;
984 break;
985
986 case T3_NIC_CFG_PHY_TYPE_FIBER:
987 EePhyTypeSerdes = TRUE;
988 break;
989
990 default:
991 EePhyTypeSerdes = FALSE;
992 break;
993 }
994
995 /* Determine PHY led mode. */
996 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
997 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
998 switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
999 case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED:
1000 EePhyLedMode = LED_MODE_THREE_LINK;
1001 break;
1002
1003 case T3_NIC_CFG_LED_MODE_LINK_SPEED:
1004 EePhyLedMode = LED_MODE_LINK10;
1005 break;
1006
1007 default:
1008 EePhyLedMode = LED_MODE_AUTO;
1009 break;
1010 }
1011 } else {
1012 switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
1013 case T3_NIC_CFG_LED_MODE_OPEN_DRAIN:
1014 EePhyLedMode = LED_MODE_OPEN_DRAIN;
1015 break;
1016
1017 case T3_NIC_CFG_LED_MODE_OUTPUT:
1018 EePhyLedMode = LED_MODE_OUTPUT;
1019 break;
1020
1021 default:
1022 EePhyLedMode = LED_MODE_AUTO;
1023 break;
1024 }
1025 }
1026 if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
1027 pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
1028 /* Enable EEPROM write protection. */
1029 if (Value32 & T3_NIC_EEPROM_WP) {
1030 pDevice->EepromWp = TRUE;
1031 }
1032 }
1033
1034 /* Get the PHY Id. */
1035 Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_PHY_ID_ADDR);
1036 if (Value32) {
1037 EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
1038 PHY_ID1_OUI_MASK) << 10;
1039
1040 Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
1041
1042 EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
1043 (Value32 & PHY_ID2_MODEL_MASK) | (Value32 &
1044 PHY_ID2_REV_MASK);
1045 } else {
1046 EePhyId = 0;
1047 }
1048 } else {
1049 EeSigFound = FALSE;
1050 }
1051
1052 /* Set the PHY address. */
1053 pDevice->PhyAddr = PHY_DEVICE_ID;
1054
1055 /* Disable auto polling. */
1056 pDevice->MiMode = 0xc0000;
1057 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
1058 MM_Wait (40);
1059
1060 /* Get the PHY id. */
1061 LM_ReadPhy (pDevice, PHY_ID1_REG, &Value32);
1062 pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
1063
1064 LM_ReadPhy (pDevice, PHY_ID2_REG, &Value32);
1065 pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
1066 (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
1067
1068 /* Set the EnableTbi flag to false if we have a copper PHY. */
1069 switch (pDevice->PhyId & PHY_ID_MASK) {
1070 case PHY_BCM5400_PHY_ID:
1071 pDevice->EnableTbi = FALSE;
1072 break;
1073
1074 case PHY_BCM5401_PHY_ID:
1075 pDevice->EnableTbi = FALSE;
1076 break;
1077
1078 case PHY_BCM5411_PHY_ID:
1079 pDevice->EnableTbi = FALSE;
1080 break;
1081
1082 case PHY_BCM5701_PHY_ID:
1083 pDevice->EnableTbi = FALSE;
1084 break;
1085
1086 case PHY_BCM5703_PHY_ID:
1087 pDevice->EnableTbi = FALSE;
1088 break;
1089
1090 case PHY_BCM5704_PHY_ID:
1091 pDevice->EnableTbi = FALSE;
1092 break;
1093
1094 case PHY_BCM8002_PHY_ID:
1095 pDevice->EnableTbi = TRUE;
1096 break;
1097
1098 default:
1099
1100 if (pAdapterInfo) {
1101 pDevice->PhyId = pAdapterInfo->PhyId;
1102 pDevice->EnableTbi = pAdapterInfo->Serdes;
1103 } else if (EeSigFound) {
1104 pDevice->PhyId = EePhyId;
1105 pDevice->EnableTbi = EePhyTypeSerdes;
1106 }
1107 break;
1108 }
1109
1110 /* Bail out if we don't know the copper PHY id. */
1111 if (UNKNOWN_PHY_ID (pDevice->PhyId) && !pDevice->EnableTbi) {
1112 return LM_STATUS_FAILURE;
1113 }
1114
1115 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
1116 if ((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) {
1117 pDevice->SavedCacheLineReg &= 0xffff00ff;
1118 pDevice->SavedCacheLineReg |= 0x4000;
1119 }
1120 }
1121 /* Change driver parameters. */
1122 Status = MM_GetConfig (pDevice);
1123 if (Status != LM_STATUS_SUCCESS) {
1124 return Status;
1125 }
1126 #if INCLUDE_5701_AX_FIX
1127 if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
1128 pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
1129 pDevice->ResetPhyOnInit = TRUE;
1130 }
1131 #endif
1132
1133 /* Save the current phy link status. */
1134 if (!pDevice->EnableTbi) {
1135 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
1136 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
1137
1138 /* If we don't have link reset the PHY. */
1139 if (!(Value32 & PHY_STATUS_LINK_PASS)
1140 || pDevice->ResetPhyOnInit) {
1141
1142 LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
1143
1144 for (j = 0; j < 100; j++) {
1145 MM_Wait (10);
1146
1147 LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
1148 if (Value32 && !(Value32 & PHY_CTRL_PHY_RESET)) {
1149 MM_Wait (40);
1150 break;
1151 }
1152 }
1153
1154 #if INCLUDE_5701_AX_FIX
1155 /* 5701_AX_BX bug: only advertises 10mb speed. */
1156 if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
1157 pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
1158
1159 Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
1160 PHY_AN_AD_10BASET_HALF |
1161 PHY_AN_AD_10BASET_FULL |
1162 PHY_AN_AD_100BASETX_FULL |
1163 PHY_AN_AD_100BASETX_HALF;
1164 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
1165 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
1166 pDevice->advertising = Value32;
1167
1168 Value32 = BCM540X_AN_AD_1000BASET_HALF |
1169 BCM540X_AN_AD_1000BASET_FULL |
1170 BCM540X_CONFIG_AS_MASTER |
1171 BCM540X_ENABLE_CONFIG_AS_MASTER;
1172 LM_WritePhy (pDevice,
1173 BCM540X_1000BASET_CTRL_REG,
1174 Value32);
1175 pDevice->advertising1000 = Value32;
1176
1177 LM_WritePhy (pDevice, PHY_CTRL_REG,
1178 PHY_CTRL_AUTO_NEG_ENABLE |
1179 PHY_CTRL_RESTART_AUTO_NEG);
1180 }
1181 #endif
1182 if (T3_ASIC_REV (pDevice->ChipRevId) ==
1183 T3_ASIC_REV_5703) {
1184 LM_WritePhy (pDevice, 0x18, 0x0c00);
1185 LM_WritePhy (pDevice, 0x17, 0x201f);
1186 LM_WritePhy (pDevice, 0x15, 0x2aaa);
1187 }
1188 if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
1189 LM_WritePhy (pDevice, 0x1c, 0x8d68);
1190 LM_WritePhy (pDevice, 0x1c, 0x8d68);
1191 }
1192 /* Enable Ethernet@WireSpeed. */
1193 if (pDevice->EnableWireSpeed) {
1194 LM_WritePhy (pDevice, 0x18, 0x7007);
1195 LM_ReadPhy (pDevice, 0x18, &Value32);
1196 LM_WritePhy (pDevice, 0x18,
1197 Value32 | BIT_15 | BIT_4);
1198 }
1199 }
1200 }
1201
1202 /* Turn off tap power management. */
1203 if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
1204 LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
1205 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
1206 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
1207 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
1208 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
1209 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
1210 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
1211 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
1212 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
1213 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
1214 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
1215
1216 MM_Wait (40);
1217 }
1218 #if INCLUDE_TBI_SUPPORT
1219 pDevice->IgnoreTbiLinkChange = FALSE;
1220
1221 if (pDevice->EnableTbi) {
1222 pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
1223 pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
1224 if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) ||
1225 pDevice->DisableAutoNeg) {
1226 pDevice->PollTbiLink = FALSE;
1227 }
1228 } else {
1229 pDevice->PollTbiLink = FALSE;
1230 }
1231 #endif /* INCLUDE_TBI_SUPPORT */
1232
1233 /* UseTaggedStatus is only valid for 5701 and later. */
1234 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
1235 pDevice->UseTaggedStatus = FALSE;
1236
1237 pDevice->CoalesceMode = 0;
1238 } else {
1239 pDevice->CoalesceMode =
1240 HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
1241 HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
1242 }
1243
1244 /* Set the status block size. */
1245 if (T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
1246 T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) {
1247 pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
1248 }
1249
1250 /* Check the DURING_INT coalescing ticks parameters. */
1251 if (pDevice->UseTaggedStatus) {
1252 if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
1253 pDevice->RxCoalescingTicksDuringInt =
1254 DEFAULT_RX_COALESCING_TICKS_DURING_INT;
1255 }
1256
1257 if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
1258 pDevice->TxCoalescingTicksDuringInt =
1259 DEFAULT_TX_COALESCING_TICKS_DURING_INT;
1260 }
1261
1262 if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
1263 pDevice->RxMaxCoalescedFramesDuringInt =
1264 DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
1265 }
1266
1267 if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
1268 pDevice->TxMaxCoalescedFramesDuringInt =
1269 DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
1270 }
1271 } else {
1272 if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
1273 pDevice->RxCoalescingTicksDuringInt = 0;
1274 }
1275
1276 if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
1277 pDevice->TxCoalescingTicksDuringInt = 0;
1278 }
1279
1280 if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
1281 pDevice->RxMaxCoalescedFramesDuringInt = 0;
1282 }
1283
1284 if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
1285 pDevice->TxMaxCoalescedFramesDuringInt = 0;
1286 }
1287 }
1288
1289 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
1290 if (pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */ )) {
1291 pDevice->RxJumboDescCnt = 0;
1292 if (pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
1293 pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
1294 }
1295 } else {
1296 pDevice->RxJumboBufferSize =
1297 (pDevice->RxMtu + 8 /* CRC + VLAN */ +
1298 COMMON_CACHE_LINE_SIZE - 1) & ~COMMON_CACHE_LINE_MASK;
1299
1300 if (pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) {
1301 pDevice->RxJumboBufferSize =
1302 DEFAULT_JUMBO_RCV_BUFFER_SIZE;
1303 pDevice->RxMtu =
1304 pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */ ;
1305 }
1306 pDevice->TxMtu = pDevice->RxMtu;
1307
1308 }
1309 #else
1310 pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
1311 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
1312
1313 pDevice->RxPacketDescCnt =
1314 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
1315 pDevice->RxJumboDescCnt +
1316 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
1317 pDevice->RxStdDescCnt;
1318
1319 if (pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
1320 pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
1321 }
1322
1323 if (pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) {
1324 pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
1325 }
1326
1327 /* Configure the proper ways to get link change interrupt. */
1328 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) {
1329 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
1330 pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
1331 } else {
1332 pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
1333 }
1334 } else if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
1335 /* Auto-polling does not work on 5700_AX and 5700_BX. */
1336 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
1337 pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
1338 }
1339 }
1340
1341 /* Determine the method to get link change status. */
1342 if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) {
1343 /* The link status bit in the status block does not work on 5700_AX */
1344 /* and 5700_BX chips. */
1345 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
1346 pDevice->LinkChngMode =
1347 T3_LINK_CHNG_MODE_USE_STATUS_REG;
1348 } else {
1349 pDevice->LinkChngMode =
1350 T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
1351 }
1352 }
1353
1354 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
1355 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
1356 pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
1357 }
1358
1359 /* Configure PHY led mode. */
1360 if (pDevice->LedMode == LED_MODE_AUTO) {
1361 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
1362 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
1363 if (pDevice->SubsystemVendorId == T3_SVID_DELL) {
1364 pDevice->LedMode = LED_MODE_LINK10;
1365 } else {
1366 pDevice->LedMode = LED_MODE_THREE_LINK;
1367
1368 if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
1369 pDevice->LedMode = EePhyLedMode;
1370 }
1371 }
1372
1373 /* bug? 5701 in LINK10 mode does not seem to work when */
1374 /* PhyIntMode is LINK_READY. */
1375 if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700
1376 &&
1377 #if INCLUDE_TBI_SUPPORT
1378 pDevice->EnableTbi == FALSE &&
1379 #endif
1380 pDevice->LedMode == LED_MODE_LINK10) {
1381 pDevice->PhyIntMode =
1382 T3_PHY_INT_MODE_MI_INTERRUPT;
1383 pDevice->LinkChngMode =
1384 T3_LINK_CHNG_MODE_USE_STATUS_REG;
1385 }
1386
1387 if (pDevice->EnableTbi) {
1388 pDevice->LedMode = LED_MODE_THREE_LINK;
1389 }
1390 } else {
1391 if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
1392 pDevice->LedMode = EePhyLedMode;
1393 } else {
1394 pDevice->LedMode = LED_MODE_OPEN_DRAIN;
1395 }
1396 }
1397 }
1398
1399 /* Enable OneDmaAtOnce. */
1400 if (pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE) {
1401 pDevice->OneDmaAtOnce = FALSE;
1402 }
1403
1404 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
1405 pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
1406 pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
1407 pDevice->ChipRevId == T3_CHIP_ID_5701_B2) {
1408 pDevice->WolSpeed = WOL_SPEED_10MB;
1409 } else {
1410 pDevice->WolSpeed = WOL_SPEED_100MB;
1411 }
1412
1413 /* Offloadings. */
1414 pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
1415
1416 /* Turn off task offloading on Ax. */
1417 if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) {
1418 pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
1419 LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
1420 }
1421 pDevice->PciState = REG_RD (pDevice, PciCfg.PciState);
1422 LM_ReadVPD (pDevice);
1423 LM_ReadBootCodeVersion (pDevice);
1424 LM_GetBusSpeed (pDevice);
1425
1426 return LM_STATUS_SUCCESS;
1427 } /* LM_GetAdapterInfo */
1428
1429 STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, LM_UINT16 Ssid)
1430 {
1431 static LM_ADAPTER_INFO AdapterArr[] = {
1432 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6,
1433 PHY_BCM5401_PHY_ID, 0},
1434 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5,
1435 PHY_BCM5701_PHY_ID, 0},
1436 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6,
1437 PHY_BCM8002_PHY_ID, 1},
1438 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1},
1439 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1,
1440 PHY_BCM5701_PHY_ID, 0},
1441 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8,
1442 PHY_BCM5701_PHY_ID, 0},
1443 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
1444 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10,
1445 PHY_BCM5701_PHY_ID, 0},
1446 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12,
1447 PHY_BCM5701_PHY_ID, 0},
1448 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1,
1449 PHY_BCM5701_PHY_ID, 0},
1450 {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2,
1451 PHY_BCM5701_PHY_ID, 0},
1452
1453 {T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0},
1454 {T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0},
1455 {T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1},
1456 {T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0},
1457 {T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0},
1458
1459 {T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0},
1460 {T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0},
1461 {T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0},
1462 {T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0},
1463
1464 {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0},
1465 {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID,
1466 0},
1467 {T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1},
1468 {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0},
1469 {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID,
1470 0},
1471
1472 };
1473 LM_UINT32 j;
1474
1475 for (j = 0; j < sizeof (AdapterArr) / sizeof (LM_ADAPTER_INFO); j++) {
1476 if (AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) {
1477 return &AdapterArr[j];
1478 }
1479 }
1480
1481 return NULL;
1482 }
1483
1484 /******************************************************************************/
1485 /* Description: */
1486 /* This routine sets up receive/transmit buffer descriptions queues. */
1487 /* */
1488 /* Return: */
1489 /* LM_STATUS_SUCCESS */
1490 /******************************************************************************/
1491 LM_STATUS LM_InitializeAdapter (PLM_DEVICE_BLOCK pDevice)
1492 {
1493 LM_PHYSICAL_ADDRESS MemPhy;
1494 PLM_UINT8 pMemVirt;
1495 PLM_PACKET pPacket;
1496 LM_STATUS Status;
1497 LM_UINT32 Size;
1498 LM_UINT32 j;
1499
1500 /* Set power state to D0. */
1501 LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
1502
1503 /* Intialize the queues. */
1504 QQ_InitQueue (&pDevice->RxPacketReceivedQ.Container,
1505 MAX_RX_PACKET_DESC_COUNT);
1506 QQ_InitQueue (&pDevice->RxPacketFreeQ.Container,
1507 MAX_RX_PACKET_DESC_COUNT);
1508
1509 QQ_InitQueue (&pDevice->TxPacketFreeQ.Container,
1510 MAX_TX_PACKET_DESC_COUNT);
1511 QQ_InitQueue (&pDevice->TxPacketActiveQ.Container,
1512 MAX_TX_PACKET_DESC_COUNT);
1513 QQ_InitQueue (&pDevice->TxPacketXmittedQ.Container,
1514 MAX_TX_PACKET_DESC_COUNT);
1515
1516 /* Allocate shared memory for: status block, the buffers for receive */
1517 /* rings -- standard, mini, jumbo, and return rings. */
1518 Size = T3_STATUS_BLOCK_SIZE + sizeof (T3_STATS_BLOCK) +
1519 T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
1520 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
1521 T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
1522 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
1523 T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
1524
1525 /* Memory for host based Send BD. */
1526 if (pDevice->NicSendBd == FALSE) {
1527 Size += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
1528 }
1529
1530 /* Allocate the memory block. */
1531 Status =
1532 MM_AllocateSharedMemory (pDevice, Size, (PLM_VOID) & pMemVirt,
1533 &MemPhy, FALSE);
1534 if (Status != LM_STATUS_SUCCESS) {
1535 return Status;
1536 }
1537
1538 /* Program DMA Read/Write */
1539 if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) {
1540 pDevice->DmaReadWriteCtrl = 0x763f000f;
1541 } else {
1542 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5704) {
1543 pDevice->DmaReadWriteCtrl = 0x761f0000;
1544 } else {
1545 pDevice->DmaReadWriteCtrl = 0x761b000f;
1546 }
1547 if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
1548 pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
1549 pDevice->OneDmaAtOnce = TRUE;
1550 }
1551 }
1552 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
1553 pDevice->DmaReadWriteCtrl &= 0xfffffff0;
1554 }
1555
1556 if (pDevice->OneDmaAtOnce) {
1557 pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
1558 }
1559 REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
1560
1561 if (LM_DmaTest (pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) {
1562 return LM_STATUS_FAILURE;
1563 }
1564
1565 /* Status block. */
1566 pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
1567 pDevice->StatusBlkPhy = MemPhy;
1568 pMemVirt += T3_STATUS_BLOCK_SIZE;
1569 LM_INC_PHYSICAL_ADDRESS (&MemPhy, T3_STATUS_BLOCK_SIZE);
1570
1571 /* Statistics block. */
1572 pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
1573 pDevice->StatsBlkPhy = MemPhy;
1574 pMemVirt += sizeof (T3_STATS_BLOCK);
1575 LM_INC_PHYSICAL_ADDRESS (&MemPhy, sizeof (T3_STATS_BLOCK));
1576
1577 /* Receive standard BD buffer. */
1578 pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
1579 pDevice->RxStdBdPhy = MemPhy;
1580
1581 pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
1582 LM_INC_PHYSICAL_ADDRESS (&MemPhy,
1583 T3_STD_RCV_RCB_ENTRY_COUNT *
1584 sizeof (T3_RCV_BD));
1585
1586 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
1587 /* Receive jumbo BD buffer. */
1588 pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
1589 pDevice->RxJumboBdPhy = MemPhy;
1590
1591 pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
1592 LM_INC_PHYSICAL_ADDRESS (&MemPhy,
1593 T3_JUMBO_RCV_RCB_ENTRY_COUNT *
1594 sizeof (T3_RCV_BD));
1595 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
1596
1597 /* Receive return BD buffer. */
1598 pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
1599 pDevice->RcvRetBdPhy = MemPhy;
1600
1601 pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
1602 LM_INC_PHYSICAL_ADDRESS (&MemPhy,
1603 T3_RCV_RETURN_RCB_ENTRY_COUNT *
1604 sizeof (T3_RCV_BD));
1605
1606 /* Set up Send BD. */
1607 if (pDevice->NicSendBd == FALSE) {
1608 pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
1609 pDevice->SendBdPhy = MemPhy;
1610
1611 pMemVirt += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
1612 LM_INC_PHYSICAL_ADDRESS (&MemPhy,
1613 sizeof (T3_SND_BD) *
1614 T3_SEND_RCB_ENTRY_COUNT);
1615 } else {
1616 pDevice->pSendBdVirt = (PT3_SND_BD)
1617 pDevice->pMemView->uIntMem.First32k.BufferDesc;
1618 pDevice->SendBdPhy.High = 0;
1619 pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
1620 }
1621
1622 /* Allocate memory for packet descriptors. */
1623 Size = (pDevice->RxPacketDescCnt +
1624 pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
1625 Status = MM_AllocateMemory (pDevice, Size, (PLM_VOID *) & pPacket);
1626 if (Status != LM_STATUS_SUCCESS) {
1627 return Status;
1628 }
1629 pDevice->pPacketDescBase = (PLM_VOID) pPacket;
1630
1631 /* Create transmit packet descriptors from the memory block and add them */
1632 /* to the TxPacketFreeQ for each send ring. */
1633 for (j = 0; j < pDevice->TxPacketDescCnt; j++) {
1634 /* Ring index. */
1635 pPacket->Flags = 0;
1636
1637 /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
1638 QQ_PushTail (&pDevice->TxPacketFreeQ.Container, pPacket);
1639
1640 /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
1641 /* is the total size of the packet descriptor including the */
1642 /* os-specific extensions in the UM_PACKET structure. */
1643 pPacket =
1644 (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
1645 } /* for(j.. */
1646
1647 /* Create receive packet descriptors from the memory block and add them */
1648 /* to the RxPacketFreeQ. Create the Standard packet descriptors. */
1649 for (j = 0; j < pDevice->RxStdDescCnt; j++) {
1650 /* Receive producer ring. */
1651 pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
1652
1653 /* Receive buffer size. */
1654 pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
1655
1656 /* Add the descriptor to RxPacketFreeQ. */
1657 QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
1658
1659 /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
1660 /* is the total size of the packet descriptor including the */
1661 /* os-specific extensions in the UM_PACKET structure. */
1662 pPacket =
1663 (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
1664 } /* for */
1665
1666 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
1667 /* Create the Jumbo packet descriptors. */
1668 for (j = 0; j < pDevice->RxJumboDescCnt; j++) {
1669 /* Receive producer ring. */
1670 pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
1671
1672 /* Receive buffer size. */
1673 pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
1674
1675 /* Add the descriptor to RxPacketFreeQ. */
1676 QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
1677
1678 /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
1679 /* is the total size of the packet descriptor including the */
1680 /* os-specific extensions in the UM_PACKET structure. */
1681 pPacket =
1682 (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
1683 } /* for */
1684 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
1685
1686 /* Initialize the rest of the packet descriptors. */
1687 Status = MM_InitializeUmPackets (pDevice);
1688 if (Status != LM_STATUS_SUCCESS) {
1689 return Status;
1690 }
1691
1692 /* if */
1693 /* Default receive mask. */
1694 pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
1695 LM_ACCEPT_UNICAST;
1696
1697 /* Make sure we are in the first 32k memory window or NicSendBd. */
1698 REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
1699
1700 /* Initialize the hardware. */
1701 Status = LM_ResetAdapter (pDevice);
1702 if (Status != LM_STATUS_SUCCESS) {
1703 return Status;
1704 }
1705
1706 /* We are done with initialization. */
1707 pDevice->InitDone = TRUE;
1708
1709 return LM_STATUS_SUCCESS;
1710 } /* LM_InitializeAdapter */
1711
1712 /******************************************************************************/
1713 /* Description: */
1714 /* This function Enables/Disables a given block. */
1715 /* */
1716 /* Return: */
1717 /* LM_STATUS_SUCCESS */
1718 /******************************************************************************/
1719 LM_STATUS
1720 LM_CntrlBlock (PLM_DEVICE_BLOCK pDevice, LM_UINT32 mask, LM_UINT32 cntrl)
1721 {
1722 LM_UINT32 j, i, data;
1723 LM_UINT32 MaxWaitCnt;
1724
1725 MaxWaitCnt = 2;
1726 j = 0;
1727
1728 for (i = 0; i < 32; i++) {
1729 if (!(mask & (1 << i)))
1730 continue;
1731
1732 switch (1 << i) {
1733 case T3_BLOCK_DMA_RD:
1734 data = REG_RD (pDevice, DmaRead.Mode);
1735 if (cntrl == LM_DISABLE) {
1736 data &= ~DMA_READ_MODE_ENABLE;
1737 REG_WR (pDevice, DmaRead.Mode, data);
1738 for (j = 0; j < MaxWaitCnt; j++) {
1739 if (!
