]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/gadget/designware_udc.c
env: Rename getenv/_f() to env_get()
[people/ms/u-boot.git] / drivers / usb / gadget / designware_udc.c
1 /*
2 * Based on drivers/usb/gadget/omap1510_udc.c
3 * TI OMAP1510 USB bus interface driver
4 *
5 * (C) Copyright 2009
6 * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <asm/io.h>
13
14 #include <usbdevice.h>
15 #include "ep0.h"
16 #include <usb/designware_udc.h>
17 #include <usb/udc.h>
18 #include <asm/arch/hardware.h>
19
20 #define UDC_INIT_MDELAY 80 /* Device settle delay */
21
22 /* Some kind of debugging output... */
23 #ifndef DEBUG_DWUSBTTY
24 #define UDCDBG(str)
25 #define UDCDBGA(fmt, args...)
26 #else
27 #define UDCDBG(str) serial_printf(str "\n")
28 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
29 #endif
30
31 static struct urb *ep0_urb;
32 static struct usb_device_instance *udc_device;
33
34 static struct plug_regs *const plug_regs_p =
35 (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
36 static struct udc_regs *const udc_regs_p =
37 (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
38 static struct udc_endp_regs *const outep_regs_p =
39 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
40 static struct udc_endp_regs *const inep_regs_p =
41 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
42
43 /*
44 * udc_state_transition - Write the next packet to TxFIFO.
45 * @initial: Initial state.
46 * @final: Final state.
47 *
48 * Helper function to implement device state changes. The device states and
49 * the events that transition between them are:
50 *
51 * STATE_ATTACHED
52 * || /\
53 * \/ ||
54 * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
55 * || /\
56 * \/ ||
57 * STATE_POWERED
58 * || /\
59 * \/ ||
60 * DEVICE_RESET DEVICE_POWER_INTERRUPTION
61 * || /\
62 * \/ ||
63 * STATE_DEFAULT
64 * || /\
65 * \/ ||
66 * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
67 * || /\
68 * \/ ||
69 * STATE_ADDRESSED
70 * || /\
71 * \/ ||
72 * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
73 * || /\
74 * \/ ||
75 * STATE_CONFIGURED
76 *
77 * udc_state_transition transitions up (in the direction from STATE_ATTACHED
78 * to STATE_CONFIGURED) from the specified initial state to the specified final
79 * state, passing through each intermediate state on the way. If the initial
80 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
81 * no state transitions will take place.
82 *
83 * udc_state_transition also transitions down (in the direction from
84 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
85 * specified final state, passing through each intermediate state on the way.
86 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
87 * state, then no state transitions will take place.
88 *
89 * This function must only be called with interrupts disabled.
90 */
91 static void udc_state_transition(usb_device_state_t initial,
92 usb_device_state_t final)
93 {
94 if (initial < final) {
95 switch (initial) {
96 case STATE_ATTACHED:
97 usbd_device_event_irq(udc_device,
98 DEVICE_HUB_CONFIGURED, 0);
99 if (final == STATE_POWERED)
100 break;
101 case STATE_POWERED:
102 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
103 if (final == STATE_DEFAULT)
104 break;
105 case STATE_DEFAULT:
106 usbd_device_event_irq(udc_device,
107 DEVICE_ADDRESS_ASSIGNED, 0);
108 if (final == STATE_ADDRESSED)
109 break;
110 case STATE_ADDRESSED:
111 usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
112 case STATE_CONFIGURED:
113 break;
114 default:
115 break;
116 }
117 } else if (initial > final) {
118 switch (initial) {
119 case STATE_CONFIGURED:
120 usbd_device_event_irq(udc_device,
121 DEVICE_DE_CONFIGURED, 0);
122 if (final == STATE_ADDRESSED)
123 break;
124 case STATE_ADDRESSED:
125 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
126 if (final == STATE_DEFAULT)
127 break;
128 case STATE_DEFAULT:
129 usbd_device_event_irq(udc_device,
130 DEVICE_POWER_INTERRUPTION, 0);
131 if (final == STATE_POWERED)
132 break;
133 case STATE_POWERED:
134 usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
135 case STATE_ATTACHED:
