]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/gadget/omap1510_udc.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / drivers / usb / gadget / omap1510_udc.c
1 /*
2 * (C) Copyright 2003
3 * Gerry Hamel, geh@ti.com, Texas Instruments
4 *
5 * Based on
6 * linux/drivers/usb/device/bi/omap.c
7 * TI OMAP1510 USB bus interface driver
8 *
9 * Author: MontaVista Software, Inc.
10 * source@mvista.com
11 * (C) Copyright 2002
12 *
13 * SPDX-License-Identifier: GPL-2.0+
14 */
15
16 #include <common.h>
17 #include <asm/io.h>
18 #ifdef CONFIG_OMAP_SX1
19 #include <i2c.h>
20 #endif
21 #include <usbdevice.h>
22 #include <usb/omap1510_udc.h>
23
24 #include "ep0.h"
25
26
27 #define UDC_INIT_MDELAY 80 /* Device settle delay */
28 #define UDC_MAX_ENDPOINTS 31 /* Number of endpoints on this UDC */
29
30 /* Some kind of debugging output... */
31 #if 1
32 #define UDCDBG(str)
33 #define UDCDBGA(fmt,args...)
34 #else /* The bugs still exists... */
35 #define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__)
36 #define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args)
37 #endif
38
39 #if 1
40 #define UDCREG(name)
41 #define UDCREGL(name)
42 #else /* The bugs still exists... */
43 #define UDCREG(name) serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name)) /* For 16-bit regs */
44 #define UDCREGL(name) serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name)) /* For 32-bit regs */
45 #endif
46
47
48 static struct urb *ep0_urb = NULL;
49
50 static struct usb_device_instance *udc_device; /* Used in interrupt handler */
51 static u16 udc_devstat = 0; /* UDC status (DEVSTAT) */
52 static u32 udc_interrupts = 0;
53
54 static void udc_stall_ep (unsigned int ep_addr);
55
56
57 static struct usb_endpoint_instance *omap1510_find_ep (int ep)
58 {
59 int i;
60
61 for (i = 0; i < udc_device->bus->max_endpoints; i++) {
62 if (udc_device->bus->endpoint_array[i].endpoint_address == ep)
63 return &udc_device->bus->endpoint_array[i];
64 }
65 return NULL;
66 }
67
68 /* ************************************************************************** */
69 /* IO
70 */
71
72 /*
73 * omap1510_prepare_endpoint_for_rx
74 *
75 * This function implements TRM Figure 14-11.
76 *
77 * The endpoint to prepare for transfer is specified as a physical endpoint
78 * number. For OUT (rx) endpoints 1 through 15, the corresponding endpoint
79 * configuration register is checked to see if the endpoint is ISO or not.
80 * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled.
81 * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30.
82 */
83 static void omap1510_prepare_endpoint_for_rx (int ep_addr)
84 {
85 int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
86
87 UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr);
88 if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) {
89 if ((inw (UDC_EP_RX (ep_num)) &
90 (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) ==
91 UDC_EPn_RX_Valid) {
92 /* rx endpoint is valid, non-ISO, so enable its FIFO */
93 outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
94 outw (UDC_Set_FIFO_En, UDC_CTRL);
95 outw (0, UDC_EP_NUM);
96 }
97 }
98 }
99
100 /* omap1510_configure_endpoints
101 *
102 * This function implements TRM Figure 14-10.
103 */
104 static void omap1510_configure_endpoints (struct usb_device_instance *device)
105 {
106 int ep;
107 struct usb_bus_instance *bus;
108 struct usb_endpoint_instance *endpoint;
109 unsigned short ep_ptr;
110 unsigned short ep_size;
111 unsigned short ep_isoc;
112 unsigned short ep_doublebuffer;
113 int ep_addr;
114 int packet_size;
115 int buffer_size;
116 int attributes;
117
118 bus = device->bus;
119
120 /* There is a dedicated 2048 byte buffer for USB packets that may be
121 * arbitrarily partitioned among the endpoints on 8-byte boundaries.
122 * The first 8 bytes are reserved for receiving setup packets on
123 * endpoint 0.
124 */
125 ep_ptr = 8; /* reserve the first 8 bytes for the setup fifo */
126
127 for (ep = 0; ep < bus->max_endpoints; ep++) {
128 endpoint = bus->endpoint_array + ep;
129 ep_addr = endpoint->endpoint_address;
130 if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
131 /* IN endpoint */
132 packet_size = endpoint->tx_packetSize;
133 attributes = endpoint->tx_attributes;
134 } else {
135 /* OUT endpoint */
136 packet_size = endpoint->rcv_packetSize;
137 attributes = endpoint->rcv_attributes;
138 }
139
140 switch (packet_size) {
141 case 0:
142 ep_size = 0;
143 break;
144 case 8:
145 ep_size = 0;
146 break;
147 case 16:
148 ep_size = 1;
149 break;
150 case 32:
151 ep_size = 2;
152 break;
153 case 64:
154 ep_size = 3;
155 break;
156 case 128:
157 ep_size = 4;
158 break;
159 case 256:
160 ep_size = 5;
161 break;
162 case 512:
163 ep_size = 6;
164 break;
165 default:
166 UDCDBGA ("ep 0x%02x has bad packet size %d",
167 ep_addr, packet_size);
168 packet_size = 0;
169 ep_size = 0;
170 break;
171 }
172
173 switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
174 case USB_ENDPOINT_XFER_CONTROL:
175 case USB_ENDPOINT_XFER_BULK:
176 case USB_ENDPOINT_XFER_INT:
177 default:
178 /* A non-isochronous endpoint may optionally be
179 * double-buffered. For now we disable
180 * double-buffering.