1740 (REG_RD (pDevice, DmaRead.Mode) &
1741 DMA_READ_MODE_ENABLE))
1742 break;
1743 MM_Wait (10);
1744 }
1745 } else
1746 REG_WR (pDevice, DmaRead.Mode,
1747 data | DMA_READ_MODE_ENABLE);
1748 break;
1749
1750 case T3_BLOCK_DMA_COMP:
1751 data = REG_RD (pDevice, DmaComp.Mode);
1752 if (cntrl == LM_DISABLE) {
1753 data &= ~DMA_COMP_MODE_ENABLE;
1754 REG_WR (pDevice, DmaComp.Mode, data);
1755 for (j = 0; j < MaxWaitCnt; j++) {
1756 if (!
1757 (REG_RD (pDevice, DmaComp.Mode) &
1758 DMA_COMP_MODE_ENABLE))
1759 break;
1760 MM_Wait (10);
1761 }
1762 } else
1763 REG_WR (pDevice, DmaComp.Mode,
1764 data | DMA_COMP_MODE_ENABLE);
1765 break;
1766
1767 case T3_BLOCK_RX_BD_INITIATOR:
1768 data = REG_RD (pDevice, RcvBdIn.Mode);
1769 if (cntrl == LM_DISABLE) {
1770 data &= ~RCV_BD_IN_MODE_ENABLE;
1771 REG_WR (pDevice, RcvBdIn.Mode, data);
1772 for (j = 0; j < MaxWaitCnt; j++) {
1773 if (!
1774 (REG_RD (pDevice, RcvBdIn.Mode) &
1775 RCV_BD_IN_MODE_ENABLE))
1776 break;
1777 MM_Wait (10);
1778 }
1779 } else
1780 REG_WR (pDevice, RcvBdIn.Mode,
1781 data | RCV_BD_IN_MODE_ENABLE);
1782 break;
1783
1784 case T3_BLOCK_RX_BD_COMP:
1785 data = REG_RD (pDevice, RcvBdComp.Mode);
1786 if (cntrl == LM_DISABLE) {
1787 data &= ~RCV_BD_COMP_MODE_ENABLE;
1788 REG_WR (pDevice, RcvBdComp.Mode, data);
1789 for (j = 0; j < MaxWaitCnt; j++) {
1790 if (!
1791 (REG_RD (pDevice, RcvBdComp.Mode) &
1792 RCV_BD_COMP_MODE_ENABLE))
1793 break;
1794 MM_Wait (10);
1795 }
1796 } else
1797 REG_WR (pDevice, RcvBdComp.Mode,
1798 data | RCV_BD_COMP_MODE_ENABLE);
1799 break;
1800
1801 case T3_BLOCK_DMA_WR:
1802 data = REG_RD (pDevice, DmaWrite.Mode);
1803 if (cntrl == LM_DISABLE) {
1804 data &= ~DMA_WRITE_MODE_ENABLE;
1805 REG_WR (pDevice, DmaWrite.Mode, data);
1806
1807 for (j = 0; j < MaxWaitCnt; j++) {
1808 if (!
1809 (REG_RD (pDevice, DmaWrite.Mode) &
1810 DMA_WRITE_MODE_ENABLE))
1811 break;
1812 MM_Wait (10);
1813 }
1814 } else
1815 REG_WR (pDevice, DmaWrite.Mode,
1816 data | DMA_WRITE_MODE_ENABLE);
1817 break;
1818
1819 case T3_BLOCK_MSI_HANDLER:
1820 data = REG_RD (pDevice, Msi.Mode);
1821 if (cntrl == LM_DISABLE) {
1822 data &= ~MSI_MODE_ENABLE;
1823 REG_WR (pDevice, Msi.Mode, data);
1824 for (j = 0; j < MaxWaitCnt; j++) {
1825 if (!
1826 (REG_RD (pDevice, Msi.Mode) &
1827 MSI_MODE_ENABLE))
1828 break;
1829 MM_Wait (10);
1830 }
1831 } else
1832 REG_WR (pDevice, Msi.Mode,
1833 data | MSI_MODE_ENABLE);
1834 break;
1835
1836 case T3_BLOCK_RX_LIST_PLMT:
1837 data = REG_RD (pDevice, RcvListPlmt.Mode);
1838 if (cntrl == LM_DISABLE) {
1839 data &= ~RCV_LIST_PLMT_MODE_ENABLE;
1840 REG_WR (pDevice, RcvListPlmt.Mode, data);
1841 for (j = 0; j < MaxWaitCnt; j++) {
1842 if (!
1843 (REG_RD (pDevice, RcvListPlmt.Mode)
1844 & RCV_LIST_PLMT_MODE_ENABLE))
1845 break;
1846 MM_Wait (10);
1847 }
1848 } else
1849 REG_WR (pDevice, RcvListPlmt.Mode,
1850 data | RCV_LIST_PLMT_MODE_ENABLE);
1851 break;
1852
1853 case T3_BLOCK_RX_LIST_SELECTOR:
1854 data = REG_RD (pDevice, RcvListSel.Mode);
1855 if (cntrl == LM_DISABLE) {
1856 data &= ~RCV_LIST_SEL_MODE_ENABLE;
1857 REG_WR (pDevice, RcvListSel.Mode, data);
1858 for (j = 0; j < MaxWaitCnt; j++) {
1859 if (!
1860 (REG_RD (pDevice, RcvListSel.Mode) &
1861 RCV_LIST_SEL_MODE_ENABLE))
1862 break;
1863 MM_Wait (10);
1864 }
1865 } else
1866 REG_WR (pDevice, RcvListSel.Mode,
1867 data | RCV_LIST_SEL_MODE_ENABLE);
1868 break;
1869
1870 case T3_BLOCK_RX_DATA_INITIATOR:
1871 data = REG_RD (pDevice, RcvDataBdIn.Mode);
1872 if (cntrl == LM_DISABLE) {
1873 data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
1874 REG_WR (pDevice, RcvDataBdIn.Mode, data);
1875 for (j = 0; j < MaxWaitCnt; j++) {
1876 if (!
1877 (REG_RD (pDevice, RcvDataBdIn.Mode)
1878 & RCV_DATA_BD_IN_MODE_ENABLE))
1879 break;
1880 MM_Wait (10);
1881 }
1882 } else
1883 REG_WR (pDevice, RcvDataBdIn.Mode,
1884 data | RCV_DATA_BD_IN_MODE_ENABLE);
1885 break;
1886
1887 case T3_BLOCK_RX_DATA_COMP:
1888 data = REG_RD (pDevice, RcvDataComp.Mode);
1889 if (cntrl == LM_DISABLE) {
1890 data &= ~RCV_DATA_COMP_MODE_ENABLE;
1891 REG_WR (pDevice, RcvDataComp.Mode, data);
1892 for (j = 0; j < MaxWaitCnt; j++) {
1893 if (!
1894 (REG_RD (pDevice, RcvDataBdIn.Mode)
1895 & RCV_DATA_COMP_MODE_ENABLE))
1896 break;
1897 MM_Wait (10);
1898 }
1899 } else
1900 REG_WR (pDevice, RcvDataComp.Mode,
1901 data | RCV_DATA_COMP_MODE_ENABLE);
1902 break;
1903
1904 case T3_BLOCK_HOST_COALESING:
1905 data = REG_RD (pDevice, HostCoalesce.Mode);
1906 if (cntrl == LM_DISABLE) {
1907 data &= ~HOST_COALESCE_ENABLE;
1908 REG_WR (pDevice, HostCoalesce.Mode, data);
1909 for (j = 0; j < MaxWaitCnt; j++) {
1910 if (!
1911 (REG_RD (pDevice, SndBdIn.Mode) &
1912 HOST_COALESCE_ENABLE))
1913 break;
1914 MM_Wait (10);
1915 }
1916 } else
1917 REG_WR (pDevice, HostCoalesce.Mode,
1918 data | HOST_COALESCE_ENABLE);
1919 break;
1920
1921 case T3_BLOCK_MAC_RX_ENGINE:
1922 if (cntrl == LM_DISABLE) {
1923 pDevice->RxMode &= ~RX_MODE_ENABLE;
1924 REG_WR (pDevice, MacCtrl.RxMode,
1925 pDevice->RxMode);
1926 for (j = 0; j < MaxWaitCnt; j++) {
1927 if (!
1928 (REG_RD (pDevice, MacCtrl.RxMode) &
1929 RX_MODE_ENABLE)) {
1930 break;
1931 }
1932 MM_Wait (10);
1933 }
1934 } else {
1935 pDevice->RxMode |= RX_MODE_ENABLE;
1936 REG_WR (pDevice, MacCtrl.RxMode,
1937 pDevice->RxMode);
1938 }
1939 break;
1940
1941 case T3_BLOCK_MBUF_CLUSTER_FREE:
1942 data = REG_RD (pDevice, MbufClusterFree.Mode);
1943 if (cntrl == LM_DISABLE) {
1944 data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
1945 REG_WR (pDevice, MbufClusterFree.Mode, data);
1946 for (j = 0; j < MaxWaitCnt; j++) {
1947 if (!
1948 (REG_RD
1949 (pDevice,
1950 MbufClusterFree.
1951 Mode) &
1952 MBUF_CLUSTER_FREE_MODE_ENABLE))
1953 break;
1954 MM_Wait (10);
1955 }
1956 } else
1957 REG_WR (pDevice, MbufClusterFree.Mode,
1958 data | MBUF_CLUSTER_FREE_MODE_ENABLE);
1959 break;
1960
1961 case T3_BLOCK_SEND_BD_INITIATOR:
1962 data = REG_RD (pDevice, SndBdIn.Mode);
1963 if (cntrl == LM_DISABLE) {
1964 data &= ~SND_BD_IN_MODE_ENABLE;
1965 REG_WR (pDevice, SndBdIn.Mode, data);
1966 for (j = 0; j < MaxWaitCnt; j++) {
1967 if (!
1968 (REG_RD (pDevice, SndBdIn.Mode) &
1969 SND_BD_IN_MODE_ENABLE))
1970 break;
1971 MM_Wait (10);
1972 }
1973 } else
1974 REG_WR (pDevice, SndBdIn.Mode,
1975 data | SND_BD_IN_MODE_ENABLE);
1976 break;
1977
1978 case T3_BLOCK_SEND_BD_COMP:
1979 data = REG_RD (pDevice, SndBdComp.Mode);
1980 if (cntrl == LM_DISABLE) {
1981 data &= ~SND_BD_COMP_MODE_ENABLE;
1982 REG_WR (pDevice, SndBdComp.Mode, data);
1983 for (j = 0; j < MaxWaitCnt; j++) {
1984 if (!
1985 (REG_RD (pDevice, SndBdComp.Mode) &
1986 SND_BD_COMP_MODE_ENABLE))
1987 break;
1988 MM_Wait (10);
1989 }
1990 } else
1991 REG_WR (pDevice, SndBdComp.Mode,
1992 data | SND_BD_COMP_MODE_ENABLE);
1993 break;
1994
1995 case T3_BLOCK_SEND_BD_SELECTOR:
1996 data = REG_RD (pDevice, SndBdSel.Mode);
1997 if (cntrl == LM_DISABLE) {
1998 data &= ~SND_BD_SEL_MODE_ENABLE;
1999 REG_WR (pDevice, SndBdSel.Mode, data);
2000 for (j = 0; j < MaxWaitCnt; j++) {
2001 if (!
2002 (REG_RD (pDevice, SndBdSel.Mode) &
2003 SND_BD_SEL_MODE_ENABLE))
2004 break;
2005 MM_Wait (10);
2006 }
2007 } else
2008 REG_WR (pDevice, SndBdSel.Mode,
2009 data | SND_BD_SEL_MODE_ENABLE);
2010 break;
2011
2012 case T3_BLOCK_SEND_DATA_INITIATOR:
2013 data = REG_RD (pDevice, SndDataIn.Mode);
2014 if (cntrl == LM_DISABLE) {
2015 data &= ~T3_SND_DATA_IN_MODE_ENABLE;
2016 REG_WR (pDevice, SndDataIn.Mode, data);
2017 for (j = 0; j < MaxWaitCnt; j++) {
2018 if (!
2019 (REG_RD (pDevice, SndDataIn.Mode) &
2020 T3_SND_DATA_IN_MODE_ENABLE))
2021 break;
2022 MM_Wait (10);
2023 }
2024 } else
2025 REG_WR (pDevice, SndDataIn.Mode,
2026 data | T3_SND_DATA_IN_MODE_ENABLE);
2027 break;
2028
2029 case T3_BLOCK_SEND_DATA_COMP:
2030 data = REG_RD (pDevice, SndDataComp.Mode);
2031 if (cntrl == LM_DISABLE) {
2032 data &= ~SND_DATA_COMP_MODE_ENABLE;
2033 REG_WR (pDevice, SndDataComp.Mode, data);
2034 for (j = 0; j < MaxWaitCnt; j++) {
2035 if (!
2036 (REG_RD (pDevice, SndDataComp.Mode)
2037 & SND_DATA_COMP_MODE_ENABLE))
2038 break;
2039 MM_Wait (10);
2040 }
2041 } else
2042 REG_WR (pDevice, SndDataComp.Mode,
2043 data | SND_DATA_COMP_MODE_ENABLE);
2044 break;
2045
2046 case T3_BLOCK_MAC_TX_ENGINE:
2047 if (cntrl == LM_DISABLE) {
2048 pDevice->TxMode &= ~TX_MODE_ENABLE;
2049 REG_WR (pDevice, MacCtrl.TxMode,
2050 pDevice->TxMode);
2051 for (j = 0; j < MaxWaitCnt; j++) {
2052 if (!
2053 (REG_RD (pDevice, MacCtrl.TxMode) &
2054 TX_MODE_ENABLE))
2055 break;
2056 MM_Wait (10);
2057 }
2058 } else {
2059 pDevice->TxMode |= TX_MODE_ENABLE;
2060 REG_WR (pDevice, MacCtrl.TxMode,
2061 pDevice->TxMode);
2062 }
2063 break;
2064
2065 case T3_BLOCK_MEM_ARBITOR:
2066 data = REG_RD (pDevice, MemArbiter.Mode);
2067 if (cntrl == LM_DISABLE) {
2068 data &= ~T3_MEM_ARBITER_MODE_ENABLE;
2069 REG_WR (pDevice, MemArbiter.Mode, data);
2070 for (j = 0; j < MaxWaitCnt; j++) {
2071 if (!
2072 (REG_RD (pDevice, MemArbiter.Mode) &
2073 T3_MEM_ARBITER_MODE_ENABLE))
2074 break;
2075 MM_Wait (10);
2076 }
2077 } else
2078 REG_WR (pDevice, MemArbiter.Mode,
2079 data | T3_MEM_ARBITER_MODE_ENABLE);
2080 break;
2081
2082 case T3_BLOCK_MBUF_MANAGER:
2083 data = REG_RD (pDevice, BufMgr.Mode);
2084 if (cntrl == LM_DISABLE) {
2085 data &= ~BUFMGR_MODE_ENABLE;
2086 REG_WR (pDevice, BufMgr.Mode, data);
2087 for (j = 0; j < MaxWaitCnt; j++) {
2088 if (!