136 break;
137 default:
138 break;
139 }
140 }
141 }
142
143 /* Stall endpoint */
144 static void udc_stall_ep(u32 ep_num)
145 {
146 writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
147 &inep_regs_p[ep_num].endp_cntl);
148
149 writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
150 &outep_regs_p[ep_num].endp_cntl);
151 }
152
153 static void *get_fifo(int ep_num, int in)
154 {
155 u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
156
157 switch (ep_num) {
158 case UDC_EP3:
159 fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
160 /* break intentionally left out */
161
162 case UDC_EP1:
163 fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
164 /* break intentionally left out */
165
166 case UDC_EP0:
167 default:
168 if (in) {
169 fifo_ptr +=
170 readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
171 /* break intentionally left out */
172 } else {
173 break;
174 }
175
176 case UDC_EP2:
177 fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
178 /* break intentionally left out */
179 }
180
181 return (void *)fifo_ptr;
182 }
183
184 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
185 {
186 u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
187 u32 i, nw, nb;
188 u32 *wrdp;
189 u8 *bytp;
190 u32 tmp[128];
191
192 if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
193 return -1;
194
195 nw = len / sizeof(u32);
196 nb = len % sizeof(u32);
197
198 /* use tmp buf if bufp is not word aligned */
199 if ((int)bufp & 0x3)
200 wrdp = (u32 *)&tmp[0];
201 else
202 wrdp = (u32 *)bufp;
203
204 for (i = 0; i < nw; i++) {
205 writel(readl(fifo_ptr), wrdp);
206 wrdp++;
207 }
208
209 bytp = (u8 *)wrdp;
210 for (i = 0; i < nb; i++) {
211 writeb(readb(fifo_ptr), bytp);
212 fifo_ptr++;
213 bytp++;
214 }
215 readl(&outep_regs_p[epNum].write_done);
216
217 /* copy back tmp buffer to bufp if bufp is not word aligned */
218 if ((int)bufp & 0x3)
219 memcpy(bufp, tmp, len);
220
221 return 0;
222 }
223
224 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
225 {
226 u32 i, nw, nb;
227 u32 *wrdp;
228 u8 *bytp;
229 u8 *fifo_ptr = get_fifo(epNum, 1);
230
231 nw = len / sizeof(int);
232 nb = len % sizeof(int);
233 wrdp = (u32 *)bufp;
234 for (i = 0; i < nw; i++) {
235 writel(*wrdp, fifo_ptr);
236 wrdp++;
237 }
238
239 bytp = (u8 *)wrdp;
240 for (i = 0; i < nb; i++) {
241 writeb(*bytp, fifo_ptr);
242 fifo_ptr++;
243 bytp++;
244 }
245 }
246
247 /*
248 * dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
249 * @endpoint: Endpoint pointer.
250 *
251 * If the endpoint has an active tx_urb, then the next packet of data from the
252 * URB is written to the tx FIFO. The total amount of data in the urb is given
253 * by urb->actual_length. The maximum amount of data that can be sent in any
254 * one packet is given by endpoint->tx_packetSize. The number of data bytes
255 * from this URB that have already been transmitted is given by endpoint->sent.
256 * endpoint->last is updated by this routine with the number of data bytes
257 * transmitted in this packet.
258 *
259 */
260 static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
261 *endpoint)
262 {
263 struct urb *urb = endpoint->tx_urb;
264 int align;
265
266 if (urb) {
267 u32 last;
268
269 UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
270 urb->buffer, urb->buffer_length, urb->actual_length);
271
272 last = min_t(u32, urb->actual_length - endpoint->sent,
273 endpoint->tx_packetSize);
274
275 if (last) {
276 u8 *cp = urb->buffer + endpoint->sent;
277
278 /*
279 * This ensures that USBD packet fifo is accessed
280 * - through word aligned pointer or
281 * - through non word aligned pointer but only
282 * with a max length to make the next packet
283 * word aligned
284 */
285
286 align = ((ulong)cp % sizeof(int));
287 if (align)
288 last = min(last, sizeof(int) - align);
289
290 UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
291 endpoint->sent, endpoint->tx_packetSize, last);
292
293 usbputpcktofifo(endpoint->endpoint_address &
294 USB_ENDPOINT_NUMBER_MASK, cp, last);
295 }
296 endpoint->last = last;
297 }
298 }
299
300 /*
301 * Handle SETUP USB interrupt.