181 */
182 ep_doublebuffer = 0;
183 ep_isoc = 0;
184 if (packet_size > 64)
185 packet_size = 0;
186 if (!ep || !ep_doublebuffer)
187 buffer_size = packet_size;
188 else
189 buffer_size = packet_size * 2;
190 break;
191 case USB_ENDPOINT_XFER_ISOC:
192 /* Isochronous endpoints are always double-
193 * buffered, but the double-buffering bit
194 * in the endpoint configuration register
195 * becomes the msb of the endpoint size so we
196 * set the double-buffering flag to zero.
197 */
198 ep_doublebuffer = 0;
199 ep_isoc = 1;
200 buffer_size = packet_size * 2;
201 break;
202 }
203
204 /* check to see if our packet buffer RAM is exhausted */
205 if ((ep_ptr + buffer_size) > 2048) {
206 UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size);
207 buffer_size = packet_size = 0;
208 }
209
210 /* force a default configuration for endpoint 0 since it is
211 * always enabled
212 */
213 if (!ep && ((packet_size < 8) || (packet_size > 64))) {
214 buffer_size = packet_size = 64;
215 ep_size = 3;
216 }
217
218 if (!ep) {
219 /* configure endpoint 0 */
220 outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0);
221 /*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */
222 /* ep_ptr, packet_size); */
223 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
224 /* IN endpoint */
225 if (packet_size) {
226 outw ((1 << 15) | (ep_doublebuffer << 14) |
227 (ep_size << 12) | (ep_isoc << 11) |
228 (ep_ptr >> 3),
229 UDC_EP_TX (ep_addr &
230 USB_ENDPOINT_NUMBER_MASK));
231 UDCDBGA ("IN ep %d buffer offset 0x%03x"
232 " packet size 0x%03x",
233 ep_addr & USB_ENDPOINT_NUMBER_MASK,
234 ep_ptr, packet_size);
235 } else {
236 outw (0,
237 UDC_EP_TX (ep_addr &
238 USB_ENDPOINT_NUMBER_MASK));
239 }
240 } else {
241 /* OUT endpoint */
242 if (packet_size) {
243 outw ((1 << 15) | (ep_doublebuffer << 14) |
244 (ep_size << 12) | (ep_isoc << 11) |
245 (ep_ptr >> 3),
246 UDC_EP_RX (ep_addr &
247 USB_ENDPOINT_NUMBER_MASK));
248 UDCDBGA ("OUT ep %d buffer offset 0x%03x"
249 " packet size 0x%03x",
250 ep_addr & USB_ENDPOINT_NUMBER_MASK,
251 ep_ptr, packet_size);
252 } else {
253 outw (0,
254 UDC_EP_RX (ep_addr &
255 USB_ENDPOINT_NUMBER_MASK));
256 }
257 }
258 ep_ptr += buffer_size;
259 }
260 }
261
262 /* omap1510_deconfigure_device
263 *
264 * This function balances omap1510_configure_device.
265 */
266 static void omap1510_deconfigure_device (void)
267 {
268 int epnum;
269
270 UDCDBG ("clear Cfg_Lock");
271 outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1);
272 UDCREG (UDC_SYSCON1);
273
274 /* deconfigure all endpoints */
275 for (epnum = 1; epnum <= 15; epnum++) {
276 outw (0, UDC_EP_RX (epnum));
277 outw (0, UDC_EP_TX (epnum));
278 }
279 }
280
281 /* omap1510_configure_device
282 *
283 * This function implements TRM Figure 14-9.
284 */
285 static void omap1510_configure_device (struct usb_device_instance *device)
286 {
287 omap1510_configure_endpoints (device);
288
289
290 /* Figure 14-9 indicates we should enable interrupts here, but we have
291 * other routines (udc_all_interrupts, udc_suspended_interrupts) to
292 * do that.
293 */
294
295 UDCDBG ("set Cfg_Lock");
296 outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1);
297 UDCREG (UDC_SYSCON1);
298 }
299
300 /* omap1510_write_noniso_tx_fifo
301 *
302 * This function implements TRM Figure 14-30.
303 *
304 * If the endpoint has an active tx_urb, then the next packet of data from the
305 * URB is written to the tx FIFO. The total amount of data in the urb is given
306 * by urb->actual_length. The maximum amount of data that can be sent in any
307 * one packet is given by endpoint->tx_packetSize. The number of data bytes
308 * from this URB that have already been transmitted is given by endpoint->sent.