2089 (REG_RD (pDevice, BufMgr.Mode) &
2090 BUFMGR_MODE_ENABLE))
2091 break;
2092 MM_Wait (10);
2093 }
2094 } else
2095 REG_WR (pDevice, BufMgr.Mode,
2096 data | BUFMGR_MODE_ENABLE);
2097 break;
2098
2099 case T3_BLOCK_MAC_GLOBAL:
2100 if (cntrl == LM_DISABLE) {
2101 pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE |
2102 MAC_MODE_ENABLE_RDE |
2103 MAC_MODE_ENABLE_FHDE);
2104 } else {
2105 pDevice->MacMode |= (MAC_MODE_ENABLE_TDE |
2106 MAC_MODE_ENABLE_RDE |
2107 MAC_MODE_ENABLE_FHDE);
2108 }
2109 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
2110 break;
2111
2112 default:
2113 return LM_STATUS_FAILURE;
2114 } /* switch */
2115
2116 if (j >= MaxWaitCnt) {
2117 return LM_STATUS_FAILURE;
2118 }
2119 }
2120
2121 return LM_STATUS_SUCCESS;
2122 }
2123
2124 /******************************************************************************/
2125 /* Description: */
2126 /* This function reinitializes the adapter. */
2127 /* */
2128 /* Return: */
2129 /* LM_STATUS_SUCCESS */
2130 /******************************************************************************/
2131 LM_STATUS LM_ResetAdapter (PLM_DEVICE_BLOCK pDevice)
2132 {
2133 LM_UINT32 Value32;
2134 LM_UINT16 Value16;
2135 LM_UINT32 j, k;
2136
2137 /* Disable interrupt. */
2138 LM_DisableInterrupt (pDevice);
2139
2140 /* May get a spurious interrupt */
2141 pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
2142
2143 /* Disable transmit and receive DMA engines. Abort all pending requests. */
2144 if (pDevice->InitDone) {
2145 LM_Abort (pDevice);
2146 }
2147
2148 pDevice->ShuttingDown = FALSE;
2149
2150 LM_ResetChip (pDevice);
2151
2152 /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
2153 /* in other chip revisions. */
2154 if (pDevice->DelayPciGrant) {
2155 Value32 = REG_RD (pDevice, PciCfg.ClockCtrl);
2156 REG_WR (pDevice, PciCfg.ClockCtrl, Value32 | BIT_31);
2157 }
2158
2159 if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
2160 if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
2161 Value32 = REG_RD (pDevice, PciCfg.PciState);
2162 Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
2163 REG_WR (pDevice, PciCfg.PciState, Value32);
2164 }
2165 }
2166
2167 /* Enable TaggedStatus mode. */
2168 if (pDevice->UseTaggedStatus) {
2169 pDevice->MiscHostCtrl |=
2170 MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
2171 }
2172
2173 /* Restore PCI configuration registers. */
2174 MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
2175 pDevice->SavedCacheLineReg);
2176 MM_WriteConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
2177 (pDevice->SubsystemId << 16) | pDevice->
2178 SubsystemVendorId);
2179
2180 /* Clear the statistics block. */
2181 for (j = 0x0300; j < 0x0b00; j++) {
2182 MEM_WR_OFFSET (pDevice, j, 0);
2183 }
2184
2185 /* Initialize the statistis Block */
2186 pDevice->pStatusBlkVirt->Status = 0;
2187 pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
2188 pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
2189 pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
2190
2191 for (j = 0; j < 16; j++) {
2192 pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
2193 pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
2194 }
2195
2196 for (k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT; k++) {
2197 pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
2198 pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
2199 }
2200
2201 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
2202 /* Receive jumbo BD buffer. */
2203 for (k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) {
2204 pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
2205 pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
2206 }
2207 #endif
2208
2209 REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
2210
2211 /* GRC mode control register. */
2212 #ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */
2213 Value32 =
2214 GRC_MODE_WORD_SWAP_DATA |
2215 GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
2216 GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
2217 #else
2218 /* No CPU Swap modes for PCI IO */
2219 Value32 =
2220 #ifdef BIG_ENDIAN_HOST
2221 GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
2222 GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
2223 GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
2224 #else
2225 GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
2226 GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
2227 #endif
2228 GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
2229 #endif /* !BIG_ENDIAN_PCI */
2230
2231 /* Configure send BD mode. */
2232 if (pDevice->NicSendBd == FALSE) {
2233 Value32 |= GRC_MODE_HOST_SEND_BDS;
2234 } else {
2235 Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
2236 }
2237
2238 /* Configure pseudo checksum mode. */
2239 if (pDevice->NoTxPseudoHdrChksum) {
2240 Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
2241 }
2242
2243 if (pDevice->NoRxPseudoHdrChksum) {
2244 Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
2245 }
2246
2247 REG_WR (pDevice, Grc.Mode, Value32);
2248
2249 /* Setup the timer prescalar register. */
2250 REG_WR (pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66MHz. */
2251
2252 /* Set up the MBUF pool base address and size. */
2253 REG_WR (pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
2254 REG_WR (pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
2255
2256 /* Set up the DMA descriptor pool base address and size. */
2257 REG_WR (pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
2258 REG_WR (pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
2259
2260 /* Configure MBUF and Threshold watermarks */
2261 /* Configure the DMA read MBUF low water mark. */
2262 if (pDevice->DmaMbufLowMark) {
2263 REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
2264 pDevice->DmaMbufLowMark);
2265 } else {
2266 if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
2267 REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
2268 T3_DEF_DMA_MBUF_LOW_WMARK);
2269 } else {
2270 REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
2271 T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
2272 }
2273 }
2274
2275 /* Configure the MAC Rx MBUF low water mark. */
2276 if (pDevice->RxMacMbufLowMark) {
2277 REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
2278 pDevice->RxMacMbufLowMark);
2279 } else {
2280 if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
2281 REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
2282 T3_DEF_RX_MAC_MBUF_LOW_WMARK);
2283 } else {
2284 REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
2285 T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
2286 }
2287 }
2288
2289 /* Configure the MBUF high water mark. */
2290 if (pDevice->MbufHighMark) {
2291 REG_WR (pDevice, BufMgr.MbufHighWaterMark,
2292 pDevice->MbufHighMark);
2293 } else {
2294 if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
2295 REG_WR (pDevice, BufMgr.MbufHighWaterMark,
2296 T3_DEF_MBUF_HIGH_WMARK);
2297 } else {
2298 REG_WR (pDevice, BufMgr.MbufHighWaterMark,
2299 T3_DEF_MBUF_HIGH_WMARK_JUMBO);
2300 }
2301 }
2302
2303 REG_WR (pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
2304 REG_WR (pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
2305
2306 /* Enable buffer manager. */
2307 REG_WR (pDevice, BufMgr.Mode,
2308 BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
2309
2310 for (j = 0; j < 2000; j++) {
2311 if (REG_RD (pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
2312 break;
2313 MM_Wait (10);
2314 }
2315
2316 if (j >= 2000) {
2317 return LM_STATUS_FAILURE;
2318 }
2319
2320 /* Enable the FTQs. */
2321 REG_WR (pDevice, Ftq.Reset, 0xffffffff);
2322 REG_WR (pDevice, Ftq.Reset, 0);
2323
2324 /* Wait until FTQ is ready */
2325 for (j = 0; j < 2000; j++) {
2326 if (REG_RD (pDevice, Ftq.Reset) == 0)
2327 break;
2328 MM_Wait (10);
2329 }
2330
2331 if (j >= 2000) {
2332 return LM_STATUS_FAILURE;
2333 }
2334
2335 /* Initialize the Standard Receive RCB. */
2336 REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
2337 pDevice->RxStdBdPhy.High);
2338 REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
2339 pDevice->RxStdBdPhy.Low);
2340 REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
2341 MAX_STD_RCV_BUFFER_SIZE << 16);
2342
2343 /* Initialize the Jumbo Receive RCB. */
2344 REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
2345 T3_RCB_FLAG_RING_DISABLED);
2346 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
2347 REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
2348 pDevice->RxJumboBdPhy.High);
2349 REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
2350 pDevice->RxJumboBdPhy.Low);
2351
2352 REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
2353
2354 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
2355
2356 /* Initialize the Mini Receive RCB. */
2357 REG_WR (pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
2358 T3_RCB_FLAG_RING_DISABLED);
2359
2360 {
2361 REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
2362 (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
2363 REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
2364 (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
2365 }
2366
2367 /* Receive BD Ring replenish threshold. */
2368 REG_WR (pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt / 8);
2369 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
2370 REG_WR (pDevice, RcvBdIn.JumboRcvThreshold,
2371 pDevice->RxJumboDescCnt / 8);
2372 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
2373
2374 /* Disable all the unused rings. */
2375 for (j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
2376 MEM_WR (pDevice, SendRcb[j].u.MaxLen_Flags,
2377 T3_RCB_FLAG_RING_DISABLED);
2378 } /* for */
2379
2380 /* Initialize the indices. */
2381 pDevice->SendProdIdx = 0;
2382 pDevice->SendConIdx = 0;
2383
2384 MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
2385 MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
2386
2387 /* Set up host or NIC based send RCB. */
2388 if (pDevice->NicSendBd == FALSE) {
2389 MEM_WR (pDevice, SendRcb[0].HostRingAddr.High,
2390 pDevice->SendBdPhy.High);
2391 MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low,
2392 pDevice->SendBdPhy.Low);
2393
2394 /* Set up the NIC ring address in the RCB. */
2395 MEM_WR (pDevice, SendRcb[0].NicRingAddr,
2396 T3_NIC_SND_BUFFER_DESC_ADDR);
2397
2398 /* Setup the RCB. */
2399 MEM_WR (pDevice, SendRcb[0].u.MaxLen_Flags,
2400 T3_SEND_RCB_ENTRY_COUNT << 16);
2401
2402 for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
2403 pDevice->pSendBdVirt[k].HostAddr.High = 0;
2404 pDevice->pSendBdVirt[k].HostAddr.Low = 0;
2405 }
2406 } else {
2407 MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, 0);
2408 MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, 0);
2409 MEM_WR (pDevice, SendRcb[0].NicRingAddr,
2410 pDevice->SendBdPhy.Low);
2411
2412 for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
2413 __raw_writel (0,
2414 &(pDevice->pSendBdVirt[k].HostAddr.High));
2415 __raw_writel (0,
2416 &(pDevice->pSendBdVirt[k].HostAddr.Low));
2417 __raw_writel (0,
2418 &(pDevice->pSendBdVirt[k].u1.Len_Flags));
2419 pDevice->ShadowSendBd[k].HostAddr.High = 0;
2420 pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
2421 }
2422 }
2423 atomic_set (&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT - 1);
2424
2425 /* Configure the receive return rings. */
2426 for (j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) {
2427 MEM_WR (pDevice, RcvRetRcb[j].u.MaxLen_Flags,
2428 T3_RCB_FLAG_RING_DISABLED);
2429 }
2430
2431 pDevice->RcvRetConIdx = 0;
2432
2433 MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.High,
2434 pDevice->RcvRetBdPhy.High);
2435 MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.Low,
2436 pDevice->RcvRetBdPhy.Low);
2437
2438 /* Set up the NIC ring address in the RCB. */
2439 /* Not very clear from the spec. I am guessing that for Receive */
2440 /* Return Ring, NicRingAddr is not used. */
2441 MEM_WR (pDevice, RcvRetRcb[0].NicRingAddr, 0);
2442
2443 /* Setup the RCB. */
2444 MEM_WR (pDevice, RcvRetRcb[0].u.MaxLen_Flags,
2445 T3_RCV_RETURN_RCB_ENTRY_COUNT << 16);
2446
2447 /* Reinitialize RX ring producer index */
2448 MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, 0);
2449 MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
2450 MB_REG_WR (pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
2451
2452 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
2453 pDevice->RxJumboProdIdx = 0;
2454 pDevice->RxJumboQueuedCnt = 0;
2455 #endif
2456
2457 /* Reinitialize our copy of the indices. */
2458 pDevice->RxStdProdIdx = 0;
2459 pDevice->RxStdQueuedCnt = 0;
2460
2461 #if T3_JUMBO_RCV_ENTRY_COUNT
2462 pDevice->RxJumboProdIdx = 0;
2463 #endif /* T3_JUMBO_RCV_ENTRY_COUNT */
2464
2465 /* Configure the MAC address. */
2466 LM_SetMacAddress (pDevice);
2467
2468 /* Initialize the transmit random backoff seed. */
2469 Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
2470 pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
2471 pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
2472 MAC_TX_BACKOFF_SEED_MASK;
2473 REG_WR (pDevice, MacCtrl.TxBackoffSeed, Value32);
2474
2475 /* Receive MTU. Frames larger than the MTU is marked as oversized. */
2476 REG_WR (pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
2477
2478 /* Configure Time slot/IPG per 802.3 */
2479 REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
2480
2481 /*
2482 * Configure Receive Rules so that packets don't match
2483 * Programmble rule will be queued to Return Ring 1
2484 */
2485 REG_WR (pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
2486
2487 /*
2488 * Configure to have 16 Classes of Services (COS) and one
2489 * queue per class. Bad frames are queued to RRR#1.
2490 * And frames don't match rules are also queued to COS#1.
2491 */
2492 REG_WR (pDevice, RcvListPlmt.Config, 0x181);
2493
2494 /* Enable Receive Placement Statistics */
2495 REG_WR (pDevice, RcvListPlmt.StatsEnableMask, 0xffffff);
2496 REG_WR (pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
2497
2498 /* Enable Send Data Initator Statistics */
2499 REG_WR (pDevice, SndDataIn.StatsEnableMask, 0xffffff);
2500 REG_WR (pDevice, SndDataIn.StatsCtrl,
2501 T3_SND_DATA_IN_STATS_CTRL_ENABLE |
2502 T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
2503
2504 /* Disable the host coalescing state machine before configuring it's */
2505 /* parameters. */
2506 REG_WR (pDevice, HostCoalesce.Mode, 0);
2507 for (j = 0; j < 2000; j++) {
2508 Value32 = REG_RD (pDevice, HostCoalesce.Mode);
2509 if (!(Value32 & HOST_COALESCE_ENABLE)) {
2510 break;
2511 }
2512 MM_Wait (10);
2513 }
2514
2515 /* Host coalescing configurations. */
2516 REG_WR (pDevice, HostCoalesce.RxCoalescingTicks,
2517 pDevice->RxCoalescingTicks);
2518 REG_WR (pDevice, HostCoalesce.TxCoalescingTicks,
2519 pDevice->TxCoalescingTicks);
2520 REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFrames,
2521 pDevice->RxMaxCoalescedFrames);
2522 REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFrames,
2523 pDevice->TxMaxCoalescedFrames);
2524 REG_WR (pDevice, HostCoalesce.RxCoalescedTickDuringInt,
2525 pDevice->RxCoalescingTicksDuringInt);
2526 REG_WR (pDevice, HostCoalesce.TxCoalescedTickDuringInt,
2527 pDevice->TxCoalescingTicksDuringInt);
2528 REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
2529 pDevice->RxMaxCoalescedFramesDuringInt);
2530 REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
2531 pDevice->TxMaxCoalescedFramesDuringInt);
2532
2533 /* Initialize the address of the status block. The NIC will DMA */
2534 /* the status block to this memory which resides on the host. */
2535 REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.High,
2536 pDevice->StatusBlkPhy.High);
2537 REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.Low,
2538 pDevice->StatusBlkPhy.Low);
2539
2540 /* Initialize the address of the statistics block. The NIC will DMA */
2541 /* the statistics to this block of memory. */
2542 REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.High,
2543 pDevice->StatsBlkPhy.High);
2544 REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.Low,
2545 pDevice->StatsBlkPhy.Low);
2546
2547 REG_WR (pDevice, HostCoalesce.StatsCoalescingTicks,
2548 pDevice->StatsCoalescingTicks);
2549
2550 REG_WR (pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
2551 REG_WR (pDevice, HostCoalesce.StatusBlkNicAddr, 0xb00);
2552
2553 /* Enable Host Coalesing state machine */
2554 REG_WR (pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
2555 pDevice->CoalesceMode);
2556
2557 /* Enable the Receive BD Completion state machine. */
2558 REG_WR (pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
2559 RCV_BD_COMP_MODE_ATTN_ENABLE);
2560
2561 /* Enable the Receive List Placement state machine. */
2562 REG_WR (pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
2563
2564 /* Enable the Receive List Selector state machine. */
2565 REG_WR (pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
2566 RCV_LIST_SEL_MODE_ATTN_ENABLE);
2567
2568 /* Enable transmit DMA, clear statistics. */
2569 pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS |
2570 MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
2571 MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
2572 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
2573 MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
2574
2575 /* GRC miscellaneous local control register. */
2576 pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
2577 GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
2578
2579 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
2580 pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
2581 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
2582 }
2583
2584 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
2585 MM_Wait (40);
2586
2587 /* Reset RX counters. */
2588 for (j = 0; j < sizeof (LM_RX_COUNTERS); j++) {
2589 ((PLM_UINT8) & pDevice->RxCounters)[j] = 0;
2590 }
2591
2592 /* Reset TX counters. */
2593 for (j = 0; j < sizeof (LM_TX_COUNTERS); j++) {
2594 ((PLM_UINT8) & pDevice->TxCounters)[j] = 0;
2595 }
2596
2597 MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
2598
2599 /* Enable the DMA Completion state machine. */
2600 REG_WR (pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
2601
2602 /* Enable the DMA Write state machine. */
2603 Value32 = DMA_WRITE_MODE_ENABLE |
2604 DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
2605 DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
2606 DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
2607 DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
2608 DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
2609 DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
2610 DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
2611 DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
2612 REG_WR (pDevice, DmaWrite.Mode, Value32);
2613
2614 if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
2615 if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
2616 Value16 = REG_RD (pDevice, PciCfg.PciXCommand);
2617 Value16 &=
2618 ~(PCIX_CMD_MAX_SPLIT_MASK |
2619 PCIX_CMD_MAX_BURST_MASK);
2620 Value16 |=
2621 ((PCIX_CMD_MAX_BURST_CPIOB <<
2622 PCIX_CMD_MAX_BURST_SHL) &
2623 PCIX_CMD_MAX_BURST_MASK);
2624 if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
2625 Value16 |=
2626 (pDevice->
2627 SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
2628 & PCIX_CMD_MAX_SPLIT_MASK;
2629 }
2630 REG_WR (pDevice, PciCfg.PciXCommand, Value16);
2631 }
2632 }
2633
2634 /* Enable the Read DMA state machine. */
2635 Value32 = DMA_READ_MODE_ENABLE |
2636 DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
2637 DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
2638 DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
2639 DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
2640 DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
2641 DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
2642 DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
2643 DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
2644
2645 if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
2646 Value32 |= DMA_READ_MODE_SPLIT_ENABLE;
2647 }
2648 REG_WR (pDevice, DmaRead.Mode, Value32);
2649
2650 /* Enable the Receive Data Completion state machine. */
2651 REG_WR (pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
2652 RCV_DATA_COMP_MODE_ATTN_ENABLE);
2653
2654 /* Enable the Mbuf Cluster Free state machine. */
2655 REG_WR (pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
2656
2657 /* Enable the Send Data Completion state machine. */
2658 REG_WR (pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
2659
2660 /* Enable the Send BD Completion state machine. */
2661 REG_WR (pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