302 * This function implements TRM Figure 14-14.
303 */
304 static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
305 {
306 u8 *datap = (u8 *)&ep0_urb->device_request;
307 int ep_addr = endpoint->endpoint_address;
308
309 UDCDBG("-> Entering device setup");
310 usbgetpckfromfifo(ep_addr, datap, 8);
311
312 /* Try to process setup packet */
313 if (ep0_recv_setup(ep0_urb)) {
314 /* Not a setup packet, stall next EP0 transaction */
315 udc_stall_ep(0);
316 UDCDBG("can't parse setup packet, still waiting for setup");
317 return;
318 }
319
320 /* Check direction */
321 if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
322 == USB_REQ_HOST2DEVICE) {
323 UDCDBG("control write on EP0");
324 if (le16_to_cpu(ep0_urb->device_request.wLength)) {
325 /* Stall this request */
326 UDCDBG("Stalling unsupported EP0 control write data "
327 "stage.");
328 udc_stall_ep(0);
329 }
330 } else {
331
332 UDCDBG("control read on EP0");
333 /*
334 * The ep0_recv_setup function has already placed our response
335 * packet data in ep0_urb->buffer and the packet length in
336 * ep0_urb->actual_length.
337 */
338 endpoint->tx_urb = ep0_urb;
339 endpoint->sent = 0;
340 /*
341 * Write packet data to the FIFO. dw_write_noniso_tx_fifo
342 * will update endpoint->last with the number of bytes written
343 * to the FIFO.
344 */
345 dw_write_noniso_tx_fifo(endpoint);
346
347 writel(0x0, &inep_regs_p[ep_addr].write_done);
348 }
349
350 udc_unset_nak(endpoint->endpoint_address);
351
352 UDCDBG("<- Leaving device setup");
353 }
354
355 /*
356 * Handle endpoint 0 RX interrupt
357 */
358 static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
359 {
360 u8 dummy[64];
361
362 UDCDBG("RX on EP0");
363
364 /* Check direction */
365 if ((ep0_urb->device_request.bmRequestType
366 & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
367 /*
368 * This rx interrupt must be for a control write data
369 * stage packet.
370 *
371 * We don't support control write data stages.
372 * We should never end up here.
373 */
374
375 UDCDBG("Stalling unexpected EP0 control write "
376 "data stage packet");
377 udc_stall_ep(0);
378 } else {
379 /*
380 * This rx interrupt must be for a control read status
381 * stage packet.
382 */
383 UDCDBG("ACK on EP0 control read status stage packet");
384 u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
385 usbgetpckfromfifo(0, dummy, len);
386 }
387 }
388
389 /*
390 * Handle endpoint 0 TX interrupt
391 */
392 static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
393 {
394 struct usb_device_request *request = &ep0_urb->device_request;
395 int ep_addr;
396
397 UDCDBG("TX on EP0");
398
399 /* Check direction */
400 if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
401 USB_REQ_HOST2DEVICE) {
402 /*
403 * This tx interrupt must be for a control write status
404 * stage packet.
405 */
406 UDCDBG("ACK on EP0 control write status stage packet");
407 } else {
408 /*
409 * This tx interrupt must be for a control read data
410 * stage packet.
411 */
412 int wLength = le16_to_cpu(request->wLength);
413
414 /*
415 * Update our count of bytes sent so far in this
416 * transfer.
417 */
418 endpoint->sent += endpoint->last;
419
420 /*
421 * We are finished with this transfer if we have sent
422 * all of the bytes in our tx urb (urb->actual_length)
423 * unless we need a zero-length terminating packet. We
424 * need a zero-length terminating packet if we returned
425 * fewer bytes than were requested (wLength) by the host,
426 * and the number of bytes we returned is an exact
427 * multiple of the packet size endpoint->tx_packetSize.