309 * endpoint->last is updated by this routine with the number of data bytes
310 * transmitted in this packet.
311 *
312 * In accordance with Figure 14-30, the EP_NUM register must already have been
313 * written with the value to select the appropriate tx FIFO before this routine
314 * is called.
315 */
316 static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance
317 *endpoint)
318 {
319 struct urb *urb = endpoint->tx_urb;
320
321 if (urb) {
322 unsigned int last, i;
323
324 UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d",
325 urb->buffer, urb->buffer_length, urb->actual_length);
326 if ((last =
327 MIN (urb->actual_length - endpoint->sent,
328 endpoint->tx_packetSize))) {
329 u8 *cp = urb->buffer + endpoint->sent;
330
331 UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last);
332
333 if (((u32) cp & 1) == 0) { /* word aligned? */
334 outsw (UDC_DATA, cp, last >> 1);
335 } else { /* byte aligned. */
336 for (i = 0; i < (last >> 1); i++) {
337 u16 w = ((u16) cp[2 * i + 1] << 8) |
338 (u16) cp[2 * i];
339 outw (w, UDC_DATA);
340 }
341 }
342 if (last & 1) {
343 outb (*(cp + last - 1), UDC_DATA);
344 }
345 }
346 endpoint->last = last;
347 }
348 }
349
350 /* omap1510_read_noniso_rx_fifo
351 *
352 * This function implements TRM Figure 14-28.
353 *
354 * If the endpoint has an active rcv_urb, then the next packet of data is read
355 * from the rcv FIFO and written to rcv_urb->buffer at offset
356 * rcv_urb->actual_length to append the packet data to the data from any
357 * previous packets for this transfer. We assume that there is sufficient room
358 * left in the buffer to hold an entire packet of data.
359 *
360 * The return value is the number of bytes read from the FIFO for this packet.
361 *
362 * In accordance with Figure 14-28, the EP_NUM register must already have been
363 * written with the value to select the appropriate rcv FIFO before this routine
364 * is called.
365 */
366 static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance
367 *endpoint)
368 {
369 struct urb *urb = endpoint->rcv_urb;
370 int len = 0;
371
372 if (urb) {
373 len = inw (UDC_RXFSTAT);
374
375 if (len) {
376 unsigned char *cp = urb->buffer + urb->actual_length;
377
378 insw (UDC_DATA, cp, len >> 1);
379 if (len & 1)
380 *(cp + len - 1) = inb (UDC_DATA);
381 }
382 }
383 return len;
384 }
385
386 /* omap1510_prepare_for_control_write_status
387 *
388 * This function implements TRM Figure 14-17.
389 *
390 * We have to deal here with non-autodecoded control writes that haven't already
391 * been dealt with by ep0_recv_setup. The non-autodecoded standard control
392 * write requests are: set/clear endpoint feature, set configuration, set
393 * interface, and set descriptor. ep0_recv_setup handles set/clear requests for
394 * ENDPOINT_HALT by halting the endpoint for a set request and resetting the
395 * endpoint for a clear request. ep0_recv_setup returns an error for
396 * SET_DESCRIPTOR requests which causes them to be terminated with a stall by
397 * the setup handler. A SET_INTERFACE request is handled by ep0_recv_setup by
398 * generating a DEVICE_SET_INTERFACE event. This leaves only the
399 * SET_CONFIGURATION event for us to deal with here.
400 *
401 */
402 static void omap1510_prepare_for_control_write_status (struct urb *urb)
403 {
404 struct usb_device_request *request = &urb->device_request;;
405
406 /* check for a SET_CONFIGURATION request */
407 if (request->bRequest == USB_REQ_SET_CONFIGURATION) {
408 int configuration = le16_to_cpu (request->wValue) & 0xff;
409 unsigned short devstat = inw (UDC_DEVSTAT);
410
411 if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) {
412 /* device is currently in ADDRESSED state */
413 if (configuration) {
414 /* Assume the specified non-zero configuration
415 * value is valid and switch to the CONFIGURED
416 * state.