2662 SND_BD_COMP_MODE_ATTN_ENABLE);
2663
2664 /* Enable the Receive BD Initiator state machine. */
2665 REG_WR (pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
2666 RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
2667
2668 /* Enable the Receive Data and Receive BD Initiator state machine. */
2669 REG_WR (pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
2670 RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
2671
2672 /* Enable the Send Data Initiator state machine. */
2673 REG_WR (pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
2674
2675 /* Enable the Send BD Initiator state machine. */
2676 REG_WR (pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
2677 SND_BD_IN_MODE_ATTN_ENABLE);
2678
2679 /* Enable the Send BD Selector state machine. */
2680 REG_WR (pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
2681 SND_BD_SEL_MODE_ATTN_ENABLE);
2682
2683 #if INCLUDE_5701_AX_FIX
2684 /* Load the firmware for the 5701_A0 workaround. */
2685 if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0) {
2686 LM_LoadRlsFirmware (pDevice);
2687 }
2688 #endif
2689
2690 /* Enable the transmitter. */
2691 pDevice->TxMode = TX_MODE_ENABLE;
2692 REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
2693
2694 /* Enable the receiver. */
2695 pDevice->RxMode = RX_MODE_ENABLE;
2696 REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
2697
2698 if (pDevice->RestoreOnWakeUp) {
2699 pDevice->RestoreOnWakeUp = FALSE;
2700 pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
2701 pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType;
2702 }
2703
2704 /* Disable auto polling. */
2705 pDevice->MiMode = 0xc0000;
2706 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
2707
2708 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
2709 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
2710 Value32 = LED_CTRL_PHY_MODE_1;
2711 } else {
2712 if (pDevice->LedMode == LED_MODE_OUTPUT) {
2713 Value32 = LED_CTRL_PHY_MODE_2;
2714 } else {
2715 Value32 = LED_CTRL_PHY_MODE_1;
2716 }
2717 }
2718 REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
2719
2720 /* Activate Link to enable MAC state machine */
2721 REG_WR (pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
2722
2723 if (pDevice->EnableTbi) {
2724 REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_RESET);
2725 MM_Wait (10);
2726 REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
2727 if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) {
2728 REG_WR (pDevice, MacCtrl.SerdesCfg, 0x616000);
2729 }
2730 }
2731 /* Setup the phy chip. */
2732 LM_SetupPhy (pDevice);
2733
2734 if (!pDevice->EnableTbi) {
2735 /* Clear CRC stats */
2736 LM_ReadPhy (pDevice, 0x1e, &Value32);
2737 LM_WritePhy (pDevice, 0x1e, Value32 | 0x8000);
2738 LM_ReadPhy (pDevice, 0x14, &Value32);
2739 }
2740
2741 /* Set up the receive mask. */
2742 LM_SetReceiveMask (pDevice, pDevice->ReceiveMask);
2743
2744 /* Queue Rx packet buffers. */
2745 if (pDevice->QueueRxPackets) {
2746 LM_QueueRxPackets (pDevice);
2747 }
2748
2749 /* Enable interrupt to the host. */
2750 if (pDevice->InitDone) {
2751 LM_EnableInterrupt (pDevice);
2752 }
2753
2754 return LM_STATUS_SUCCESS;
2755 } /* LM_ResetAdapter */
2756
2757 /******************************************************************************/
2758 /* Description: */
2759 /* This routine disables the adapter from generating interrupts. */
2760 /* */
2761 /* Return: */
2762 /* LM_STATUS_SUCCESS */
2763 /******************************************************************************/
2764 LM_STATUS LM_DisableInterrupt (PLM_DEVICE_BLOCK pDevice)
2765 {
2766 REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
2767 MISC_HOST_CTRL_MASK_PCI_INT);
2768 MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 1);
2769
2770 return LM_STATUS_SUCCESS;
2771 }
2772
2773 /******************************************************************************/
2774 /* Description: */
2775 /* This routine enables the adapter to generate interrupts. */
2776 /* */
2777 /* Return: */
2778 /* LM_STATUS_SUCCESS */
2779 /******************************************************************************/
2780 LM_STATUS LM_EnableInterrupt (PLM_DEVICE_BLOCK pDevice)
2781 {
2782 REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
2783 ~MISC_HOST_CTRL_MASK_PCI_INT);
2784 MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
2785
2786 if (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) {
2787 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
2788 GRC_MISC_LOCAL_CTRL_SET_INT);
2789 }
2790
2791 return LM_STATUS_SUCCESS;
2792 }
2793
2794 /******************************************************************************/
2795 /* Description: */
2796 /* This routine puts a packet on the wire if there is a transmit DMA */
2797 /* descriptor available; otherwise the packet is queued for later */
2798 /* transmission. If the second argue is NULL, this routine will put */
2799 /* the queued packet on the wire if possible. */
2800 /* */
2801 /* Return: */
2802 /* LM_STATUS_SUCCESS */
2803 /******************************************************************************/
2804 #if 0
2805 LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
2806 {
2807 LM_UINT32 FragCount;
2808 PT3_SND_BD pSendBd;
2809 PT3_SND_BD pShadowSendBd;
2810 LM_UINT32 Value32, Len;
2811 LM_UINT32 Idx;
2812
2813 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
2814 return LM_5700SendPacket (pDevice, pPacket);
2815 }
2816
2817 /* Update the SendBdLeft count. */
2818 atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
2819
2820 /* Initalize the send buffer descriptors. */
2821 Idx = pDevice->SendProdIdx;
2822
2823 pSendBd = &pDevice->pSendBdVirt[Idx];
2824
2825 /* Next producer index. */
2826 if (pDevice->NicSendBd == TRUE) {
2827 T3_64BIT_HOST_ADDR paddr;
2828
2829 pShadowSendBd = &pDevice->ShadowSendBd[Idx];
2830 for (FragCount = 0;;) {
2831 MM_MapTxDma (pDevice, pPacket, &paddr, &Len, FragCount);
2832 /* Initialize the pointer to the send buffer fragment. */
2833 if (paddr.High != pShadowSendBd->HostAddr.High) {
2834 __raw_writel (paddr.High,
2835 &(pSendBd->HostAddr.High));
2836 pShadowSendBd->HostAddr.High = paddr.High;
2837 }
2838 __raw_writel (paddr.Low, &(pSendBd->HostAddr.Low));
2839
2840 /* Setup the control flags and send buffer size. */
2841 Value32 = (Len << 16) | pPacket->Flags;
2842
2843 Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
2844
2845 FragCount++;
2846 if (FragCount >= pPacket->u.Tx.FragCount) {
2847 Value32 |= SND_BD_FLAG_END;
2848 if (Value32 != pShadowSendBd->u1.Len_Flags) {
2849 __raw_writel (Value32,
2850 &(pSendBd->u1.Len_Flags));
2851 pShadowSendBd->u1.Len_Flags = Value32;
2852 }
2853 if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
2854 __raw_writel (pPacket->VlanTag,
2855 &(pSendBd->u2.VlanTag));
2856 }
2857 break;
2858 } else {
2859 if (Value32 != pShadowSendBd->u1.Len_Flags) {
2860 __raw_writel (Value32,
2861 &(pSendBd->u1.Len_Flags));
2862 pShadowSendBd->u1.Len_Flags = Value32;
2863 }
2864 if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
2865 __raw_writel (pPacket->VlanTag,
2866 &(pSendBd->u2.VlanTag));
2867 }
2868 }
2869
2870 pSendBd++;
2871 pShadowSendBd++;
2872 if (Idx == 0) {
2873 pSendBd = &pDevice->pSendBdVirt[0];
2874 pShadowSendBd = &pDevice->ShadowSendBd[0];
2875 }
2876 } /* for */
2877
2878 /* Put the packet descriptor in the ActiveQ. */
2879 QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
2880
2881 wmb ();
2882 MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
2883
2884 } else {
2885 for (FragCount = 0;;) {
2886 /* Initialize the pointer to the send buffer fragment. */
2887 MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
2888 FragCount);
2889
2890 pSendBd->u2.VlanTag = pPacket->VlanTag;
2891
2892 /* Setup the control flags and send buffer size. */
2893 Value32 = (Len << 16) | pPacket->Flags;
2894
2895 Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
2896
2897 FragCount++;
2898 if (FragCount >= pPacket->u.Tx.FragCount) {
2899 pSendBd->u1.Len_Flags =
2900 Value32 | SND_BD_FLAG_END;
2901 break;
2902 } else {
2903 pSendBd->u1.Len_Flags = Value32;
2904 }
2905 pSendBd++;
2906 if (Idx == 0) {
2907 pSendBd = &pDevice->pSendBdVirt[0];
2908 }
2909 } /* for */
2910
2911 /* Put the packet descriptor in the ActiveQ. */
2912 QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
2913
2914 wmb ();
2915 MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
2916
2917 }
2918
2919 /* Update the producer index. */
2920 pDevice->SendProdIdx = Idx;
2921
2922 return LM_STATUS_SUCCESS;
2923 }
2924 #endif
2925
2926 LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
2927 {
2928 LM_UINT32 FragCount;
2929 PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd;
2930 T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
2931 LM_UINT32 StartIdx, Idx;
2932
2933 while (1) {
2934 /* Initalize the send buffer descriptors. */
2935 StartIdx = Idx = pDevice->SendProdIdx;
2936
2937 if (pDevice->NicSendBd) {
2938 pTmpSendBd = pSendBd = &NicSendBdArr[0];
2939 } else {
2940 pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
2941 }
2942
2943 /* Next producer index. */
2944 for (FragCount = 0;;) {
2945 LM_UINT32 Value32, Len;
2946
2947 /* Initialize the pointer to the send buffer fragment. */
2948 MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
2949 FragCount);
2950
2951 pSendBd->u2.VlanTag = pPacket->VlanTag;
2952
2953 /* Setup the control flags and send buffer size. */
2954 Value32 = (Len << 16) | pPacket->Flags;
2955
2956 Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
2957
2958 FragCount++;
2959 if (FragCount >= pPacket->u.Tx.FragCount) {
2960 pSendBd->u1.Len_Flags =
2961 Value32 | SND_BD_FLAG_END;
2962 break;
2963 } else {
2964 pSendBd->u1.Len_Flags = Value32;
2965 }
2966 pSendBd++;
2967 if ((Idx == 0) && !pDevice->NicSendBd) {
2968 pSendBd = &pDevice->pSendBdVirt[0];
2969 }
2970 } /* for */
2971 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
2972 if (LM_Test4GBoundary (pDevice, pPacket, pTmpSendBd) ==
2973 LM_STATUS_SUCCESS) {
2974 if (MM_CoalesceTxBuffer (pDevice, pPacket) !=
2975 LM_STATUS_SUCCESS) {
2976 QQ_PushHead (&pDevice->TxPacketFreeQ.
2977 Container, pPacket);
2978 return LM_STATUS_FAILURE;
2979 }
2980 continue;
2981 }
2982 }
2983 break;
2984 }
2985 /* Put the packet descriptor in the ActiveQ. */
2986 QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
2987
2988 if (pDevice->NicSendBd) {
2989 pSendBd = &pDevice->pSendBdVirt[StartIdx];
2990 pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
2991
2992 while (StartIdx != Idx) {
2993 LM_UINT32 Value32;
2994
2995 if ((Value32 = pTmpSendBd->HostAddr.High) !=
2996 pShadowSendBd->HostAddr.High) {
2997 __raw_writel (Value32,
2998 &(pSendBd->HostAddr.High));
2999 pShadowSendBd->HostAddr.High = Value32;
3000 }
3001
3002 __raw_writel (pTmpSendBd->HostAddr.Low,
3003 &(pSendBd->HostAddr.Low));
3004
3005 if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
3006 pShadowSendBd->u1.Len_Flags) {
3007 __raw_writel (Value32,
3008 &(pSendBd->u1.Len_Flags));
3009 pShadowSendBd->u1.Len_Flags = Value32;
3010 }
3011
3012 if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
3013 __raw_writel (pTmpSendBd->u2.VlanTag,
3014 &(pSendBd->u2.VlanTag));
3015 }
3016
3017 StartIdx =
3018 (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
3019 if (StartIdx == 0)
3020 pSendBd = &pDevice->pSendBdVirt[0];
3021 else
3022 pSendBd++;
3023 pTmpSendBd++;
3024 }
3025 wmb ();
3026 MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
3027
3028 if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
3029 MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
3030 }
3031 } else {
3032 wmb ();
3033 MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
3034
3035 if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
3036 MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low,
3037 Idx);
3038 }
3039 }
3040
3041 /* Update the SendBdLeft count. */
3042 atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
3043
3044 /* Update the producer index. */
3045 pDevice->SendProdIdx = Idx;
3046
3047 return LM_STATUS_SUCCESS;
3048 }
3049
3050 STATIC LM_STATUS
3051 LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
3052 PT3_SND_BD pSendBd)
3053 {
3054 int FragCount;
3055 LM_UINT32 Idx, Base, Len;
3056
3057 Idx = pDevice->SendProdIdx;
3058 for (FragCount = 0;;) {
3059 Len = pSendBd->u1.Len_Flags >> 16;
3060 if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
3061 (pSendBd->HostAddr.High == 0) &&
3062 ((Base + 8 + Len) < Base)) {
3063 return LM_STATUS_SUCCESS;
3064 }
3065 FragCount++;
3066 if (FragCount >= pPacket->u.Tx.FragCount) {
3067 break;
3068 }
3069 pSendBd++;
3070 if (!pDevice->NicSendBd) {
3071 Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
3072 if (Idx == 0) {
3073 pSendBd = &pDevice->pSendBdVirt[0];
3074 }
3075 }
3076 }
3077 return LM_STATUS_FAILURE;
3078 }
3079
3080 /******************************************************************************/
3081 /* Description: */
3082 /* */
3083 /* Return: */
3084 /******************************************************************************/
3085 __inline static unsigned long
3086 ComputeCrc32 (unsigned char *pBuffer, unsigned long BufferSize)
3087 {
3088 unsigned long Reg;
3089 unsigned long Tmp;
3090 unsigned long j, k;
3091
3092 Reg = 0xffffffff;
3093
3094 for (j = 0; j < BufferSize; j++) {
3095 Reg ^= pBuffer[j];
3096
3097 for (k = 0; k < 8; k++) {
3098 Tmp = Reg & 0x01;
3099
3100 Reg >>= 1;
3101
3102 if (Tmp) {
3103 Reg ^= 0xedb88320;
3104 }
3105 }
3106 }
3107
3108 return ~Reg;
3109 } /* ComputeCrc32 */
3110
3111 /******************************************************************************/
3112 /* Description: */
3113 /* This routine sets the receive control register according to ReceiveMask */
3114 /* */
3115 /* Return: */
3116 /* LM_STATUS_SUCCESS */
3117 /******************************************************************************/
3118 LM_STATUS LM_SetReceiveMask (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
3119 {
3120 LM_UINT32 ReceiveMask;
3121 LM_UINT32 RxMode;
3122 LM_UINT32 j, k;
3123
3124 ReceiveMask = Mask;
3125
3126 RxMode = pDevice->RxMode;
3127
3128 if (Mask & LM_ACCEPT_UNICAST) {
3129 Mask &= ~LM_ACCEPT_UNICAST;
3130 }
3131
3132 if (Mask & LM_ACCEPT_MULTICAST) {
3133 Mask &= ~LM_ACCEPT_MULTICAST;
3134 }
3135
3136 if (Mask & LM_ACCEPT_ALL_MULTICAST) {
3137 Mask &= ~LM_ACCEPT_ALL_MULTICAST;
3138 }
3139
3140 if (Mask & LM_ACCEPT_BROADCAST) {
3141 Mask &= ~LM_ACCEPT_BROADCAST;
3142 }
3143
3144 RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
3145 if (Mask & LM_PROMISCUOUS_MODE) {
3146 RxMode |= RX_MODE_PROMISCUOUS_MODE;
3147 Mask &= ~LM_PROMISCUOUS_MODE;
3148 }
3149
3150 RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
3151 if (Mask & LM_ACCEPT_ERROR_PACKET) {
3152 RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
3153 Mask &= ~LM_ACCEPT_ERROR_PACKET;
3154 }
3155
3156 /* Make sure all the bits are valid before committing changes. */
3157 if (Mask) {
3158 return LM_STATUS_FAILURE;
3159 }
3160
3161 /* Commit the new filter. */
3162 pDevice->RxMode = RxMode;
3163 REG_WR (pDevice, MacCtrl.RxMode, RxMode);
3164
3165 pDevice->ReceiveMask = ReceiveMask;
3166
3167 /* Set up the MC hash table. */
3168 if (ReceiveMask & LM_ACCEPT_ALL_MULTICAST) {
3169 for (k = 0; k < 4; k++) {
3170 REG_WR (pDevice, MacCtrl.HashReg[k], 0xffffffff);
3171 }
3172 } else if (ReceiveMask & LM_ACCEPT_MULTICAST) {
3173 LM_UINT32 HashReg[4];
3174
3175 HashReg[0] = 0;
3176 HashReg[1] = 0;
3177 HashReg[2] = 0;
3178 HashReg[3] = 0;
3179 for (j = 0; j < pDevice->McEntryCount; j++) {
3180 LM_UINT32 RegIndex;
3181 LM_UINT32 Bitpos;
3182 LM_UINT32 Crc32;
3183
3184 Crc32 =
3185 ComputeCrc32 (pDevice->McTable[j],
3186 ETHERNET_ADDRESS_SIZE);
3187
3188 /* The most significant 7 bits of the CRC32 (no inversion), */
3189 /* are used to index into one of the possible 128 bit positions. */
3190 Bitpos = ~Crc32 & 0x7f;
3191
3192 /* Hash register index. */
3193 RegIndex = (Bitpos & 0x60) >> 5;
3194
3195 /* Bit to turn on within a hash register. */
3196 Bitpos &= 0x1f;
3197
3198 /* Enable the multicast bit. */
3199 HashReg[RegIndex] |= (1 << Bitpos);
3200 }
3201
3202 /* REV_AX has problem with multicast filtering where it uses both */
3203 /* DA and SA to perform hashing. */
3204 for (k = 0; k < 4; k++) {
3205 REG_WR (pDevice, MacCtrl.HashReg[k], HashReg[k]);
3206 }
3207 } else {
3208 /* Reject all multicast frames. */
3209 for (j = 0; j < 4; j++) {
3210 REG_WR (pDevice, MacCtrl.HashReg[j], 0);
3211 }
3212 }
3213
3214 /* By default, Tigon3 will accept broadcast frames. We need to setup */
3215 if (ReceiveMask & LM_ACCEPT_BROADCAST) {
3216 REG_WR (pDevice,
3217 MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
3218 REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
3219 REG_WR (pDevice,
3220 MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
3221 REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
3222 REG_WR (pDevice,
3223 MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
3224 REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
3225 REG_WR (pDevice,
3226 MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
3227 REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
3228 } else {
3229 REG_WR (pDevice,
3230 MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
3231 REJECT_BROADCAST_RULE1_RULE);
3232 REG_WR (pDevice,
3233 MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
3234 REJECT_BROADCAST_RULE1_VALUE);
3235 REG_WR (pDevice,
3236 MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
3237 REJECT_BROADCAST_RULE2_RULE);
3238 REG_WR (pDevice,
3239 MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
3240 REJECT_BROADCAST_RULE2_VALUE);
3241 }
3242
3243 /* disable the rest of the rules. */
3244 for (j = RCV_LAST_RULE_IDX; j < 16; j++) {
3245 REG_WR (pDevice, MacCtrl.RcvRules[j].Rule, 0);
3246 REG_WR (pDevice, MacCtrl.RcvRules[j].Value, 0);
3247 }
3248
3249 return LM_STATUS_SUCCESS;
3250 } /* LM_SetReceiveMask */
3251
3252 /******************************************************************************/
3253 /* Description: */
3254 /* Disable the interrupt and put the transmitter and receiver engines in */
3255 /* an idle state. Also aborts all pending send requests and receive */
3256 /* buffers. */
3257 /* */
3258 /* Return: */
3259 /* LM_STATUS_SUCCESS */
3260 /******************************************************************************/
3261 LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice)
3262 {
3263 PLM_PACKET pPacket;
3264 LM_UINT Idx;
3265
3266 LM_DisableInterrupt (pDevice);
3267
3268 /* Disable all the state machines. */
3269 LM_CntrlBlock (pDevice, T3_BLOCK_MAC_RX_ENGINE, LM_DISABLE);
3270 LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_INITIATOR, LM_DISABLE);
3271 LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_PLMT, LM_DISABLE);
3272 LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_SELECTOR, LM_DISABLE);
3273 LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_INITIATOR, LM_DISABLE);
3274 LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_COMP, LM_DISABLE);
3275 LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_COMP, LM_DISABLE);
3276
3277 LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_SELECTOR, LM_DISABLE);
3278 LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_INITIATOR, LM_DISABLE);
3279 LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_INITIATOR, LM_DISABLE);
3280 LM_CntrlBlock (pDevice, T3_BLOCK_DMA_RD, LM_DISABLE);
3281 LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_COMP, LM_DISABLE);
3282 LM_CntrlBlock (pDevice, T3_BLOCK_DMA_COMP, LM_DISABLE);
3283 LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_COMP, LM_DISABLE);
3284
3285 /* Clear TDE bit */
3286 pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
3287 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
3288
3289 LM_CntrlBlock (pDevice, T3_BLOCK_MAC_TX_ENGINE, LM_DISABLE);
3290 LM_CntrlBlock (pDevice, T3_BLOCK_HOST_COALESING, LM_DISABLE);
3291 LM_CntrlBlock (pDevice, T3_BLOCK_DMA_WR, LM_DISABLE);
3292 LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_CLUSTER_FREE, LM_DISABLE);
3293
3294 /* Reset all FTQs */
3295 REG_WR (pDevice, Ftq.Reset, 0xffffffff);
3296 REG_WR (pDevice, Ftq.Reset, 0x0);
3297
3298 LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_MANAGER, LM_DISABLE);
3299 LM_CntrlBlock (pDevice, T3_BLOCK_MEM_ARBITOR, LM_DISABLE);
3300
3301 MM_ACQUIRE_INT_LOCK (pDevice);
3302
3303 /* Abort packets that have already queued to go out. */
3304 pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
3305 while (pPacket) {
3306
3307 pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
3308 pDevice->TxCounters.TxPacketAbortedCnt++;
3309
3310 atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
3311
3312 QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
3313
3314 pPacket = (PLM_PACKET)