428 */
429 if ((endpoint->sent == ep0_urb->actual_length) &&
430 ((ep0_urb->actual_length == wLength) ||
431 (endpoint->last != endpoint->tx_packetSize))) {
432 /* Done with control read data stage. */
433 UDCDBG("control read data stage complete");
434 } else {
435 /*
436 * We still have another packet of data to send
437 * in this control read data stage or else we
438 * need a zero-length terminating packet.
439 */
440 UDCDBG("ACK control read data stage packet");
441 dw_write_noniso_tx_fifo(endpoint);
442
443 ep_addr = endpoint->endpoint_address;
444 writel(0x0, &inep_regs_p[ep_addr].write_done);
445 }
446 }
447 }
448
449 static struct usb_endpoint_instance *dw_find_ep(int ep)
450 {
451 int i;
452
453 for (i = 0; i < udc_device->bus->max_endpoints; i++) {
454 if ((udc_device->bus->endpoint_array[i].endpoint_address &
455 USB_ENDPOINT_NUMBER_MASK) == ep)
456 return &udc_device->bus->endpoint_array[i];
457 }
458 return NULL;
459 }
460
461 /*
462 * Handle RX transaction on non-ISO endpoint.
463 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
464 * in the range 1 to 15.
465 */
466 static void dw_udc_epn_rx(int ep)
467 {
468 int nbytes = 0;
469 struct urb *urb;
470 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
471
472 if (endpoint) {
473 urb = endpoint->rcv_urb;
474
475 if (urb) {
476 u8 *cp = urb->buffer + urb->actual_length;
477
478 nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
479 0xfff;
480 usbgetpckfromfifo(ep, cp, nbytes);
481 usbd_rcv_complete(endpoint, nbytes, 0);
482 }
483 }
484 }
485
486 /*
487 * Handle TX transaction on non-ISO endpoint.
488 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
489 * in the range 16 to 30.
490 */
491 static void dw_udc_epn_tx(int ep)
492 {
493 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
494
495 if (!endpoint)
496 return;
497
498 /*
499 * We need to transmit a terminating zero-length packet now if
500 * we have sent all of the data in this URB and the transfer
501 * size was an exact multiple of the packet size.
502 */
503 if (endpoint->tx_urb &&
504 (endpoint->last == endpoint->tx_packetSize) &&
505 (endpoint->tx_urb->actual_length - endpoint->sent -
506 endpoint->last == 0)) {
507 /* handle zero length packet here */
508 writel(0x0, &inep_regs_p[ep].write_done);
509
510 }
511
512 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
513 /* retire the data that was just sent */
514 usbd_tx_complete(endpoint);
515 /*
516 * Check to see if we have more data ready to transmit
517 * now.
518 */
519 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
520 /* write data to FIFO */
521 dw_write_noniso_tx_fifo(endpoint);
522 writel(0x0, &inep_regs_p[ep].write_done);
523
524 } else if (endpoint->tx_urb
525 && (endpoint->tx_urb->actual_length == 0)) {
526 /* udc_set_nak(ep); */
527 }
528 }
529 }
530
531 /*
532 * Start of public functions.