417 */
418 outw (UDC_Dev_Cfg, UDC_SYSCON2);
419 }
420 } else if ((devstat & UDC_CFG) == UDC_CFG) {
421 /* device is currently in CONFIGURED state */
422 if (!configuration) {
423 /* Switch to ADDRESSED state. */
424 outw (UDC_Clr_Cfg, UDC_SYSCON2);
425 }
426 }
427 }
428
429 /* select EP0 tx FIFO */
430 outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
431 /* clear endpoint (no data bytes in status stage) */
432 outw (UDC_Clr_EP, UDC_CTRL);
433 /* enable the EP0 tx FIFO */
434 outw (UDC_Set_FIFO_En, UDC_CTRL);
435 /* deselect the endpoint */
436 outw (UDC_EP_Dir, UDC_EP_NUM);
437 }
438
439 /* udc_state_transition_up
440 * udc_state_transition_down
441 *
442 * Helper functions to implement device state changes. The device states and
443 * the events that transition between them are:
444 *
445 * STATE_ATTACHED
446 * || /\
447 * \/ ||
448 * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
449 * || /\
450 * \/ ||
451 * STATE_POWERED
452 * || /\
453 * \/ ||
454 * DEVICE_RESET DEVICE_POWER_INTERRUPTION
455 * || /\
456 * \/ ||
457 * STATE_DEFAULT
458 * || /\
459 * \/ ||
460 * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
461 * || /\
462 * \/ ||
463 * STATE_ADDRESSED
464 * || /\
465 * \/ ||
466 * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
467 * || /\
468 * \/ ||
469 * STATE_CONFIGURED
470 *
471 * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED
472 * to STATE_CONFIGURED) from the specified initial state to the specified final
473 * state, passing through each intermediate state on the way. If the initial
474 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
475 * no state transitions will take place.
476 *
477 * udc_state_transition_down transitions down (in the direction from
478 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
479 * specified final state, passing through each intermediate state on the way.
480 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
481 * state, then no state transitions will take place.
482 *
483 * These functions must only be called with interrupts disabled.
484 */
485 static void udc_state_transition_up (usb_device_state_t initial,
486 usb_device_state_t final)
487 {
488 if (initial < final) {
489 switch (initial) {
490 case STATE_ATTACHED:
491 usbd_device_event_irq (udc_device,
492 DEVICE_HUB_CONFIGURED, 0);
493 if (final == STATE_POWERED)
494 break;
495 case STATE_POWERED:
496 usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
497 if (final == STATE_DEFAULT)
498 break;
499 case STATE_DEFAULT:
500 usbd_device_event_irq (udc_device,
501 DEVICE_ADDRESS_ASSIGNED, 0);
502 if (final == STATE_ADDRESSED)
503 break;
504 case STATE_ADDRESSED:
505 usbd_device_event_irq (udc_device, DEVICE_CONFIGURED,
506 0);
507 case STATE_CONFIGURED:
508 break;
509 default:
510 break;
511 }
512 }
513 }
514
515 static void udc_state_transition_down (usb_device_state_t initial,
516 usb_device_state_t final)
517 {
518 if (initial > final) {
519 switch (initial) {
520 case STATE_CONFIGURED:
521 usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0);
522 if (final == STATE_ADDRESSED)
523 break;
524 case STATE_ADDRESSED:
525 usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
526 if (final == STATE_DEFAULT)
527 break;
528 case STATE_DEFAULT:
529 usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0);
530 if (final == STATE_POWERED)
531 break;
532 case STATE_POWERED:
533 usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0);
534 case STATE_ATTACHED:
535 break;
536 default:
537 break;
538 }
539 }
540 }
541
542 /* Handle all device state changes.
543 * This function implements TRM Figure 14-21.
544 */
545 static void omap1510_udc_state_changed (void)
546 {
547 u16 bits;
548 u16 devstat = inw (UDC_DEVSTAT);
549
550 UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat);
551
552 bits = devstat ^ udc_devstat;
553 if (bits) {
554 if (bits & UDC_ATT) {
555 if (devstat & UDC_ATT) {
556 UDCDBG ("device attached and powered");
557 udc_state_transition_up (udc_device->device_state, STATE_POWERED);
558 } else {
559 UDCDBG ("device detached or unpowered");
560 udc_state_transition_down (udc_device->device_state, STATE_ATTACHED);
561 }
562 }
563 if (bits & UDC_USB_Reset) {
564 if (devstat & UDC_USB_Reset) {
565 UDCDBG ("device reset in progess");
566 udc_state_transition_down (udc_device->device_state, STATE_POWERED);
567 } else {
568 UDCDBG ("device reset completed");
569 }
570 }
571 if (bits & UDC_DEF) {
572 if (devstat & UDC_DEF) {
573 UDCDBG ("device entering default state");
574 udc_state_transition_up (udc_device->device_state, STATE_DEFAULT);
575 } else {
576 UDCDBG ("device leaving default state");
577 udc_state_transition_down (udc_device->device_state, STATE_POWERED);
578 }
579 }
580 if (bits & UDC_SUS) {
581 if (devstat & UDC_SUS) {
582 UDCDBG ("entering suspended state");
583 usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0);
584 } else {
585 UDCDBG ("leaving suspended state");
586 usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0);
587 }
588 }
589 if (bits & UDC_R_WK_OK) {
590 UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK)
591 ? "enabled" : "disabled");
592 }
593 if (bits & UDC_ADD) {
594 if (devstat & UDC_ADD) {
595 UDCDBG ("default -> addressed");
596 udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED);
597 } else {
598 UDCDBG ("addressed -> default");
599 udc_state_transition_down (udc_device->device_state, STATE_DEFAULT);
600 }
601 }
602 if (bits & UDC_CFG) {
603 if (devstat & UDC_CFG) {
604 UDCDBG ("device configured");
605 /* The ep0_recv_setup function generates the
606 * DEVICE_CONFIGURED event when a
607 * USB_REQ_SET_CONFIGURATION setup packet is
608 * received, so we should already be in the
609 * state STATE_CONFIGURED.