3315 QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
3316 }
3317
3318 /* Cleanup the receive return rings. */
3319 LM_ServiceRxInterrupt (pDevice);
3320
3321 /* Don't want to indicate rx packets in Ndis miniport shutdown context. */
3322 /* Doing so may cause system crash. */
3323 if (!pDevice->ShuttingDown) {
3324 /* Indicate packets to the protocol. */
3325 MM_IndicateTxPackets (pDevice);
3326
3327 /* Indicate received packets to the protocols. */
3328 MM_IndicateRxPackets (pDevice);
3329 } else {
3330 /* Move the receive packet descriptors in the ReceivedQ to the */
3331 /* free queue. */
3332 for (;;) {
3333 pPacket =
3334 (PLM_PACKET) QQ_PopHead (&pDevice->
3335 RxPacketReceivedQ.
3336 Container);
3337 if (pPacket == NULL) {
3338 break;
3339 }
3340 QQ_PushTail (&pDevice->RxPacketFreeQ.Container,
3341 pPacket);
3342 }
3343 }
3344
3345 /* Clean up the Std Receive Producer ring. */
3346 Idx = pDevice->pStatusBlkVirt->RcvStdConIdx;
3347
3348 while (Idx != pDevice->RxStdProdIdx) {
3349 pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
3350 MM_UINT_PTR (pDevice->pRxStdBdVirt[Idx].
3351 Opaque));
3352
3353 QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
3354
3355 Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
3356 } /* while */
3357
3358 /* Reinitialize our copy of the indices. */
3359 pDevice->RxStdProdIdx = 0;
3360
3361 #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
3362 /* Clean up the Jumbo Receive Producer ring. */
3363 Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx;
3364
3365 while (Idx != pDevice->RxJumboProdIdx) {
3366 pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
3367 MM_UINT_PTR (pDevice->
3368 pRxJumboBdVirt[Idx].
3369 Opaque));
3370
3371 QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
3372
3373 Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
3374 } /* while */
3375
3376 /* Reinitialize our copy of the indices. */
3377 pDevice->RxJumboProdIdx = 0;
3378 #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
3379
3380 MM_RELEASE_INT_LOCK (pDevice);
3381
3382 /* Initialize the statistis Block */
3383 pDevice->pStatusBlkVirt->Status = 0;
3384 pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
3385 pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
3386 pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
3387
3388 return LM_STATUS_SUCCESS;
3389 } /* LM_Abort */
3390
3391 /******************************************************************************/
3392 /* Description: */
3393 /* Disable the interrupt and put the transmitter and receiver engines in */
3394 /* an idle state. Aborts all pending send requests and receive buffers. */
3395 /* Also free all the receive buffers. */
3396 /* */
3397 /* Return: */
3398 /* LM_STATUS_SUCCESS */
3399 /******************************************************************************/
3400 LM_STATUS LM_Halt (PLM_DEVICE_BLOCK pDevice)
3401 {
3402 PLM_PACKET pPacket;
3403 LM_UINT32 EntryCnt;
3404
3405 LM_Abort (pDevice);
3406
3407 /* Get the number of entries in the queue. */
3408 EntryCnt = QQ_GetEntryCnt (&pDevice->RxPacketFreeQ.Container);
3409
3410 /* Make sure all the packets have been accounted for. */
3411 for (EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) {
3412 pPacket =
3413 (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
3414 if (pPacket == 0)
3415 break;
3416
3417 MM_FreeRxBuffer (pDevice, pPacket);
3418
3419 QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
3420 }
3421
3422 LM_ResetChip (pDevice);
3423
3424 /* Restore PCI configuration registers. */
3425 MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
3426 pDevice->SavedCacheLineReg);
3427 LM_RegWrInd (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
3428 (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
3429
3430 /* Reprogram the MAC address. */
3431 LM_SetMacAddress (pDevice);
3432
3433 return LM_STATUS_SUCCESS;
3434 } /* LM_Halt */
3435
3436 STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice)
3437 {
3438 LM_UINT32 Value32;
3439 LM_UINT32 j;
3440
3441 /* Wait for access to the nvram interface before resetting. This is */
3442 /* a workaround to prevent EEPROM corruption. */
3443 if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
3444 T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
3445 /* Request access to the flash interface. */
3446 REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
3447
3448 for (j = 0; j < 100000; j++) {
3449 Value32 = REG_RD (pDevice, Nvram.SwArb);
3450 if (Value32 & SW_ARB_GNT1) {
3451 break;
3452 }
3453 MM_Wait (10);
3454 }
3455 }
3456
3457 /* Global reset. */
3458 REG_WR (pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET);
3459 MM_Wait (40);
3460 MM_Wait (40);
3461 MM_Wait (40);
3462
3463 /* make sure we re-enable indirect accesses */
3464 MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
3465 pDevice->MiscHostCtrl);
3466
3467 /* Set MAX PCI retry to zero. */
3468 Value32 =
3469 T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
3470 if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
3471 if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
3472 Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
3473 }
3474 }
3475 MM_WriteConfig32 (pDevice, T3_PCI_STATE_REG, Value32);
3476
3477 /* Restore PCI command register. */
3478 MM_WriteConfig32 (pDevice, PCI_COMMAND_REG,
3479 pDevice->PciCommandStatusWords);
3480
3481 /* Disable PCI-X relaxed ordering bit. */
3482 MM_ReadConfig32 (pDevice, PCIX_CAP_REG, &Value32);
3483 Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
3484 MM_WriteConfig32 (pDevice, PCIX_CAP_REG, Value32);
3485
3486 /* Enable memory arbiter. */
3487 REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
3488
3489 #ifdef BIG_ENDIAN_PCI /* This from jfd */
3490 Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
3491 #else
3492 #ifdef BIG_ENDIAN_HOST
3493 /* Reconfigure the mode register. */
3494 Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
3495 GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
3496 GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA;
3497 #else
3498 /* Reconfigure the mode register. */
3499 Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
3500 #endif
3501 #endif
3502 REG_WR (pDevice, Grc.Mode, Value32);
3503
3504 /* Prevent PXE from restarting. */
3505 MEM_WR_OFFSET (pDevice, 0x0b50, T3_MAGIC_NUM);
3506
3507 if (pDevice->EnableTbi) {
3508 pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
3509 REG_WR (pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI);
3510 } else {
3511 REG_WR (pDevice, MacCtrl.Mode, 0);
3512 }
3513
3514 /* Wait for the firmware to finish initialization. */
3515 for (j = 0; j < 100000; j++) {
3516 MM_Wait (10);
3517
3518 Value32 = MEM_RD_OFFSET (pDevice, 0x0b50);
3519 if (Value32 == ~T3_MAGIC_NUM) {
3520 break;
3521 }
3522 }
3523 return LM_STATUS_SUCCESS;
3524 }
3525
3526 /******************************************************************************/
3527 /* Description: */
3528 /* */
3529 /* Return: */
3530 /******************************************************************************/
3531 __inline static void LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice)
3532 {
3533 PLM_PACKET pPacket;
3534 LM_UINT32 HwConIdx;
3535 LM_UINT32 SwConIdx;
3536
3537 HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
3538
3539 /* Get our copy of the consumer index. The buffer descriptors */
3540 /* that are in between the consumer indices are freed. */
3541 SwConIdx = pDevice->SendConIdx;
3542
3543 /* Move the packets from the TxPacketActiveQ that are sent out to */
3544 /* the TxPacketXmittedQ. Packets that are sent use the */
3545 /* descriptors that are between SwConIdx and HwConIdx. */
3546 while (SwConIdx != HwConIdx) {
3547 /* Get the packet that was sent from the TxPacketActiveQ. */
3548 pPacket =
3549 (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.
3550 Container);
3551
3552 /* Set the return status. */
3553 pPacket->PacketStatus = LM_STATUS_SUCCESS;
3554
3555 /* Put the packet in the TxPacketXmittedQ for indication later. */
3556 QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
3557
3558 /* Move to the next packet's BD. */
3559 SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
3560 T3_SEND_RCB_ENTRY_COUNT_MASK;
3561
3562 /* Update the number of unused BDs. */
3563 atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
3564
3565 /* Get the new updated HwConIdx. */
3566 HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
3567 } /* while */
3568
3569 /* Save the new SwConIdx. */
3570 pDevice->SendConIdx = SwConIdx;
3571
3572 } /* LM_ServiceTxInterrupt */
3573
3574 /******************************************************************************/
3575 /* Description: */
3576 /* */
3577 /* Return: */
3578 /******************************************************************************/
3579 __inline static void LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice)
3580 {
3581 PLM_PACKET pPacket;
3582 PT3_RCV_BD pRcvBd;
3583 LM_UINT32 HwRcvRetProdIdx;
3584 LM_UINT32 SwRcvRetConIdx;
3585
3586 /* Loop thru the receive return rings for received packets. */
3587 HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
3588
3589 SwRcvRetConIdx = pDevice->RcvRetConIdx;
3590 while (SwRcvRetConIdx != HwRcvRetProdIdx) {
3591 pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
3592
3593 /* Get the received packet descriptor. */
3594 pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
3595 MM_UINT_PTR (pRcvBd->Opaque));
3596
3597 /* Check the error flag. */
3598 if (pRcvBd->ErrorFlag &&
3599 pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
3600 pPacket->PacketStatus = LM_STATUS_FAILURE;
3601
3602 pDevice->RxCounters.RxPacketErrCnt++;
3603
3604 if (pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) {
3605 pDevice->RxCounters.RxErrCrcCnt++;
3606 }
3607
3608 if (pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) {
3609 pDevice->RxCounters.RxErrCollCnt++;
3610 }
3611
3612 if (pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) {
3613 pDevice->RxCounters.RxErrLinkLostCnt++;
3614 }
3615
3616 if (pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) {
3617 pDevice->RxCounters.RxErrPhyDecodeCnt++;
3618 }
3619
3620 if (pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
3621 pDevice->RxCounters.RxErrOddNibbleCnt++;
3622 }
3623
3624 if (pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) {
3625 pDevice->RxCounters.RxErrMacAbortCnt++;
3626 }
3627
3628 if (pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) {
3629 pDevice->RxCounters.RxErrShortPacketCnt++;
3630 }
3631
3632 if (pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) {
3633 pDevice->RxCounters.RxErrNoResourceCnt++;
3634 }
3635
3636 if (pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) {
3637 pDevice->RxCounters.RxErrLargePacketCnt++;
3638 }
3639 } else {
3640 pPacket->PacketStatus = LM_STATUS_SUCCESS;
3641 pPacket->PacketSize = pRcvBd->Len - 4;
3642
3643 pPacket->Flags = pRcvBd->Flags;
3644 if (pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) {
3645 pPacket->VlanTag = pRcvBd->VlanTag;
3646 }
3647
3648 pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
3649 }
3650
3651 /* Put the packet descriptor containing the received packet */
3652 /* buffer in the RxPacketReceivedQ for indication later. */
3653 QQ_PushTail (&pDevice->RxPacketReceivedQ.Container, pPacket);
3654
3655 /* Go to the next buffer descriptor. */
3656 SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
3657 T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
3658
3659 /* Get the updated HwRcvRetProdIdx. */
3660 HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
3661 } /* while */
3662
3663 pDevice->RcvRetConIdx = SwRcvRetConIdx;
3664
3665 /* Update the receive return ring consumer index. */
3666 MB_REG_WR (pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
3667 } /* LM_ServiceRxInterrupt */
3668
3669 /******************************************************************************/
3670 /* Description: */
3671 /* This is the interrupt event handler routine. It acknowledges all */
3672 /* pending interrupts and process all pending events. */
3673 /* */
3674 /* Return: */
3675 /* LM_STATUS_SUCCESS */
3676 /******************************************************************************/
3677 LM_STATUS LM_ServiceInterrupts (PLM_DEVICE_BLOCK pDevice)
3678 {
3679 LM_UINT32 Value32;
3680 int ServicePhyInt = FALSE;
3681
3682 /* Setup the phy chip whenever the link status changes. */
3683 if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) {
3684 Value32 = REG_RD (pDevice, MacCtrl.Status);
3685 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
3686 if (Value32 & MAC_STATUS_MI_INTERRUPT) {
3687 ServicePhyInt = TRUE;
3688 }
3689 } else if (Value32 & MAC_STATUS_LINK_STATE_CHANGED) {
3690 ServicePhyInt = TRUE;
3691 }
3692 } else {
3693 if (pDevice->pStatusBlkVirt->
3694 Status & STATUS_BLOCK_LINK_CHANGED_STATUS) {
3695 pDevice->pStatusBlkVirt->Status =
3696 STATUS_BLOCK_UPDATED | (pDevice->pStatusBlkVirt->
3697 Status &
3698 ~STATUS_BLOCK_LINK_CHANGED_STATUS);
3699 ServicePhyInt = TRUE;
3700 }
3701 }
3702 #if INCLUDE_TBI_SUPPORT
3703 if (pDevice->IgnoreTbiLinkChange == TRUE) {
3704 ServicePhyInt = FALSE;
3705 }
3706 #endif
3707 if (ServicePhyInt == TRUE) {
3708 LM_SetupPhy (pDevice);
3709 }
3710
3711 /* Service receive and transmit interrupts. */
3712 LM_ServiceRxInterrupt (pDevice);
3713 LM_ServiceTxInterrupt (pDevice);
3714
3715 /* No spinlock for this queue since this routine is serialized. */
3716 if (!QQ_Empty (&pDevice->RxPacketReceivedQ.Container)) {
3717 /* Indicate receive packets. */
3718 MM_IndicateRxPackets (pDevice);
3719 /* LM_QueueRxPackets(pDevice); */
3720 }
3721
3722 /* No spinlock for this queue since this routine is serialized. */
3723 if (!QQ_Empty (&pDevice->TxPacketXmittedQ.Container)) {
3724 MM_IndicateTxPackets (pDevice);
3725 }
3726
3727 return LM_STATUS_SUCCESS;
3728 } /* LM_ServiceInterrupts */
3729
3730 /******************************************************************************/
3731 /* Description: */
3732 /* */
3733 /* Return: */
3734 /******************************************************************************/
3735 LM_STATUS LM_MulticastAdd (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
3736 {
3737 PLM_UINT8 pEntry;
3738 LM_UINT32 j;
3739
3740 pEntry = pDevice->McTable[0];
3741 for (j = 0; j < pDevice->McEntryCount; j++) {
3742 if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
3743 /* Found a match, increment the instance count. */
3744 pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1;
3745
3746 return LM_STATUS_SUCCESS;
3747 }
3748
3749 pEntry += LM_MC_ENTRY_SIZE;
3750 }
3751
3752 if (pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE) {
3753 return LM_STATUS_FAILURE;
3754 }
3755
3756 pEntry = pDevice->McTable[pDevice->McEntryCount];
3757
3758 COPY_ETH_ADDRESS (pMcAddress, pEntry);
3759 pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1;
3760
3761 pDevice->McEntryCount++;
3762
3763 LM_SetReceiveMask (pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
3764
3765 return LM_STATUS_SUCCESS;
3766 } /* LM_MulticastAdd */
3767
3768 /******************************************************************************/
3769 /* Description: */
3770 /* */
3771 /* Return: */
3772 /******************************************************************************/
3773 LM_STATUS LM_MulticastDel (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
3774 {
3775 PLM_UINT8 pEntry;
3776 LM_UINT32 j;
3777
3778 pEntry = pDevice->McTable[0];
3779 for (j = 0; j < pDevice->McEntryCount; j++) {
3780 if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
3781 /* Found a match, decrement the instance count. */
3782 pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1;
3783
3784 /* No more instance left, remove the address from the table. */
3785 /* Move the last entry in the table to the delete slot. */
3786 if (pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 &&
3787 pDevice->McEntryCount > 1) {
3788
3789 COPY_ETH_ADDRESS (pDevice->
3790 McTable[pDevice->
3791 McEntryCount - 1],
3792 pEntry);
3793 pEntry[LM_MC_INSTANCE_COUNT_INDEX] =
3794 pDevice->McTable[pDevice->McEntryCount - 1]
3795 [LM_MC_INSTANCE_COUNT_INDEX];
3796 }
3797 pDevice->McEntryCount--;
3798
3799 /* Update the receive mask if the table is empty. */
3800 if (pDevice->McEntryCount == 0) {
3801 LM_SetReceiveMask (pDevice,
3802 pDevice->
3803 ReceiveMask &
3804 ~LM_ACCEPT_MULTICAST);
3805 }
3806
3807 return LM_STATUS_SUCCESS;
3808 }
3809
3810 pEntry += LM_MC_ENTRY_SIZE;
3811 }
3812
3813 return LM_STATUS_FAILURE;
3814 } /* LM_MulticastDel */
3815
3816 /******************************************************************************/
3817 /* Description: */
3818 /* */
3819 /* Return: */
3820 /******************************************************************************/
3821 LM_STATUS LM_MulticastClear (PLM_DEVICE_BLOCK pDevice)
3822 {
3823 pDevice->McEntryCount = 0;
3824
3825 LM_SetReceiveMask (pDevice,
3826 pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
3827
3828 return LM_STATUS_SUCCESS;
3829 } /* LM_MulticastClear */
3830
3831 /******************************************************************************/
3832 /* Description: */
3833 /* */
3834 /* Return: */
3835 /******************************************************************************/
3836 LM_STATUS LM_SetMacAddress (PLM_DEVICE_BLOCK pDevice)
3837 {
3838 LM_UINT32 j;
3839 PLM_UINT8 pMacAddress = pDevice->NodeAddress;
3840
3841 for (j = 0; j < 4; j++) {
3842 REG_WR (pDevice, MacCtrl.MacAddr[j].High,
3843 (pMacAddress[0] << 8) | pMacAddress[1]);
3844 REG_WR (pDevice, MacCtrl.MacAddr[j].Low,
3845 (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
3846 (pMacAddress[4] << 8) | pMacAddress[5]);
3847 }
3848
3849 return LM_STATUS_SUCCESS;
3850 }
3851
3852 /******************************************************************************/
3853 /* Description: */
3854 /* Sets up the default line speed, and duplex modes based on the requested */
3855 /* media type. */
3856 /* */
3857 /* Return: */
3858 /* None. */
3859 /******************************************************************************/
3860 static LM_STATUS
3861 LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
3862 PLM_MEDIA_TYPE pMediaType,
3863 PLM_LINE_SPEED pLineSpeed,
3864 PLM_DUPLEX_MODE pDuplexMode)
3865 {
3866 *pMediaType = LM_MEDIA_TYPE_AUTO;
3867 *pLineSpeed = LM_LINE_SPEED_UNKNOWN;
3868 *pDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
3869
3870 /* determine media type */
3871 switch (RequestedMediaType) {
3872 case LM_REQUESTED_MEDIA_TYPE_BNC:
3873 *pMediaType = LM_MEDIA_TYPE_BNC;
3874 *pLineSpeed = LM_LINE_SPEED_10MBPS;
3875 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3876 break;
3877
3878 case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO:
3879 *pMediaType = LM_MEDIA_TYPE_UTP;
3880 break;
3881
3882 case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS:
3883 *pMediaType = LM_MEDIA_TYPE_UTP;
3884 *pLineSpeed = LM_LINE_SPEED_10MBPS;
3885 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3886 break;
3887
3888 case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX:
3889 *pMediaType = LM_MEDIA_TYPE_UTP;
3890 *pLineSpeed = LM_LINE_SPEED_10MBPS;