533 */
534
535 /* Called to start packet transmission. */
536 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
537 {
538 udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
539 return 0;
540 }
541
542 /* Start to initialize h/w stuff */
543 int udc_init(void)
544 {
545 int i;
546 u32 plug_st;
547
548 udc_device = NULL;
549
550 UDCDBG("starting");
551
552 readl(&plug_regs_p->plug_pending);
553
554 for (i = 0; i < UDC_INIT_MDELAY; i++)
555 udelay(1000);
556
557 plug_st = readl(&plug_regs_p->plug_state);
558 writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
559
560 writel(~0x0, &udc_regs_p->endp_int);
561 writel(~0x0, &udc_regs_p->dev_int_mask);
562 writel(~0x0, &udc_regs_p->endp_int_mask);
563
564 #ifndef CONFIG_USBD_HS
565 writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
566 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
567 #else
568 writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
569 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
570 #endif
571
572 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
573
574 /* Clear all interrupts pending */
575 writel(DEV_INT_MSK, &udc_regs_p->dev_int);
576
577 return 0;
578 }
579
580 int is_usbd_high_speed(void)
581 {
582 return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
583 }
584
585 /*
586 * udc_setup_ep - setup endpoint
587 * Associate a physical endpoint with endpoint_instance
588 */
589 void udc_setup_ep(struct usb_device_instance *device,
590 u32 ep, struct usb_endpoint_instance *endpoint)
591 {
592 UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
593 int ep_addr;
594 int ep_num, ep_type;
595 int packet_size;
596 int buffer_size;
597 int attributes;
598 char *tt;
599 u32 endp_intmask;
600
601 if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
602 return;
603
604 tt = env_get("usbtty");
605 if (!tt)
606 tt = "generic";
607
608 ep_addr = endpoint->endpoint_address;
609 ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
610
611 if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
612 /* IN endpoint */
613 packet_size = endpoint->tx_packetSize;
614 buffer_size = packet_size * 2;
615 attributes = endpoint->tx_attributes;
616 } else {
617 /* OUT endpoint */
618 packet_size = endpoint->rcv_packetSize;
619 buffer_size = packet_size * 2;
620 attributes = endpoint->rcv_attributes;
621 }
622
623 switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
624 case USB_ENDPOINT_XFER_CONTROL:
625 ep_type = ENDP_EPTYPE_CNTL;
626 break;
627 case USB_ENDPOINT_XFER_BULK:
628 default:
629 ep_type = ENDP_EPTYPE_BULK;
630 break;
631 case USB_ENDPOINT_XFER_INT:
632 ep_type = ENDP_EPTYPE_INT;
633 break;
634 case USB_ENDPOINT_XFER_ISOC:
635 ep_type = ENDP_EPTYPE_ISO;
636 break;
637 }
638
639 struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
640 struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
641
642 if (!ep_addr) {
643 /* Setup endpoint 0 */
644 buffer_size = packet_size;
645
646 writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
647 &in_p->endp_cntl);
648
649 writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
650 &out_p->endp_cntl);
651
652 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
653
654 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
655
656 writel(packet_size, &in_p->endp_maxpacksize);
657
658 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
659
660 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
661 &out_p->endp_maxpacksize);
662
663 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
664 /* Setup the IN endpoint */
665 writel(0x0, &in_p->endp_status);
666 writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
667 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
668 writel(packet_size, &in_p->endp_maxpacksize);
669
670 if (!strcmp(tt, "cdc_acm")) {
671 if (ep_type == ENDP_EPTYPE_INT) {
672 /* Conf no. 1 Interface no. 0 */
673 writel((packet_size << 19) |
674 ENDP_EPDIR_IN | (1 << 7) |
675 (0 << 11) | (ep_type << 5) | ep_num,
676 &udc_regs_p->udc_endp_reg[ep_num]);
677 } else {
678 /* Conf no. 1 Interface no. 1 */
679 writel((packet_size << 19) |
680 ENDP_EPDIR_IN | (1 << 7) |
681 (1 << 11) | (ep_type << 5) | ep_num,
682 &udc_regs_p->udc_endp_reg[ep_num]);
683 }
684 } else {
685 /* Conf no. 1 Interface no. 0 */
686 writel((packet_size << 19) |
687 ENDP_EPDIR_IN | (1 << 7) |
688 (0 << 11) | (ep_type << 5) | ep_num,
689 &udc_regs_p->udc_endp_reg[ep_num]);
690 }
691
692 } else {
693 /* Setup the OUT endpoint */
694 writel(0x0, &out_p->endp_status);
695 writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
696 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
697 &out_p->endp_maxpacksize);
698
699 if (!strcmp(tt, "cdc_acm")) {