610 */
611 udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED);
612 } else {
613 UDCDBG ("device deconfigured");
614 udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED);
615 }
616 }
617 }
618
619 /* Clear interrupt source */
620 outw (UDC_DS_Chg, UDC_IRQ_SRC);
621
622 /* Save current DEVSTAT */
623 udc_devstat = devstat;
624 }
625
626 /* Handle SETUP USB interrupt.
627 * This function implements TRM Figure 14-14.
628 */
629 static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint)
630 {
631 UDCDBG ("-> Entering device setup");
632
633 do {
634 const int setup_pktsize = 8;
635 unsigned char *datap =
636 (unsigned char *) &ep0_urb->device_request;
637
638 /* Gain access to EP 0 setup FIFO */
639 outw (UDC_Setup_Sel, UDC_EP_NUM);
640
641 /* Read control request data */
642 insb (UDC_DATA, datap, setup_pktsize);
643
644 UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]",
645 *(datap + 0), *(datap + 1), *(datap + 2),
646 *(datap + 3), *(datap + 4), *(datap + 5),
647 *(datap + 6), *(datap + 7));
648
649 /* Reset EP0 setup FIFO */
650 outw (0, UDC_EP_NUM);
651 } while (inw (UDC_IRQ_SRC) & UDC_Setup);
652
653 /* Try to process setup packet */
654 if (ep0_recv_setup (ep0_urb)) {
655 /* Not a setup packet, stall next EP0 transaction */
656 udc_stall_ep (0);
657 UDCDBG ("can't parse setup packet, still waiting for setup");
658 return;
659 }
660
661 /* Check direction */
662 if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
663 == USB_REQ_HOST2DEVICE) {
664 UDCDBG ("control write on EP0");
665 if (le16_to_cpu (ep0_urb->device_request.wLength)) {
666 /* We don't support control write data stages.
667 * The only standard control write request with a data
668 * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't
669 * support that so we just stall those requests. A
670 * function driver might support a non-standard
671 * write request with a data stage, but it isn't
672 * obvious what we would do with the data if we read it
673 * so we'll just stall it. It seems like the API isn't
674 * quite right here.
675 */
676 #if 0
677 /* Here is what we would do if we did support control
678 * write data stages.
679 */
680 ep0_urb->actual_length = 0;
681 outw (0, UDC_EP_NUM);
682 /* enable the EP0 rx FIFO */
683 outw (UDC_Set_FIFO_En, UDC_CTRL);
684 #else
685 /* Stall this request */
686 UDCDBG ("Stalling unsupported EP0 control write data "
687 "stage.");
688 udc_stall_ep (0);
689 #endif
690 } else {
691 omap1510_prepare_for_control_write_status (ep0_urb);
692 }
693 } else {
694 UDCDBG ("control read on EP0");
695 /* The ep0_recv_setup function has already placed our response
696 * packet data in ep0_urb->buffer and the packet length in
697 * ep0_urb->actual_length.
698 */
699 endpoint->tx_urb = ep0_urb;
700 endpoint->sent = 0;
701 /* select the EP0 tx FIFO */
702 outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
703 /* Write packet data to the FIFO. omap1510_write_noniso_tx_fifo
704 * will update endpoint->last with the number of bytes written
705 * to the FIFO.
706 */
707 omap1510_write_noniso_tx_fifo (endpoint);
708 /* enable the FIFO to start the packet transmission */
709 outw (UDC_Set_FIFO_En, UDC_CTRL);
710 /* deselect the EP0 tx FIFO */
711 outw (UDC_EP_Dir, UDC_EP_NUM);
712 }
713
714 UDCDBG ("<- Leaving device setup");
715 }
716
717 /* Handle endpoint 0 RX interrupt
718 * This routine implements TRM Figure 14-16.
719 */
720 static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint)
721 {
722 unsigned short status;
723
724 UDCDBG ("RX on EP0");
725 /* select EP0 rx FIFO */
726 outw (UDC_EP_Sel, UDC_EP_NUM);
727
728 status = inw (UDC_STAT_FLG);
729
730 if (status & UDC_ACK) {
731 /* Check direction */
732 if ((ep0_urb->device_request.bmRequestType
733 & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
734 /* This rx interrupt must be for a control write data
735 * stage packet.
736 *
737 * We don't support control write data stages.
738 * We should never end up here.
739 */
740
741 /* clear the EP0 rx FIFO */
742 outw (UDC_Clr_EP, UDC_CTRL);
743
744 /* deselect the EP0 rx FIFO */
745 outw (0, UDC_EP_NUM);
746
747 UDCDBG ("Stalling unexpected EP0 control write "
748 "data stage packet");
749 udc_stall_ep (0);
750 } else {
751 /* This rx interrupt must be for a control read status
752 * stage packet.