3891 *pDuplexMode = LM_DUPLEX_MODE_FULL;
3892 break;
3893
3894 case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS:
3895 *pMediaType = LM_MEDIA_TYPE_UTP;
3896 *pLineSpeed = LM_LINE_SPEED_100MBPS;
3897 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3898 break;
3899
3900 case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX:
3901 *pMediaType = LM_MEDIA_TYPE_UTP;
3902 *pLineSpeed = LM_LINE_SPEED_100MBPS;
3903 *pDuplexMode = LM_DUPLEX_MODE_FULL;
3904 break;
3905
3906 case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS:
3907 *pMediaType = LM_MEDIA_TYPE_UTP;
3908 *pLineSpeed = LM_LINE_SPEED_1000MBPS;
3909 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3910 break;
3911
3912 case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX:
3913 *pMediaType = LM_MEDIA_TYPE_UTP;
3914 *pLineSpeed = LM_LINE_SPEED_1000MBPS;
3915 *pDuplexMode = LM_DUPLEX_MODE_FULL;
3916 break;
3917
3918 case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS:
3919 *pMediaType = LM_MEDIA_TYPE_FIBER;
3920 *pLineSpeed = LM_LINE_SPEED_100MBPS;
3921 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3922 break;
3923
3924 case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX:
3925 *pMediaType = LM_MEDIA_TYPE_FIBER;
3926 *pLineSpeed = LM_LINE_SPEED_100MBPS;
3927 *pDuplexMode = LM_DUPLEX_MODE_FULL;
3928 break;
3929
3930 case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS:
3931 *pMediaType = LM_MEDIA_TYPE_FIBER;
3932 *pLineSpeed = LM_LINE_SPEED_1000MBPS;
3933 *pDuplexMode = LM_DUPLEX_MODE_HALF;
3934 break;
3935
3936 case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX:
3937 *pMediaType = LM_MEDIA_TYPE_FIBER;
3938 *pLineSpeed = LM_LINE_SPEED_1000MBPS;
3939 *pDuplexMode = LM_DUPLEX_MODE_FULL;
3940 break;
3941
3942 default:
3943 break;
3944 } /* switch */
3945
3946 return LM_STATUS_SUCCESS;
3947 } /* LM_TranslateRequestedMediaType */
3948
3949 /******************************************************************************/
3950 /* Description: */
3951 /* */
3952 /* Return: */
3953 /* LM_STATUS_LINK_ACTIVE */
3954 /* LM_STATUS_LINK_DOWN */
3955 /******************************************************************************/
3956 static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice)
3957 {
3958 LM_LINE_SPEED CurrentLineSpeed;
3959 LM_DUPLEX_MODE CurrentDuplexMode;
3960 LM_STATUS CurrentLinkStatus;
3961 LM_UINT32 Value32;
3962 LM_UINT32 j;
3963
3964 #if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */
3965 LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x2);
3966 #endif
3967 if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
3968 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
3969 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
3970
3971 if (!pDevice->InitDone) {
3972 Value32 = 0;
3973 }
3974
3975 if (!(Value32 & PHY_STATUS_LINK_PASS)) {
3976 LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
3977
3978 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
3979 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
3980
3981 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
3982 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
3983
3984 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
3985 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
3986
3987 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
3988 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
3989
3990 LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
3991 LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
3992
3993 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
3994 for (j = 0; j < 1000; j++) {
3995 MM_Wait (10);
3996
3997 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
3998 if (Value32 & PHY_STATUS_LINK_PASS) {
3999 MM_Wait (40);
4000 break;
4001 }
4002 }
4003
4004 if ((pDevice->PhyId & PHY_ID_REV_MASK) ==
4005 PHY_BCM5401_B0_REV) {
4006 if (!(Value32 & PHY_STATUS_LINK_PASS)
4007 && (pDevice->OldLineSpeed ==
4008 LM_LINE_SPEED_1000MBPS)) {
4009 LM_WritePhy (pDevice, PHY_CTRL_REG,
4010 PHY_CTRL_PHY_RESET);
4011 for (j = 0; j < 100; j++) {
4012 MM_Wait (10);
4013
4014 LM_ReadPhy (pDevice,
4015 PHY_CTRL_REG,
4016 &Value32);
4017 if (!
4018 (Value32 &
4019 PHY_CTRL_PHY_RESET)) {
4020 MM_Wait (40);
4021 break;
4022 }
4023 }
4024
4025 LM_WritePhy (pDevice, BCM5401_AUX_CTRL,
4026 0x0c20);
4027
4028 LM_WritePhy (pDevice,
4029 BCM540X_DSP_ADDRESS_REG,
4030 0x0012);
4031 LM_WritePhy (pDevice,
4032 BCM540X_DSP_RW_PORT,
4033 0x1804);
4034
4035 LM_WritePhy (pDevice,
4036 BCM540X_DSP_ADDRESS_REG,
4037 0x0013);
4038 LM_WritePhy (pDevice,
4039 BCM540X_DSP_RW_PORT,
4040 0x1204);
4041
4042 LM_WritePhy (pDevice,
4043 BCM540X_DSP_ADDRESS_REG,
4044 0x8006);
4045 LM_WritePhy (pDevice,
4046 BCM540X_DSP_RW_PORT,
4047 0x0132);
4048
4049 LM_WritePhy (pDevice,
4050 BCM540X_DSP_ADDRESS_REG,
4051 0x8006);
4052 LM_WritePhy (pDevice,
4053 BCM540X_DSP_RW_PORT,
4054 0x0232);
4055
4056 LM_WritePhy (pDevice,
4057 BCM540X_DSP_ADDRESS_REG,
4058 0x201f);
4059 LM_WritePhy (pDevice,
4060 BCM540X_DSP_RW_PORT,
4061 0x0a20);
4062 }
4063 }
4064 }
4065 } else if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
4066 pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
4067 /* Bug: 5701 A0, B0 TX CRC workaround. */
4068 LM_WritePhy (pDevice, 0x15, 0x0a75);
4069 LM_WritePhy (pDevice, 0x1c, 0x8c68);
4070 LM_WritePhy (pDevice, 0x1c, 0x8d68);
4071 LM_WritePhy (pDevice, 0x1c, 0x8c68);
4072 }
4073
4074 /* Acknowledge interrupts. */
4075 LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
4076 LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
4077
4078 /* Configure the interrupt mask. */
4079 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
4080 LM_WritePhy (pDevice, BCM540X_INT_MASK_REG,
4081 ~BCM540X_INT_LINK_CHANGE);
4082 }
4083
4084 /* Configure PHY led mode. */
4085 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
4086 (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700)) {
4087 if (pDevice->LedMode == LED_MODE_THREE_LINK) {
4088 LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG,
4089 BCM540X_EXT_CTRL_LINK3_LED_MODE);
4090 } else {
4091 LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, 0);
4092 }
4093 }
4094
4095 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4096
4097 /* Get current link and duplex mode. */
4098 for (j = 0; j < 100; j++) {
4099 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
4100 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
4101
4102 if (Value32 & PHY_STATUS_LINK_PASS) {
4103 break;
4104 }
4105 MM_Wait (40);
4106 }
4107
4108 if (Value32 & PHY_STATUS_LINK_PASS) {
4109
4110 /* Determine the current line and duplex settings. */
4111 LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
4112 for (j = 0; j < 2000; j++) {
4113 MM_Wait (10);
4114
4115 LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
4116 if (Value32) {
4117 break;
4118 }
4119 }
4120
4121 switch (Value32 & BCM540X_AUX_SPEED_MASK) {
4122 case BCM540X_AUX_10BASET_HD:
4123 CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
4124 CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
4125 break;
4126
4127 case BCM540X_AUX_10BASET_FD:
4128 CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
4129 CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
4130 break;
4131
4132 case BCM540X_AUX_100BASETX_HD:
4133 CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
4134 CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
4135 break;
4136
4137 case BCM540X_AUX_100BASETX_FD:
4138 CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
4139 CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
4140 break;
4141
4142 case BCM540X_AUX_100BASET_HD:
4143 CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
4144 CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
4145 break;
4146
4147 case BCM540X_AUX_100BASET_FD:
4148 CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
4149 CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
4150 break;
4151
4152 default:
4153
4154 CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
4155 CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
4156 break;
4157 }
4158
4159 /* Make sure we are in auto-neg mode. */
4160 for (j = 0; j < 200; j++) {
4161 LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
4162 if (Value32 && Value32 != 0x7fff) {
4163 break;
4164 }
4165
4166 if (Value32 == 0 && pDevice->RequestedMediaType ==
4167 LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS) {
4168 break;
4169 }
4170
4171 MM_Wait (10);
4172 }
4173
4174 /* Use the current line settings for "auto" mode. */
4175 if (pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO
4176 || pDevice->RequestedMediaType ==
4177 LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
4178 if (Value32 & PHY_CTRL_AUTO_NEG_ENABLE) {
4179 CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
4180
4181 /* We may be exiting low power mode and the link is in */
4182 /* 10mb. In this case, we need to restart autoneg. */
4183 LM_ReadPhy (pDevice, BCM540X_1000BASET_CTRL_REG,
4184 &Value32);
4185 pDevice->advertising1000 = Value32;
4186 /* 5702FE supports 10/100Mb only. */
4187 if (T3_ASIC_REV (pDevice->ChipRevId) !=
4188 T3_ASIC_REV_5703
4189 || pDevice->BondId !=
4190 GRC_MISC_BD_ID_5702FE) {
4191 if (!
4192 (Value32 &
4193 (BCM540X_AN_AD_1000BASET_HALF |
4194 BCM540X_AN_AD_1000BASET_FULL))) {
4195 CurrentLinkStatus =
4196 LM_STATUS_LINK_SETTING_MISMATCH;
4197 }
4198 }
4199 } else {
4200 CurrentLinkStatus =
4201 LM_STATUS_LINK_SETTING_MISMATCH;
4202 }
4203 } else {
4204 /* Force line settings. */
4205 /* Use the current setting if it matches the user's requested */
4206 /* setting. */
4207 LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
4208 if ((pDevice->LineSpeed == CurrentLineSpeed) &&
4209 (pDevice->DuplexMode == CurrentDuplexMode)) {
4210 if ((pDevice->DisableAutoNeg &&
4211 !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
4212 (!pDevice->DisableAutoNeg &&
4213 (Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) {
4214 CurrentLinkStatus =
4215 LM_STATUS_LINK_ACTIVE;
4216 } else {
4217 CurrentLinkStatus =
4218 LM_STATUS_LINK_SETTING_MISMATCH;
4219 }
4220 } else {
4221 CurrentLinkStatus =
4222 LM_STATUS_LINK_SETTING_MISMATCH;
4223 }
4224 }
4225
4226 /* Save line settings. */
4227 pDevice->LineSpeed = CurrentLineSpeed;
4228 pDevice->DuplexMode = CurrentDuplexMode;
4229 pDevice->MediaType = LM_MEDIA_TYPE_UTP;
4230 }
4231
4232 return CurrentLinkStatus;
4233 } /* LM_InitBcm540xPhy */
4234
4235 /******************************************************************************/
4236 /* Description: */
4237 /* */
4238 /* Return: */
4239 /******************************************************************************/
4240 LM_STATUS
4241 LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
4242 LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd)
4243 {
4244 LM_FLOW_CONTROL FlowCap;
4245
4246 /* Resolve flow control. */
4247 FlowCap = LM_FLOW_CONTROL_NONE;
4248
4249 /* See Table 28B-3 of 802.3ab-1999 spec. */
4250 if (pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) {
4251 if (LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) {
4252 if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
4253 if (RemotePhyAd &
4254 PHY_LINK_PARTNER_PAUSE_CAPABLE) {
4255 FlowCap =
4256 LM_FLOW_CONTROL_TRANSMIT_PAUSE |
4257 LM_FLOW_CONTROL_RECEIVE_PAUSE;
4258 } else if (RemotePhyAd &
4259 PHY_LINK_PARTNER_ASYM_PAUSE) {
4260 FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
4261 }
4262 } else {
4263 if (RemotePhyAd &
4264 PHY_LINK_PARTNER_PAUSE_CAPABLE) {
4265 FlowCap =
4266 LM_FLOW_CONTROL_TRANSMIT_PAUSE |
4267 LM_FLOW_CONTROL_RECEIVE_PAUSE;
4268 }
4269 }
4270 } else if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
4271 if ((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
4272 (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) {
4273 FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
4274 }
4275 }
4276 } else {
4277 FlowCap = pDevice->FlowControlCap;
4278 }
4279
4280 /* Enable/disable rx PAUSE. */
4281 pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
4282 if (FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
4283 (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
4284 pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) {
4285 pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
4286 pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
4287
4288 }
4289 REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
4290
4291 /* Enable/disable tx PAUSE. */
4292 pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
4293 if (FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
4294 (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
4295 pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) {
4296 pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
4297 pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
4298
4299 }
4300 REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
4301
4302 return LM_STATUS_SUCCESS;
4303 }
4304
4305 #if INCLUDE_TBI_SUPPORT
4306 /******************************************************************************/
4307 /* Description: */
4308 /* */
4309 /* Return: */
4310 /******************************************************************************/
4311 STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice)
4312 {
4313 LM_UINT32 Value32;
4314 LM_UINT32 j;
4315
4316 Value32 = REG_RD (pDevice, MacCtrl.Status);
4317
4318 /* Reset the SERDES during init and when we have link. */
4319 if (!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) {
4320 /* Set PLL lock range. */
4321 LM_WritePhy (pDevice, 0x16, 0x8007);
4322
4323 /* Software reset. */
4324 LM_WritePhy (pDevice, 0x00, 0x8000);
4325
4326 /* Wait for reset to complete. */
4327 for (j = 0; j < 500; j++) {
4328 MM_Wait (10);
4329 }
4330
4331 /* Config mode; seletct PMA/Ch 1 regs. */
4332 LM_WritePhy (pDevice, 0x10, 0x8411);
4333
4334 /* Enable auto-lock and comdet, select txclk for tx. */
4335 LM_WritePhy (pDevice, 0x11, 0x0a10);
4336
4337 LM_WritePhy (pDevice, 0x18, 0x00a0);
4338 LM_WritePhy (pDevice, 0x16, 0x41ff);
4339
4340 /* Assert and deassert POR. */
4341 LM_WritePhy (pDevice, 0x13, 0x0400);
4342 MM_Wait (40);
4343 LM_WritePhy (pDevice, 0x13, 0x0000);
4344
4345 LM_WritePhy (pDevice, 0x11, 0x0a50);
4346 MM_Wait (40);
4347 LM_WritePhy (pDevice, 0x11, 0x0a10);
4348
4349 /* Delay for signal to stabilize. */
4350 for (j = 0; j < 15000; j++) {
4351 MM_Wait (10);
4352 }
4353
4354 /* Deselect the channel register so we can read the PHY id later. */
4355 LM_WritePhy (pDevice, 0x10, 0x8011);
4356 }
4357
4358 return LM_STATUS_SUCCESS;
4359 }
4360
4361 /******************************************************************************/
4362 /* Description: */
4363 /* */
4364 /* Return: */
4365 /******************************************************************************/
4366 STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice)
4367 {
4368 LM_STATUS CurrentLinkStatus;
4369 AUTONEG_STATUS AnStatus = 0;
4370 LM_UINT32 Value32;
4371 LM_UINT32 Cnt;
4372 LM_UINT32 j, k;
4373
4374 pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
4375
4376 /* Initialize the send_config register. */
4377 REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
4378
4379 /* Enable TBI and full duplex mode. */
4380 pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
4381 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
4382
4383 /* Initialize the BCM8002 SERDES PHY. */
4384 switch (pDevice->PhyId & PHY_ID_MASK) {
4385 case PHY_BCM8002_PHY_ID:
4386 LM_InitBcm800xPhy (pDevice);
4387 break;
4388
4389 default:
4390 break;
4391 }
4392
4393 /* Enable link change interrupt. */
4394 REG_WR (pDevice, MacCtrl.MacEvent,
4395 MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
4396
4397 /* Default to link down. */
4398 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4399
4400 /* Get the link status. */
4401 Value32 = REG_RD (pDevice, MacCtrl.Status);
4402 if (Value32 & MAC_STATUS_PCS_SYNCED) {
4403 if ((pDevice->RequestedMediaType ==
4404 LM_REQUESTED_MEDIA_TYPE_AUTO)
4405 || (pDevice->DisableAutoNeg == FALSE)) {
4406 /* auto-negotiation mode. */
4407 /* Initialize the autoneg default capaiblities. */
4408 AutonegInit (&pDevice->AnInfo);
4409
4410 /* Set the context pointer to point to the main device structure. */
4411 pDevice->AnInfo.pContext = pDevice;
4412
4413 /* Setup flow control advertisement register. */
4414 Value32 = GetPhyAdFlowCntrlSettings (pDevice);
4415 if (Value32 & PHY_AN_AD_PAUSE_CAPABLE) {
4416 pDevice->AnInfo.mr_adv_sym_pause = 1;
4417 } else {
4418 pDevice->AnInfo.mr_adv_sym_pause = 0;
4419 }
4420
4421 if (Value32 & PHY_AN_AD_ASYM_PAUSE) {
4422 pDevice->AnInfo.mr_adv_asym_pause = 1;
4423 } else {
4424 pDevice->AnInfo.mr_adv_asym_pause = 0;
4425 }
4426
4427 /* Try to autoneg up to six times. */
4428 if (pDevice->IgnoreTbiLinkChange) {
4429 Cnt = 1;
4430 } else {
4431 Cnt = 6;
4432 }
4433 for (j = 0; j < Cnt; j++) {
4434 REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
4435
4436 Value32 =
4437 pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
4438 REG_WR (pDevice, MacCtrl.Mode, Value32);
4439 MM_Wait (20);
4440
4441 REG_WR (pDevice, MacCtrl.Mode,
4442 pDevice->
4443 MacMode | MAC_MODE_SEND_CONFIGS);
4444
4445 MM_Wait (20);
4446
4447 pDevice->AnInfo.State = AN_STATE_UNKNOWN;
4448 pDevice->AnInfo.CurrentTime_us = 0;
4449
4450 REG_WR (pDevice, Grc.Timer, 0);
4451 for (k = 0;
4452 (pDevice->AnInfo.CurrentTime_us < 75000)
4453 && (k < 75000); k++) {
4454 AnStatus =
4455 Autoneg8023z (&pDevice->AnInfo);
4456
4457 if ((AnStatus == AUTONEG_STATUS_DONE) ||
4458 (AnStatus == AUTONEG_STATUS_FAILED))
4459 {
4460 break;
4461 }
4462
4463 pDevice->AnInfo.CurrentTime_us =
4464 REG_RD (pDevice, Grc.Timer);
4465
4466 }
4467 if ((AnStatus == AUTONEG_STATUS_DONE) ||
4468 (AnStatus == AUTONEG_STATUS_FAILED)) {
4469 break;
4470 }
4471 if (j >= 1) {
4472 if (!(REG_RD (pDevice, MacCtrl.Status) &
4473 MAC_STATUS_PCS_SYNCED)) {
4474 break;
4475 }
4476 }
4477 }
4478
4479 /* Stop sending configs. */
4480 MM_AnTxIdle (&pDevice->AnInfo);
4481
4482 /* Resolve flow control settings. */
4483 if ((AnStatus == AUTONEG_STATUS_DONE) &&
4484 pDevice->AnInfo.mr_an_complete
4485 && pDevice->AnInfo.mr_link_ok
4486 && pDevice->AnInfo.mr_lp_adv_full_duplex) {
4487 LM_UINT32 RemotePhyAd;
4488 LM_UINT32 LocalPhyAd;
4489
4490 LocalPhyAd = 0;
4491 if (pDevice->AnInfo.mr_adv_sym_pause) {
4492 LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
4493 }
4494
4495 if (pDevice->AnInfo.mr_adv_asym_pause) {
4496 LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
4497 }
4498
4499 RemotePhyAd = 0;
4500 if (pDevice->AnInfo.mr_lp_adv_sym_pause) {
4501 RemotePhyAd |=
4502 PHY_LINK_PARTNER_PAUSE_CAPABLE;
4503 }
4504
4505 if (pDevice->AnInfo.mr_lp_adv_asym_pause) {
4506 RemotePhyAd |=
4507 PHY_LINK_PARTNER_ASYM_PAUSE;
4508 }
4509
4510 LM_SetFlowControl (pDevice, LocalPhyAd,
4511 RemotePhyAd);
4512
4513 CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
4514 }
4515 for (j = 0; j < 30; j++) {
4516 MM_Wait (20);
4517 REG_WR (pDevice, MacCtrl.Status,
4518 MAC_STATUS_SYNC_CHANGED |
4519 MAC_STATUS_CFG_CHANGED);
4520 MM_Wait (20);
4521 if ((REG_RD (pDevice, MacCtrl.Status) &
4522 (MAC_STATUS_SYNC_CHANGED |
4523 MAC_STATUS_CFG_CHANGED)) == 0)
4524 break;