700 writel((packet_size << 19) |
701 ENDP_EPDIR_OUT | (1 << 7) |
702 (1 << 11) | (ep_type << 5) | ep_num,
703 &udc_regs_p->udc_endp_reg[ep_num]);
704 } else {
705 writel((packet_size << 19) |
706 ENDP_EPDIR_OUT | (1 << 7) |
707 (0 << 11) | (ep_type << 5) | ep_num,
708 &udc_regs_p->udc_endp_reg[ep_num]);
709 }
710
711 }
712
713 endp_intmask = readl(&udc_regs_p->endp_int_mask);
714 endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
715 writel(endp_intmask, &udc_regs_p->endp_int_mask);
716 }
717
718 /* Turn on the USB connection by enabling the pullup resistor */
719 void udc_connect(void)
720 {
721 u32 plug_st, dev_cntl;
722
723 dev_cntl = readl(&udc_regs_p->dev_cntl);
724 dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
725 writel(dev_cntl, &udc_regs_p->dev_cntl);
726
727 udelay(1000);
728
729 dev_cntl = readl(&udc_regs_p->dev_cntl);
730 dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
731 writel(dev_cntl, &udc_regs_p->dev_cntl);
732
733 plug_st = readl(&plug_regs_p->plug_state);
734 plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
735 writel(plug_st, &plug_regs_p->plug_state);
736 }
737
738 /* Turn off the USB connection by disabling the pullup resistor */
739 void udc_disconnect(void)
740 {
741 u32 plug_st;
742
743 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
744
745 plug_st = readl(&plug_regs_p->plug_state);
746 plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
747 writel(plug_st, &plug_regs_p->plug_state);
748 }
749
750 /* Switch on the UDC */
751 void udc_enable(struct usb_device_instance *device)
752 {
753 UDCDBGA("enable device %p, status %d", device, device->status);
754
755 /* Save the device structure pointer */
756 udc_device = device;
757
758 /* Setup ep0 urb */
759 if (!ep0_urb) {
760 ep0_urb =
761 usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
762 } else {
763 serial_printf("udc_enable: ep0_urb already allocated %p\n",
764 ep0_urb);
765 }
766
767 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
768 }
769
770 /**
771 * udc_startup - allow udc code to do any additional startup
772 */
773 void udc_startup_events(struct usb_device_instance *device)
774 {
775 /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
776 usbd_device_event_irq(device, DEVICE_INIT, 0);
777
778 /*
779 * The DEVICE_CREATE event puts the USB device in the state
780 * STATE_ATTACHED.
781 */
782 usbd_device_event_irq(device, DEVICE_CREATE, 0);
783
784 /*
785 * Some USB controller driver implementations signal
786 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
787 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
788 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
789 * The DW USB client controller has the capability to detect when the
790 * USB cable is connected to a powered USB bus, so we will defer the
791 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
792 */
793
794 udc_enable(device);
795 }
796
797 /*
798 * Plug detection interrupt handling
799 */
800 static void dw_udc_plug_irq(void)
801 {
802 if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
803 /*
804 * USB cable attached
805 * Turn off PHY reset bit (PLUG detect).
806 * Switch PHY opmode to normal operation (PLUG detect).
807 */
808 udc_connect();
809 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
810
811 UDCDBG("device attached and powered");
812 udc_state_transition(udc_device->device_state, STATE_POWERED);
813 } else {
814 writel(~0x0, &udc_regs_p->dev_int_mask);
815
816 UDCDBG("device detached or unpowered");
817 udc_state_transition(udc_device->device_state, STATE_ATTACHED);
818 }
819 }
820
821 /*
822 * Device interrupt handling
823 */
824 static void dw_udc_dev_irq(void)
825 {
826 if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
827 writel(~0x0, &udc_regs_p->endp_int_mask);
828
829 writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
830 &inep_regs_p[0].endp_cntl);
831
832 writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
833
834 /*
835 * This endpoint0 specific register can be programmed only
836 * after the phy clock is initialized
837 */
838 writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
839 &udc_regs_p->udc_endp_reg[0]);
840
841 UDCDBG("device reset in progess");
842 udc_state_transition(udc_device->device_state, STATE_DEFAULT);
843 }
844
845 /* Device Enumeration completed */
846 if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
847 writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
848
849 /* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
850 writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
851 &udc_regs_p->endp_int_mask);
852
853 UDCDBG("default -> addressed");
854 udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