753 */
754 UDCDBG ("ACK on EP0 control read status stage packet");
755 /* deselect EP0 rx FIFO */
756 outw (0, UDC_EP_NUM);
757 }
758 } else if (status & UDC_STALL) {
759 UDCDBG ("EP0 stall during RX");
760 /* deselect EP0 rx FIFO */
761 outw (0, UDC_EP_NUM);
762 } else {
763 /* deselect EP0 rx FIFO */
764 outw (0, UDC_EP_NUM);
765 }
766 }
767
768 /* Handle endpoint 0 TX interrupt
769 * This routine implements TRM Figure 14-18.
770 */
771 static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint)
772 {
773 unsigned short status;
774 struct usb_device_request *request = &ep0_urb->device_request;
775
776 UDCDBG ("TX on EP0");
777 /* select EP0 TX FIFO */
778 outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
779
780 status = inw (UDC_STAT_FLG);
781 if (status & UDC_ACK) {
782 /* Check direction */
783 if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
784 USB_REQ_HOST2DEVICE) {
785 /* This tx interrupt must be for a control write status
786 * stage packet.
787 */
788 UDCDBG ("ACK on EP0 control write status stage packet");
789 /* deselect EP0 TX FIFO */
790 outw (UDC_EP_Dir, UDC_EP_NUM);
791 } else {
792 /* This tx interrupt must be for a control read data
793 * stage packet.
794 */
795 int wLength = le16_to_cpu (request->wLength);
796
797 /* Update our count of bytes sent so far in this
798 * transfer.
799 */
800 endpoint->sent += endpoint->last;
801
802 /* We are finished with this transfer if we have sent
803 * all of the bytes in our tx urb (urb->actual_length)
804 * unless we need a zero-length terminating packet. We
805 * need a zero-length terminating packet if we returned
806 * fewer bytes than were requested (wLength) by the host,
807 * and the number of bytes we returned is an exact
808 * multiple of the packet size endpoint->tx_packetSize.
809 */
810 if ((endpoint->sent == ep0_urb->actual_length)
811 && ((ep0_urb->actual_length == wLength)
812 || (endpoint->last !=
813 endpoint->tx_packetSize))) {
814 /* Done with control read data stage. */
815 UDCDBG ("control read data stage complete");
816 /* deselect EP0 TX FIFO */
817 outw (UDC_EP_Dir, UDC_EP_NUM);
818 /* select EP0 RX FIFO to prepare for control
819 * read status stage.
820 */
821 outw (UDC_EP_Sel, UDC_EP_NUM);
822 /* clear the EP0 RX FIFO */
823 outw (UDC_Clr_EP, UDC_CTRL);
824 /* enable the EP0 RX FIFO */
825 outw (UDC_Set_FIFO_En, UDC_CTRL);
826 /* deselect the EP0 RX FIFO */
827 outw (0, UDC_EP_NUM);
828 } else {
829 /* We still have another packet of data to send
830 * in this control read data stage or else we
831 * need a zero-length terminating packet.
832 */
833 UDCDBG ("ACK control read data stage packet");
834 omap1510_write_noniso_tx_fifo (endpoint);
835 /* enable the EP0 tx FIFO to start transmission */
836 outw (UDC_Set_FIFO_En, UDC_CTRL);
837 /* deselect EP0 TX FIFO */
838 outw (UDC_EP_Dir, UDC_EP_NUM);
839 }
840 }
841 } else if (status & UDC_STALL) {
842 UDCDBG ("EP0 stall during TX");
843 /* deselect EP0 TX FIFO */
844 outw (UDC_EP_Dir, UDC_EP_NUM);
845 } else {
846 /* deselect EP0 TX FIFO */
847 outw (UDC_EP_Dir, UDC_EP_NUM);
848 }
849 }
850
851 /* Handle RX transaction on non-ISO endpoint.
852 * This function implements TRM Figure 14-27.
853 * The ep argument is a physical endpoint number for a non-ISO OUT endpoint
854 * in the range 1 to 15.
855 */
856 static void omap1510_udc_epn_rx (int ep)
857 {
858 unsigned short status;
859
860 /* Check endpoint status */
861 status = inw (UDC_STAT_FLG);
862
863 if (status & UDC_ACK) {
864 int nbytes;
865 struct usb_endpoint_instance *endpoint =
866 omap1510_find_ep (ep);
867
868 nbytes = omap1510_read_noniso_rx_fifo (endpoint);
869 usbd_rcv_complete (endpoint, nbytes, 0);
870
871 /* enable rx FIFO to prepare for next packet */
872 outw (UDC_Set_FIFO_En, UDC_CTRL);
873 } else if (status & UDC_STALL) {
874 UDCDBGA ("STALL on RX endpoint %d", ep);
875 } else if (status & UDC_NAK) {
876 UDCDBGA ("NAK on RX ep %d", ep);
877 } else {
878 serial_printf ("omap-bi: RX on ep %d with status %x", ep,
879 status);
880 }
881 }
882
883 /* Handle TX transaction on non-ISO endpoint.