4525 }
4526 if (pDevice->PollTbiLink) {
4527 Value32 = REG_RD (pDevice, MacCtrl.Status);
4528 if (Value32 & MAC_STATUS_RECEIVING_CFG) {
4529 pDevice->IgnoreTbiLinkChange = TRUE;
4530 } else {
4531 pDevice->IgnoreTbiLinkChange = FALSE;
4532 }
4533 }
4534 Value32 = REG_RD (pDevice, MacCtrl.Status);
4535 if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
4536 (Value32 & MAC_STATUS_PCS_SYNCED) &&
4537 ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) {
4538 CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
4539 }
4540 } else {
4541 /* We are forcing line speed. */
4542 pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
4543 LM_SetFlowControl (pDevice, 0, 0);
4544
4545 CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
4546 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
4547 MAC_MODE_SEND_CONFIGS);
4548 }
4549 }
4550 /* Set the link polarity bit. */
4551 pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
4552 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
4553
4554 pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
4555 (pDevice->pStatusBlkVirt->
4556 Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
4557
4558 for (j = 0; j < 100; j++) {
4559 REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
4560 MAC_STATUS_CFG_CHANGED);
4561 MM_Wait (5);
4562 if ((REG_RD (pDevice, MacCtrl.Status) &
4563 (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
4564 break;
4565 }
4566
4567 Value32 = REG_RD (pDevice, MacCtrl.Status);
4568 if ((Value32 & MAC_STATUS_PCS_SYNCED) == 0) {
4569 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4570 if (pDevice->DisableAutoNeg == FALSE) {
4571 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
4572 MAC_MODE_SEND_CONFIGS);
4573 MM_Wait (1);
4574 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
4575 }
4576 }
4577
4578 /* Initialize the current link status. */
4579 if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
4580 pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
4581 pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
4582 REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
4583 LED_CTRL_1000MBPS_LED_ON);
4584 } else {
4585 pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
4586 pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
4587 REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
4588 LED_CTRL_OVERRIDE_TRAFFIC_LED);
4589 }
4590
4591 /* Indicate link status. */
4592 if (pDevice->LinkStatus != CurrentLinkStatus) {
4593 pDevice->LinkStatus = CurrentLinkStatus;
4594 MM_IndicateStatus (pDevice, CurrentLinkStatus);
4595 }
4596
4597 return LM_STATUS_SUCCESS;
4598 }
4599 #endif /* INCLUDE_TBI_SUPPORT */
4600
4601 /******************************************************************************/
4602 /* Description: */
4603 /* */
4604 /* Return: */
4605 /******************************************************************************/
4606 LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice)
4607 {
4608 LM_STATUS CurrentLinkStatus;
4609 LM_UINT32 Value32;
4610
4611 /* Assume there is not link first. */
4612 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4613
4614 /* Disable phy link change attention. */
4615 REG_WR (pDevice, MacCtrl.MacEvent, 0);
4616
4617 /* Clear link change attention. */
4618 REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
4619 MAC_STATUS_CFG_CHANGED);
4620
4621 /* Disable auto-polling for the moment. */
4622 pDevice->MiMode = 0xc0000;
4623 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
4624 MM_Wait (40);
4625
4626 /* Determine the requested line speed and duplex. */
4627 pDevice->OldLineSpeed = pDevice->LineSpeed;
4628 LM_TranslateRequestedMediaType (pDevice->RequestedMediaType,
4629 &pDevice->MediaType,
4630 &pDevice->LineSpeed,
4631 &pDevice->DuplexMode);
4632
4633 /* Initialize the phy chip. */
4634 switch (pDevice->PhyId & PHY_ID_MASK) {
4635 case PHY_BCM5400_PHY_ID:
4636 case PHY_BCM5401_PHY_ID:
4637 case PHY_BCM5411_PHY_ID:
4638 case PHY_BCM5701_PHY_ID:
4639 case PHY_BCM5703_PHY_ID:
4640 case PHY_BCM5704_PHY_ID:
4641 CurrentLinkStatus = LM_InitBcm540xPhy (pDevice);
4642 break;
4643
4644 default:
4645 break;
4646 }
4647
4648 if (CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) {
4649 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4650 }
4651
4652 /* Setup flow control. */
4653 pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
4654 if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
4655 LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
4656
4657 FlowCap = LM_FLOW_CONTROL_NONE;
4658
4659 if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) {
4660 if (pDevice->DisableAutoNeg == FALSE ||
4661 pDevice->RequestedMediaType ==
4662 LM_REQUESTED_MEDIA_TYPE_AUTO
4663 || pDevice->RequestedMediaType ==
4664 LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
4665 LM_UINT32 ExpectedPhyAd;
4666 LM_UINT32 LocalPhyAd;
4667 LM_UINT32 RemotePhyAd;
4668
4669 LM_ReadPhy (pDevice, PHY_AN_AD_REG,
4670 &LocalPhyAd);
4671 pDevice->advertising = LocalPhyAd;
4672 LocalPhyAd &=
4673 (PHY_AN_AD_ASYM_PAUSE |
4674 PHY_AN_AD_PAUSE_CAPABLE);
4675
4676 ExpectedPhyAd =
4677 GetPhyAdFlowCntrlSettings (pDevice);
4678
4679 if (LocalPhyAd != ExpectedPhyAd) {
4680 CurrentLinkStatus = LM_STATUS_LINK_DOWN;
4681 } else {
4682 LM_ReadPhy (pDevice,
4683 PHY_LINK_PARTNER_ABILITY_REG,
4684 &RemotePhyAd);
4685
4686 LM_SetFlowControl (pDevice, LocalPhyAd,
4687 RemotePhyAd);
4688 }
4689 } else {
4690 pDevice->FlowControlCap &=
4691 ~LM_FLOW_CONTROL_AUTO_PAUSE;
4692 LM_SetFlowControl (pDevice, 0, 0);
4693 }
4694 }
4695 }
4696
4697 if (CurrentLinkStatus == LM_STATUS_LINK_DOWN) {
4698 LM_ForceAutoNeg (pDevice, pDevice->RequestedMediaType);
4699
4700 /* If we force line speed, we make get link right away. */
4701 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
4702 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
4703 if (Value32 & PHY_STATUS_LINK_PASS) {
4704 CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
4705 }
4706 }
4707
4708 /* GMII interface. */
4709 pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
4710 if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
4711 if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
4712 pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) {
4713 pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
4714 } else {
4715 pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
4716 }
4717 } else {
4718 pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
4719 }
4720
4721 /* Set the MAC to operate in the appropriate duplex mode. */
4722 pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
4723 if (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) {
4724 pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
4725 }
4726
4727 /* Set the link polarity bit. */
4728 pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
4729 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
4730 if ((pDevice->LedMode == LED_MODE_LINK10) ||
4731 (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
4732 pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) {
4733 pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
4734 }
4735 } else {
4736 if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
4737 pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
4738 }
4739
4740 /* Set LED mode. */
4741 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
4742 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
4743 Value32 = LED_CTRL_PHY_MODE_1;
4744 } else {
4745 if (pDevice->LedMode == LED_MODE_OUTPUT) {
4746 Value32 = LED_CTRL_PHY_MODE_2;
4747 } else {
4748 Value32 = LED_CTRL_PHY_MODE_1;
4749 }
4750 }
4751 REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
4752 }
4753
4754 REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
4755
4756 /* Enable auto polling. */
4757 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
4758 pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
4759 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
4760 }
4761
4762 /* Enable phy link change attention. */
4763 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
4764 REG_WR (pDevice, MacCtrl.MacEvent,
4765 MAC_EVENT_ENABLE_MI_INTERRUPT);
4766 } else {
4767 REG_WR (pDevice, MacCtrl.MacEvent,
4768 MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
4769 }
4770 if ((T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
4771 (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
4772 (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
4773 (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
4774 (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
4775 !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) {
4776 MM_Wait (120);
4777 REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
4778 MAC_STATUS_CFG_CHANGED);
4779 MEM_WR_OFFSET (pDevice, T3_FIRMWARE_MAILBOX,
4780 T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
4781 }
4782
4783 /* Indicate link status. */
4784 if (pDevice->LinkStatus != CurrentLinkStatus) {
4785 pDevice->LinkStatus = CurrentLinkStatus;
4786 MM_IndicateStatus (pDevice, CurrentLinkStatus);
4787 }
4788
4789 return LM_STATUS_SUCCESS;
4790 } /* LM_SetupCopperPhy */
4791
4792 /******************************************************************************/
4793 /* Description: */
4794 /* */
4795 /* Return: */
4796 /******************************************************************************/
4797 LM_STATUS LM_SetupPhy (PLM_DEVICE_BLOCK pDevice)
4798 {
4799 LM_STATUS LmStatus;
4800 LM_UINT32 Value32;
4801
4802 #if INCLUDE_TBI_SUPPORT
4803 if (pDevice->EnableTbi) {
4804 LmStatus = LM_SetupFiberPhy (pDevice);
4805 } else
4806 #endif /* INCLUDE_TBI_SUPPORT */
4807 {
4808 LmStatus = LM_SetupCopperPhy (pDevice);
4809 }
4810 if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
4811 if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
4812 Value32 = REG_RD (pDevice, PciCfg.PciState);
4813 REG_WR (pDevice, PciCfg.PciState,
4814 Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
4815 }
4816 }
4817 if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
4818 (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) {
4819 REG_WR (pDevice, MacCtrl.TxLengths, 0x26ff);
4820 } else {
4821 REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
4822 }
4823
4824 return LmStatus;
4825 }
4826
4827 /******************************************************************************/
4828 /* Description: */
4829 /* */
4830 /* Return: */
4831 /******************************************************************************/
4832 LM_VOID
4833 LM_ReadPhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, PLM_UINT32 pData32)
4834 {
4835 LM_UINT32 Value32;
4836 LM_UINT32 j;
4837
4838 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
4839 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
4840 ~MI_MODE_AUTO_POLLING_ENABLE);
4841 MM_Wait (40);
4842 }
4843
4844 Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
4845 ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
4846 MI_COM_FIRST_PHY_REG_ADDR_BIT) | MI_COM_CMD_READ | MI_COM_START;
4847
4848 REG_WR (pDevice, MacCtrl.MiCom, Value32);
4849
4850 for (j = 0; j < 20; j++) {
4851 MM_Wait (25);
4852
4853 Value32 = REG_RD (pDevice, MacCtrl.MiCom);
4854
4855 if (!(Value32 & MI_COM_BUSY)) {
4856 MM_Wait (5);
4857 Value32 = REG_RD (pDevice, MacCtrl.MiCom);
4858 Value32 &= MI_COM_PHY_DATA_MASK;
4859 break;
4860 }
4861 }
4862
4863 if (Value32 & MI_COM_BUSY) {
4864 Value32 = 0;
4865 }
4866
4867 *pData32 = Value32;
4868
4869 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
4870 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
4871 MM_Wait (40);
4872 }
4873 } /* LM_ReadPhy */
4874
4875 /******************************************************************************/
4876 /* Description: */
4877 /* */
4878 /* Return: */
4879 /******************************************************************************/
4880 LM_VOID
4881 LM_WritePhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, LM_UINT32 Data32)
4882 {
4883 LM_UINT32 Value32;
4884 LM_UINT32 j;
4885
4886 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
4887 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
4888 ~MI_MODE_AUTO_POLLING_ENABLE);
4889 MM_Wait (40);
4890 }
4891
4892 Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
4893 ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
4894 MI_COM_FIRST_PHY_REG_ADDR_BIT) | (Data32 & MI_COM_PHY_DATA_MASK) |
4895 MI_COM_CMD_WRITE | MI_COM_START;
4896
4897 REG_WR (pDevice, MacCtrl.MiCom, Value32);
4898
4899 for (j = 0; j < 20; j++) {
4900 MM_Wait (25);
4901
4902 Value32 = REG_RD (pDevice, MacCtrl.MiCom);
4903
4904 if (!(Value32 & MI_COM_BUSY)) {
4905 MM_Wait (5);
4906 break;
4907 }
4908 }
4909
4910 if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
4911 REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
4912 MM_Wait (40);
4913 }
4914 } /* LM_WritePhy */
4915
4916 /******************************************************************************/
4917 /* Description: */
4918 /* */
4919 /* Return: */
4920 /******************************************************************************/
4921 LM_STATUS LM_SetPowerState (PLM_DEVICE_BLOCK pDevice, LM_POWER_STATE PowerLevel)
4922 {
4923 LM_UINT32 PmeSupport;
4924 LM_UINT32 Value32;
4925 LM_UINT32 PmCtrl;
4926
4927 /* make sureindirect accesses are enabled */
4928 MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
4929 pDevice->MiscHostCtrl);
4930
4931 /* Clear the PME_ASSERT bit and the power state bits. Also enable */
4932 /* the PME bit. */
4933 MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
4934
4935 PmCtrl |= T3_PM_PME_ASSERTED;
4936 PmCtrl &= ~T3_PM_POWER_STATE_MASK;
4937
4938 /* Set the appropriate power state. */
4939 if (PowerLevel == LM_POWER_STATE_D0) {
4940
4941 /* Bring the card out of low power mode. */
4942 PmCtrl |= T3_PM_POWER_STATE_D0;
4943 MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
4944
4945 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
4946 MM_Wait (40);
4947 #if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */
4948 LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x02);
4949 #endif
4950
4951 return LM_STATUS_SUCCESS;
4952 } else if (PowerLevel == LM_POWER_STATE_D1) {
4953 PmCtrl |= T3_PM_POWER_STATE_D1;
4954 } else if (PowerLevel == LM_POWER_STATE_D2) {
4955 PmCtrl |= T3_PM_POWER_STATE_D2;
4956 } else if (PowerLevel == LM_POWER_STATE_D3) {
4957 PmCtrl |= T3_PM_POWER_STATE_D3;
4958 } else {
4959 return LM_STATUS_FAILURE;
4960 }
4961 PmCtrl |= T3_PM_PME_ENABLE;
4962
4963 /* Mask out all interrupts so LM_SetupPhy won't be called while we are */
4964 /* setting new line speed. */
4965 Value32 = REG_RD (pDevice, PciCfg.MiscHostCtrl);
4966 REG_WR (pDevice, PciCfg.MiscHostCtrl,
4967 Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
4968
4969 if (!pDevice->RestoreOnWakeUp) {
4970 pDevice->RestoreOnWakeUp = TRUE;
4971 pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
4972 pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType;
4973 }
4974
4975 /* Force auto-negotiation to 10 line speed. */
4976 pDevice->DisableAutoNeg = FALSE;
4977 pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
4978 LM_SetupPhy (pDevice);
4979
4980 /* Put the driver in the initial state, and go through the power down */
4981 /* sequence. */
4982 LM_Halt (pDevice);
4983
4984 MM_ReadConfig32 (pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
4985
4986 if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) {
4987
4988 /* Enable WOL. */
4989 LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x5a);
4990 MM_Wait (40);
4991
4992 /* Set LED mode. */
4993 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
4994 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
4995 Value32 = LED_CTRL_PHY_MODE_1;
4996 } else {
4997 if (pDevice->LedMode == LED_MODE_OUTPUT) {
4998 Value32 = LED_CTRL_PHY_MODE_2;
4999 } else {
5000 Value32 = LED_CTRL_PHY_MODE_1;
5001 }
5002 }
5003
5004 Value32 = MAC_MODE_PORT_MODE_MII;
5005 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
5006 if (pDevice->LedMode == LED_MODE_LINK10 ||
5007 pDevice->WolSpeed == WOL_SPEED_10MB) {
5008 Value32 |= MAC_MODE_LINK_POLARITY;
5009 }
5010 } else {
5011 Value32 |= MAC_MODE_LINK_POLARITY;
5012 }
5013 REG_WR (pDevice, MacCtrl.Mode, Value32);
5014 MM_Wait (40);
5015 MM_Wait (40);
5016 MM_Wait (40);
5017
5018 /* Always enable magic packet wake-up if we have vaux. */
5019 if ((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
5020 (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) {
5021 Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
5022 }
5023
5024 REG_WR (pDevice, MacCtrl.Mode, Value32);
5025
5026 /* Enable the receiver. */
5027 REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
5028 }
5029
5030 /* Disable tx/rx clocks, and seletect an alternate clock. */
5031 if (pDevice->WolSpeed == WOL_SPEED_100MB) {
5032 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
5033 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
5034 Value32 =
5035 T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
5036 T3_PCI_SELECT_ALTERNATE_CLOCK;
5037 } else {
5038 Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
5039 }
5040 REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
5041
5042 MM_Wait (40);
5043
5044 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
5045 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
5046 Value32 =
5047 T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
5048 T3_PCI_SELECT_ALTERNATE_CLOCK |
5049 T3_PCI_44MHZ_CORE_CLOCK;
5050 } else {
5051 Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
5052 T3_PCI_44MHZ_CORE_CLOCK;
5053 }
5054
5055 REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
5056
5057 MM_Wait (40);
5058
5059 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
5060 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
5061 Value32 =
5062 T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
5063 T3_PCI_44MHZ_CORE_CLOCK;
5064 } else {
5065 Value32 = T3_PCI_44MHZ_CORE_CLOCK;
5066 }
5067
5068 REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
5069 } else {
5070 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
5071 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
5072 Value32 =
5073 T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
5074 T3_PCI_SELECT_ALTERNATE_CLOCK |
5075 T3_PCI_POWER_DOWN_PCI_PLL133;
5076 } else {
5077 Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
5078 T3_PCI_POWER_DOWN_PCI_PLL133;
5079 }
5080
5081 REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
5082 }
5083
5084 MM_Wait (40);
5085
5086 if (!pDevice->EepromWp
5087 && (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)) {
5088 /* Switch adapter to auxilliary power. */
5089 if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
5090 T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
5091 /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
5092 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
5093 GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
5094 GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
5095 GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
5096 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
5097 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