855 }
856
857 /* The USB will be in SUSPEND in 3 ms */
858 if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
859 writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
860
861 UDCDBG("entering inactive state");
862 /* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
863 }
864
865 /* SetConfiguration command received */
866 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
867 writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
868
869 UDCDBG("entering configured state");
870 udc_state_transition(udc_device->device_state,
871 STATE_CONFIGURED);
872 }
873
874 /* SetInterface command received */
875 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
876 writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
877
878 /* USB Suspend detected on cable */
879 if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
880 writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
881
882 UDCDBG("entering suspended state");
883 usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
884 }
885
886 /* USB Start-Of-Frame detected on cable */
887 if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
888 writel(DEV_INT_SOF, &udc_regs_p->dev_int);
889 }
890
891 /*
892 * Endpoint interrupt handling
893 */
894 static void dw_udc_endpoint_irq(void)
895 {
896 while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
897
898 writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
899
900 if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
901 == ENDP_STATUS_OUT_SETUP) {
902 dw_udc_setup(udc_device->bus->endpoint_array + 0);
903 writel(ENDP_STATUS_OUT_SETUP,
904 &outep_regs_p[0].endp_status);
905
906 } else if ((readl(&outep_regs_p[0].endp_status) &
907 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
908 dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
909 writel(ENDP_STATUS_OUT_DATA,
910 &outep_regs_p[0].endp_status);
911
912 } else if ((readl(&outep_regs_p[0].endp_status) &
913 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
914 /* NONE received */
915 }
916
917 writel(0x0, &outep_regs_p[0].endp_status);
918 }
919
920 if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
921 dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
922
923 writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
924 writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
925 }
926
927 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
928 u32 epnum = 0;
929 u32 ep_int = readl(&udc_regs_p->endp_int) &
930 ENDP_INT_NONISOOUT_MSK;
931
932 ep_int >>= 16;
933 while (0x0 == (ep_int & 0x1)) {
934 ep_int >>= 1;
935 epnum++;
936 }
937
938 writel((1 << 16) << epnum, &udc_regs_p->endp_int);
939
940 if ((readl(&outep_regs_p[epnum].endp_status) &
941 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
942
943 dw_udc_epn_rx(epnum);
944 writel(ENDP_STATUS_OUT_DATA,
945 &outep_regs_p[epnum].endp_status);
946 } else if ((readl(&outep_regs_p[epnum].endp_status) &
947 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
948 writel(0x0, &outep_regs_p[epnum].endp_status);
949 }
950 }
951
952 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
953 u32 epnum = 0;
954 u32 ep_int = readl(&udc_regs_p->endp_int) &
955 ENDP_INT_NONISOIN_MSK;
956
957 while (0x0 == (ep_int & 0x1)) {
958 ep_int >>= 1;
959 epnum++;
960 }
961
962 if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
963 writel(ENDP_STATUS_IN,
964 &outep_regs_p[epnum].endp_status);
965 dw_udc_epn_tx(epnum);
966
967 writel(ENDP_STATUS_IN,
968 &outep_regs_p[epnum].endp_status);
969 }
970
971 writel((1 << epnum), &udc_regs_p->endp_int);
972 }
973 }
974
975 /*
976 * UDC interrupts
977 */
978 void udc_irq(void)
979 {
980 /*
981 * Loop while we have interrupts.
982 * If we don't do this, the input chain
983 * polling delay is likely to miss
984 * host requests.
985 */
986 while (readl(&plug_regs_p->plug_pending))
987 dw_udc_plug_irq();
988
989 while (readl(&udc_regs_p->dev_int))
990 dw_udc_dev_irq();
991
992 if (readl(&udc_regs_p->endp_int))
993 dw_udc_endpoint_irq();
994 }
995
996 /* Flow control */
997 void udc_set_nak(int epid)
998 {
999 writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1000 &inep_regs_p[epid].endp_cntl);
1001
1002 writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1003 &outep_regs_p[epid].endp_cntl);
1004 }
1005
1006 void udc_unset_nak(int epid)
1007 {
1008 u32 val;
1009
1010 val = readl(&inep_regs_p[epid].endp_cntl);
1011 val &= ~ENDP_CNTL_SNAK;
1012 val |= ENDP_CNTL_CNAK;
1013 writel(val, &inep_regs_p[epid].endp_cntl);
1014
1015 val = readl(&outep_regs_p[epid].endp_cntl);
1016 val &= ~ENDP_CNTL_SNAK;
1017 val |= ENDP_CNTL_CNAK;
1018 writel(val, &outep_regs_p[epid].endp_cntl);
1019 }