884 * This function implements TRM Figure 14-29.
885 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
886 * in the range 16 to 30.
887 */
888 static void omap1510_udc_epn_tx (int ep)
889 {
890 unsigned short status;
891
892 /*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */
893
894 /* Check endpoint status */
895 status = inw (UDC_STAT_FLG);
896
897 if (status & UDC_ACK) {
898 struct usb_endpoint_instance *endpoint =
899 omap1510_find_ep (ep);
900
901 /* We need to transmit a terminating zero-length packet now if
902 * we have sent all of the data in this URB and the transfer
903 * size was an exact multiple of the packet size.
904 */
905 if (endpoint->tx_urb
906 && (endpoint->last == endpoint->tx_packetSize)
907 && (endpoint->tx_urb->actual_length - endpoint->sent -
908 endpoint->last == 0)) {
909 /* Prepare to transmit a zero-length packet. */
910 endpoint->sent += endpoint->last;
911 /* write 0 bytes of data to FIFO */
912 omap1510_write_noniso_tx_fifo (endpoint);
913 /* enable tx FIFO to start transmission */
914 outw (UDC_Set_FIFO_En, UDC_CTRL);
915 } else if (endpoint->tx_urb
916 && endpoint->tx_urb->actual_length) {
917 /* retire the data that was just sent */
918 usbd_tx_complete (endpoint);
919 /* Check to see if we have more data ready to transmit
920 * now.
921 */
922 if (endpoint->tx_urb
923 && endpoint->tx_urb->actual_length) {
924 /* write data to FIFO */
925 omap1510_write_noniso_tx_fifo (endpoint);
926 /* enable tx FIFO to start transmission */
927 outw (UDC_Set_FIFO_En, UDC_CTRL);
928 }
929 }
930 } else if (status & UDC_STALL) {
931 UDCDBGA ("STALL on TX endpoint %d", ep);
932 } else if (status & UDC_NAK) {
933 UDCDBGA ("NAK on TX endpoint %d", ep);
934 } else {
935 /*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */
936 }
937 }
938
939
940 /*
941 -------------------------------------------------------------------------------
942 */
943
944 /* Handle general USB interrupts and dispatch according to type.
945 * This function implements TRM Figure 14-13.
946 */
947 void omap1510_udc_irq (void)
948 {
949 u16 irq_src = inw (UDC_IRQ_SRC);
950 int valid_irq = 0;
951
952 if (!(irq_src & ~UDC_SOF_Flg)) /* ignore SOF interrupts ) */
953 return;
954
955 UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src);
956 /*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */
957
958 if (irq_src & UDC_DS_Chg) {
959 /* Device status changed */
960 omap1510_udc_state_changed ();
961 valid_irq++;
962 }
963 if (irq_src & UDC_EP0_RX) {
964 /* Endpoint 0 receive */
965 outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */
966 omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0);
967 valid_irq++;
968 }
969 if (irq_src & UDC_EP0_TX) {
970 /* Endpoint 0 transmit */
971 outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */
972 omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0);
973 valid_irq++;
974 }
975 if (irq_src & UDC_Setup) {
976 /* Device setup */
977 omap1510_udc_setup (udc_device->bus->endpoint_array + 0);
978 valid_irq++;
979 }
980 /*if (!valid_irq) */
981 /* serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */
982 UDCDBGA ("< IRQ #%d end >", udc_interrupts);
983 udc_interrupts++;
984 }
985
986 /* This function implements TRM Figure 14-26. */
987 void omap1510_udc_noniso_irq (void)
988 {
989 unsigned short epnum;
990 unsigned short irq_src = inw (UDC_IRQ_SRC);
991 int valid_irq = 0;
992
993 if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX)))
994 return;
995
996 UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC));
997
998 if (irq_src & UDC_EPn_RX) { /* Endpoint N OUT transaction */
999 /* Determine the endpoint number for this interrupt */
1000 epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8;
1001 UDCDBGA ("RX on ep %x", epnum);
1002
1003 /* acknowledge interrupt */
1004 outw (UDC_EPn_RX, UDC_IRQ_SRC);
1005
1006 if (epnum) {
1007 /* select the endpoint FIFO */
1008 outw (UDC_EP_Sel | epnum, UDC_EP_NUM);
1009
1010 omap1510_udc_epn_rx (epnum);
1011
1012 /* deselect the endpoint FIFO */
1013 outw (epnum, UDC_EP_NUM);
1014 }
1015 valid_irq++;
1016 }
1017 if (irq_src & UDC_EPn_TX) { /* Endpoint N IN transaction */
1018 /* Determine the endpoint number for this interrupt */
1019 epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN;
1020 UDCDBGA ("TX on ep %x", epnum);
1021
1022 /* acknowledge interrupt */
1023 outw (UDC_EPn_TX, UDC_IRQ_SRC);
1024
1025 if (epnum) {
1026 /* select the endpoint FIFO */
1027 outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
1028
1029 omap1510_udc_epn_tx (epnum);
1030
1031 /* deselect the endpoint FIFO */
1032 outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
1033 }
1034 valid_irq++;
1035 }
1036 if (!valid_irq)
1037 serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n",
1038 irq_src);
1039 }
1040
1041 /*
1042 -------------------------------------------------------------------------------
1043 */
1044
1045
1046 /*
1047 * Start of public functions.