5098 MM_Wait (40);
5099 } else {
5100 /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
5101 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
5102 GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
5103 GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
5104 GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
5105 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
5106 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
5107 MM_Wait (40);
5108
5109 /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
5110 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
5111 GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
5112 GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
5113 GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
5114 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
5115 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
5116 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
5117 MM_Wait (40);
5118
5119 /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
5120 REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
5121 GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
5122 GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
5123 GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
5124 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
5125 GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
5126 MM_Wait (40);
5127 }
5128 }
5129
5130 /* Set the phy to low power mode. */
5131 /* Put the the hardware in low power mode. */
5132 MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
5133
5134 return LM_STATUS_SUCCESS;
5135 } /* LM_SetPowerState */
5136
5137 /******************************************************************************/
5138 /* Description: */
5139 /* */
5140 /* Return: */
5141 /******************************************************************************/
5142 static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice)
5143 {
5144 LM_UINT32 Value32;
5145
5146 Value32 = 0;
5147
5148 /* Auto negotiation flow control only when autonegotiation is enabled. */
5149 if (pDevice->DisableAutoNeg == FALSE ||
5150 pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
5151 pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
5152 /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
5153 if ((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
5154 ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
5155 && (pDevice->
5156 FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) {
5157 Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
5158 } else if (pDevice->
5159 FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) {
5160 Value32 |= PHY_AN_AD_ASYM_PAUSE;
5161 } else if (pDevice->
5162 FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) {
5163 Value32 |=
5164 PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
5165 }
5166 }
5167
5168 return Value32;
5169 }
5170
5171 /******************************************************************************/
5172 /* Description: */
5173 /* */
5174 /* Return: */
5175 /* LM_STATUS_FAILURE */
5176 /* LM_STATUS_SUCCESS */
5177 /* */
5178 /******************************************************************************/
5179 static LM_STATUS
5180 LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
5181 LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
5182 {
5183 LM_MEDIA_TYPE MediaType;
5184 LM_LINE_SPEED LineSpeed;
5185 LM_DUPLEX_MODE DuplexMode;
5186 LM_UINT32 NewPhyCtrl;
5187 LM_UINT32 Value32;
5188 LM_UINT32 Cnt;
5189
5190 /* Get the interface type, line speed, and duplex mode. */
5191 LM_TranslateRequestedMediaType (RequestedMediaType, &MediaType,
5192 &LineSpeed, &DuplexMode);
5193
5194 if (pDevice->RestoreOnWakeUp) {
5195 LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
5196 pDevice->advertising1000 = 0;
5197 Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
5198 if (pDevice->WolSpeed == WOL_SPEED_100MB) {
5199 Value32 |=
5200 PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
5201 }
5202 Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
5203 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
5204 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
5205 pDevice->advertising = Value32;
5206 }
5207 /* Setup the auto-negotiation advertisement register. */
5208 else if (LineSpeed == LM_LINE_SPEED_UNKNOWN) {
5209 /* Setup the 10/100 Mbps auto-negotiation advertisement register. */
5210 Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
5211 PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
5212 PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
5213 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
5214
5215 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
5216 pDevice->advertising = Value32;
5217
5218 /* Advertise 1000Mbps */
5219 Value32 =
5220 BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL;
5221
5222 #if INCLUDE_5701_AX_FIX
5223 /* Bug: workaround for CRC error in gigabit mode when we are in */
5224 /* slave mode. This will force the PHY to operate in */
5225 /* master mode. */
5226 if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
5227 pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
5228 Value32 |= BCM540X_CONFIG_AS_MASTER |
5229 BCM540X_ENABLE_CONFIG_AS_MASTER;
5230 }
5231 #endif
5232
5233 LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
5234 pDevice->advertising1000 = Value32;
5235 } else {
5236 if (LineSpeed == LM_LINE_SPEED_1000MBPS) {
5237 Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
5238 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
5239
5240 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
5241 pDevice->advertising = Value32;
5242
5243 if (DuplexMode != LM_DUPLEX_MODE_FULL) {
5244 Value32 = BCM540X_AN_AD_1000BASET_HALF;
5245 } else {
5246 Value32 = BCM540X_AN_AD_1000BASET_FULL;
5247 }
5248
5249 LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG,
5250 Value32);
5251 pDevice->advertising1000 = Value32;
5252 } else if (LineSpeed == LM_LINE_SPEED_100MBPS) {
5253 LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
5254 pDevice->advertising1000 = 0;
5255
5256 if (DuplexMode != LM_DUPLEX_MODE_FULL) {
5257 Value32 = PHY_AN_AD_100BASETX_HALF;
5258 } else {
5259 Value32 = PHY_AN_AD_100BASETX_FULL;
5260 }
5261
5262 Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
5263 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
5264
5265 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
5266 pDevice->advertising = Value32;
5267 } else if (LineSpeed == LM_LINE_SPEED_10MBPS) {
5268 LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
5269 pDevice->advertising1000 = 0;
5270
5271 if (DuplexMode != LM_DUPLEX_MODE_FULL) {
5272 Value32 = PHY_AN_AD_10BASET_HALF;
5273 } else {
5274 Value32 = PHY_AN_AD_10BASET_FULL;
5275 }
5276
5277 Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
5278 Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
5279
5280 LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
5281 pDevice->advertising = Value32;
5282 }
5283 }
5284
5285 /* Force line speed if auto-negotiation is disabled. */
5286 if (pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) {
5287 /* This code path is executed only when there is link. */
5288 pDevice->MediaType = MediaType;
5289 pDevice->LineSpeed = LineSpeed;
5290 pDevice->DuplexMode = DuplexMode;
5291
5292 /* Force line seepd. */
5293 NewPhyCtrl = 0;
5294 switch (LineSpeed) {
5295 case LM_LINE_SPEED_10MBPS:
5296 NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
5297 break;
5298 case LM_LINE_SPEED_100MBPS:
5299 NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
5300 break;
5301 case LM_LINE_SPEED_1000MBPS:
5302 NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
5303 break;
5304 default:
5305 NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
5306 break;
5307 }
5308
5309 if (DuplexMode == LM_DUPLEX_MODE_FULL) {
5310 NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
5311 }
5312
5313 /* Don't do anything if the PHY_CTRL is already what we wanted. */
5314 LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
5315 if (Value32 != NewPhyCtrl) {
5316 /* Temporary bring the link down before forcing line speed. */
5317 LM_WritePhy (pDevice, PHY_CTRL_REG,
5318 PHY_CTRL_LOOPBACK_MODE);
5319
5320 /* Wait for link to go down. */
5321 for (Cnt = 0; Cnt < 15000; Cnt++) {
5322 MM_Wait (10);
5323
5324 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
5325 LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
5326
5327 if (!(Value32 & PHY_STATUS_LINK_PASS)) {
5328 MM_Wait (40);
5329 break;
5330 }
5331 }
5332
5333 LM_WritePhy (pDevice, PHY_CTRL_REG, NewPhyCtrl);
5334 MM_Wait (40);
5335 }
5336 } else {
5337 LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
5338 PHY_CTRL_RESTART_AUTO_NEG);
5339 }
5340
5341 return LM_STATUS_SUCCESS;
5342 } /* LM_ForceAutoNegBcm540xPhy */
5343
5344 /******************************************************************************/
5345 /* Description: */
5346 /* */
5347 /* Return: */
5348 /******************************************************************************/
5349 static LM_STATUS
5350 LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
5351 LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
5352 {
5353 LM_STATUS LmStatus;
5354
5355 /* Initialize the phy chip. */
5356 switch (pDevice->PhyId & PHY_ID_MASK) {
5357 case PHY_BCM5400_PHY_ID:
5358 case PHY_BCM5401_PHY_ID:
5359 case PHY_BCM5411_PHY_ID:
5360 case PHY_BCM5701_PHY_ID:
5361 case PHY_BCM5703_PHY_ID:
5362 case PHY_BCM5704_PHY_ID:
5363 LmStatus =
5364 LM_ForceAutoNegBcm540xPhy (pDevice, RequestedMediaType);
5365 break;
5366
5367 default:
5368 LmStatus = LM_STATUS_FAILURE;
5369 break;
5370 }
5371
5372 return LmStatus;
5373 } /* LM_ForceAutoNeg */
5374
5375 /******************************************************************************/
5376 /* Description: */
5377 /* */
5378 /* Return: */
5379 /******************************************************************************/
5380 LM_STATUS LM_LoadFirmware (PLM_DEVICE_BLOCK pDevice,
5381 PT3_FWIMG_INFO pFwImg,
5382 LM_UINT32 LoadCpu, LM_UINT32 StartCpu)
5383 {
5384 LM_UINT32 i;
5385 LM_UINT32 address;
5386
5387 if (LoadCpu & T3_RX_CPU_ID) {
5388 if (LM_HaltCpu (pDevice, T3_RX_CPU_ID) != LM_STATUS_SUCCESS) {
5389 return LM_STATUS_FAILURE;
5390 }
5391
5392 /* First of all clear scrach pad memory */
5393 for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i += 4) {
5394 LM_RegWrInd (pDevice, T3_RX_CPU_SPAD_ADDR + i, 0);
5395 }
5396
5397 /* Copy code first */
5398 address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
5399 for (i = 0; i <= pFwImg->Text.Length; i += 4) {
5400 LM_RegWrInd (pDevice, address + i,
5401 ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
5402 4]);
5403 }
5404
5405 address =
5406 T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
5407 for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
5408 LM_RegWrInd (pDevice, address + i,
5409 ((LM_UINT32 *) pFwImg->ROnlyData.
5410 Buffer)[i / 4]);
5411 }
5412
5413 address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
5414 for (i = 0; i <= pFwImg->Data.Length; i += 4) {
5415 LM_RegWrInd (pDevice, address + i,
5416 ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
5417 4]);
5418 }
5419 }
5420
5421 if (LoadCpu & T3_TX_CPU_ID) {
5422 if (LM_HaltCpu (pDevice, T3_TX_CPU_ID) != LM_STATUS_SUCCESS) {
5423 return LM_STATUS_FAILURE;
5424 }
5425
5426 /* First of all clear scrach pad memory */
5427 for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i += 4) {
5428 LM_RegWrInd (pDevice, T3_TX_CPU_SPAD_ADDR + i, 0);
5429 }
5430
5431 /* Copy code first */
5432 address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
5433 for (i = 0; i <= pFwImg->Text.Length; i += 4) {
5434 LM_RegWrInd (pDevice, address + i,
5435 ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
5436 4]);
5437 }
5438
5439 address =
5440 T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
5441 for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
5442 LM_RegWrInd (pDevice, address + i,
5443 ((LM_UINT32 *) pFwImg->ROnlyData.
5444 Buffer)[i / 4]);
5445 }
5446
5447 address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
5448 for (i = 0; i <= pFwImg->Data.Length; i += 4) {
5449 LM_RegWrInd (pDevice, address + i,
5450 ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
5451 4]);
5452 }
5453 }
5454
5455 if (StartCpu & T3_RX_CPU_ID) {
5456 /* Start Rx CPU */
5457 REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
5458 REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
5459 for (i = 0; i < 5; i++) {
5460 if (pFwImg->StartAddress ==
5461 REG_RD (pDevice, rxCpu.reg.PC))
5462 break;
5463
5464 REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
5465 REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
5466 REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
5467 MM_Wait (1000);
5468 }
5469
5470 REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
5471 REG_WR (pDevice, rxCpu.reg.mode, 0);
5472 }
5473
5474 if (StartCpu & T3_TX_CPU_ID) {
5475 /* Start Tx CPU */
5476 REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
5477 REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
5478 for (i = 0; i < 5; i++) {
5479 if (pFwImg->StartAddress ==
5480 REG_RD (pDevice, txCpu.reg.PC))
5481 break;
5482
5483 REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
5484 REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
5485 REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
5486 MM_Wait (1000);
5487 }
5488
5489 REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
5490 REG_WR (pDevice, txCpu.reg.mode, 0);
5491 }
5492
5493 return LM_STATUS_SUCCESS;
5494 }
5495
5496 STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number)
5497 {
5498 LM_UINT32 i;
5499
5500 if (cpu_number == T3_RX_CPU_ID) {
5501 for (i = 0; i < 10000; i++) {
5502 REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
5503 REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
5504
5505 if (REG_RD (pDevice, rxCpu.reg.mode) & CPU_MODE_HALT)
5506 break;
5507 }
5508
5509 REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
5510 REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
5511 MM_Wait (10);
5512 } else {
5513 for (i = 0; i < 10000; i++) {
5514 REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
5515 REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
5516
5517 if (REG_RD (pDevice, txCpu.reg.mode) & CPU_MODE_HALT)
5518 break;
5519 }
5520 }
5521
5522 return ((i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS);
5523 }
5524
5525 int LM_BlinkLED (PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
5526 {
5527 LM_UINT32 Oldcfg;
5528 int j;
5529 int ret = 0;
5530
5531 if (BlinkDurationSec == 0) {
5532 return 0;
5533 }
5534 if (BlinkDurationSec > 120) {
5535 BlinkDurationSec = 120;
5536 }
5537
5538 Oldcfg = REG_RD (pDevice, MacCtrl.LedCtrl);
5539 for (j = 0; j < BlinkDurationSec * 2; j++) {
5540 if (j % 2) {
5541 /* Turn on the LEDs. */
5542 REG_WR (pDevice, MacCtrl.LedCtrl,
5543 LED_CTRL_OVERRIDE_LINK_LED |
5544 LED_CTRL_1000MBPS_LED_ON |
5545 LED_CTRL_100MBPS_LED_ON |
5546 LED_CTRL_10MBPS_LED_ON |
5547 LED_CTRL_OVERRIDE_TRAFFIC_LED |
5548 LED_CTRL_BLINK_TRAFFIC_LED |
5549 LED_CTRL_TRAFFIC_LED);
5550 } else {
5551 /* Turn off the LEDs. */
5552 REG_WR (pDevice, MacCtrl.LedCtrl,
5553 LED_CTRL_OVERRIDE_LINK_LED |
5554 LED_CTRL_OVERRIDE_TRAFFIC_LED);
5555 }
5556
5557 #ifndef EMBEDDED
5558 current->state = TASK_INTERRUPTIBLE;
5559 if (schedule_timeout (HZ / 2) != 0) {
5560 ret = -EINTR;
5561 break;
5562 }
5563 #else
5564 udelay (100000); /* 1s sleep */
5565 #endif
5566 }
5567 REG_WR (pDevice, MacCtrl.LedCtrl, Oldcfg);
5568 return ret;
5569 }
5570
5571 int t3_do_dma (PLM_DEVICE_BLOCK pDevice,
5572 LM_PHYSICAL_ADDRESS host_addr_phy, int length, int dma_read)
5573 {
5574 T3_DMA_DESC dma_desc;
5575 int i;
5576 LM_UINT32 dma_desc_addr;
5577 LM_UINT32 value32;
5578
5579 REG_WR (pDevice, BufMgr.Mode, 0);
5580 REG_WR (pDevice, Ftq.Reset, 0);
5581
5582 dma_desc.host_addr.High = host_addr_phy.High;
5583 dma_desc.host_addr.Low = host_addr_phy.Low;
5584 dma_desc.nic_mbuf = 0x2100;
5585 dma_desc.len = length;
5586 dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */
5587
5588 if (dma_read) {
5589 dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
5590 T3_QID_DMA_HIGH_PRI_READ;
5591 REG_WR (pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
5592 } else {
5593 dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
5594 T3_QID_DMA_HIGH_PRI_WRITE;
5595 REG_WR (pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
5596 }
5597
5598 dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
5599
5600 /* Writing this DMA descriptor to DMA memory */
5601 for (i = 0; i < sizeof (T3_DMA_DESC); i += 4) {
5602 value32 = *((PLM_UINT32) (((PLM_UINT8) & dma_desc) + i));
5603 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG,
5604 dma_desc_addr + i);
5605 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG,
5606 cpu_to_le32 (value32));
5607 }
5608 MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
5609
5610 if (dma_read)
5611 REG_WR (pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue,
5612 dma_desc_addr);
5613 else
5614 REG_WR (pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue,
5615 dma_desc_addr);
5616
5617 for (i = 0; i < 40; i++) {
5618 if (dma_read)
5619 value32 =
5620 REG_RD (pDevice,
5621 Ftq.RcvBdCompFtqFifoEnqueueDequeue);
5622 else
5623 value32 =
5624 REG_RD (pDevice,
5625 Ftq.RcvDataCompFtqFifoEnqueueDequeue);
5626
5627 if ((value32 & 0xffff) == dma_desc_addr)
5628 break;
5629
5630 MM_Wait (10);
5631 }
5632
5633 return LM_STATUS_SUCCESS;
5634 }
5635
5636 STATIC LM_STATUS
5637 LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
5638 LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
5639 {
5640 int j;
5641 LM_UINT32 *ptr;
5642 int dma_success = 0;
5643
5644 if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
5645 T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
5646 return LM_STATUS_SUCCESS;
5647 }
5648 while (!dma_success) {
5649 /* Fill data with incremental patterns */
5650 ptr = (LM_UINT32 *) pBufferVirt;
5651 for (j = 0; j < BufferSize / 4; j++)
5652 *ptr++ = j;
5653
5654 if (t3_do_dma (pDevice, BufferPhy, BufferSize, 1) ==
5655 LM_STATUS_FAILURE) {
5656 return LM_STATUS_FAILURE;
5657 }
5658
5659 MM_Wait (40);
5660 ptr = (LM_UINT32 *) pBufferVirt;
5661 /* Fill data with zero */
5662 for (j = 0; j < BufferSize / 4; j++)
5663 *ptr++ = 0;
5664
5665 if (t3_do_dma (pDevice, BufferPhy, BufferSize, 0) ==
5666 LM_STATUS_FAILURE) {
5667 return LM_STATUS_FAILURE;
5668 }
5669
5670 MM_Wait (40);
5671 /* Check for data */
5672 ptr = (LM_UINT32 *) pBufferVirt;
5673 for (j = 0; j < BufferSize / 4; j++) {
5674 if (*ptr++ != j) {
5675 if ((pDevice->
5676 DmaReadWriteCtrl &
5677 DMA_CTRL_WRITE_BOUNDARY_MASK)
5678 == DMA_CTRL_WRITE_BOUNDARY_DISABLE) {
5679 pDevice->DmaReadWriteCtrl =
5680 (pDevice->
5681 DmaReadWriteCtrl &
5682 ~DMA_CTRL_WRITE_BOUNDARY_MASK) |
5683 DMA_CTRL_WRITE_BOUNDARY_16;
5684 REG_WR (pDevice,
5685 PciCfg.DmaReadWriteCtrl,
5686 pDevice->DmaReadWriteCtrl);
5687 break;
5688 } else {
5689 return LM_STATUS_FAILURE;
5690 }
5691 }
5692 }
5693 if (j == (BufferSize / 4))
5694 dma_success = 1;
5695 }
5696 return LM_STATUS_SUCCESS;
5697 }