1048 */
1049
1050 /* Called to start packet transmission. */
1051 int udc_endpoint_write (struct usb_endpoint_instance *endpoint)
1052 {
1053 unsigned short epnum =
1054 endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK;
1055
1056 UDCDBGA ("Starting transmit on ep %x", epnum);
1057
1058 if (endpoint->tx_urb) {
1059 /* select the endpoint FIFO */
1060 outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
1061 /* write data to FIFO */
1062 omap1510_write_noniso_tx_fifo (endpoint);
1063 /* enable tx FIFO to start transmission */
1064 outw (UDC_Set_FIFO_En, UDC_CTRL);
1065 /* deselect the endpoint FIFO */
1066 outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
1067 }
1068
1069 return 0;
1070 }
1071
1072 /* Start to initialize h/w stuff */
1073 int udc_init (void)
1074 {
1075 u16 udc_rev;
1076 uchar value;
1077 ulong gpio;
1078 int i;
1079
1080 /* Let the device settle down before we start */
1081 for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000);
1082
1083 udc_device = NULL;
1084
1085 UDCDBG ("starting");
1086
1087 /* Check peripheral reset. Must be 1 to make sure
1088 MPU TIPB peripheral reset is inactive */
1089 UDCREG (ARM_RSTCT2);
1090
1091 /* Set and check clock control.
1092 * We might ought to be using the clock control API to do
1093 * this instead of fiddling with the clock registers directly
1094 * here.
1095 */
1096 outw ((1 << 4) | (1 << 5), CLOCK_CTRL);
1097 UDCREG (CLOCK_CTRL);
1098
1099 #ifdef CONFIG_OMAP1510
1100 /* This code was originally implemented for OMAP1510 and
1101 * therefore is only applicable for OMAP1510 boards. For
1102 * OMAP5912 or OMAP16xx the register APLL_CTRL does not
1103 * exist and DPLL_CTRL is already configured.
1104 */
1105
1106 /* Set and check APLL */
1107 outw (0x0008, APLL_CTRL);
1108 UDCREG (APLL_CTRL);
1109 /* Set and check DPLL */
1110 outw (0x2210, DPLL_CTRL);
1111 UDCREG (DPLL_CTRL);
1112 #endif
1113 /* Set and check SOFT
1114 * The below line of code has been changed to perform a
1115 * read-modify-write instead of a simple write for
1116 * configuring the SOFT_REQ register. This allows the code
1117 * to be compatible with OMAP5912 and OMAP16xx devices
1118 */
1119 outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ);
1120
1121 /* Short delay to wait for DPLL */
1122 udelay (1000);
1123
1124 /* Print banner with device revision */
1125 udc_rev = inw (UDC_REV) & 0xff;
1126 #ifdef CONFIG_OMAP1510
1127 printf ("USB: TI OMAP1510 USB function module rev %d.%d\n",
1128 udc_rev >> 4, udc_rev & 0xf);
1129 #endif
1130
1131 #ifdef CONFIG_OMAP1610
1132 printf ("USB: TI OMAP5912 USB function module rev %d.%d\n",
1133 udc_rev >> 4, udc_rev & 0xf);
1134 #endif
1135
1136 #ifdef CONFIG_OMAP_SX1
1137 i2c_read (0x32, 0x04, 1, &value, 1);
1138 value |= 0x04;
1139 i2c_write (0x32, 0x04, 1, &value, 1);
1140
1141 i2c_read (0x32, 0x03, 1, &value, 1);
1142 value |= 0x01;
1143 i2c_write (0x32, 0x03, 1, &value, 1);
1144
1145 gpio = inl(GPIO_PIN_CONTROL_REG);
1146 gpio |= 0x0002; /* A_IRDA_OFF */
1147 gpio |= 0x0800; /* A_SWITCH */
1148 gpio |= 0x8000; /* A_USB_ON */
1149 outl (gpio, GPIO_PIN_CONTROL_REG);
1150
1151 gpio = inl(GPIO_DIR_CONTROL_REG);
1152 gpio &= ~0x0002; /* A_IRDA_OFF */
1153 gpio &= ~0x0800; /* A_SWITCH */
1154 gpio &= ~0x8000; /* A_USB_ON */
1155 outl (gpio, GPIO_DIR_CONTROL_REG);
1156
1157 gpio = inl(GPIO_DATA_OUTPUT_REG);
1158 gpio |= 0x0002; /* A_IRDA_OFF */
1159 gpio &= ~0x0800; /* A_SWITCH */
1160 gpio &= ~0x8000; /* A_USB_ON */
1161 outl (gpio, GPIO_DATA_OUTPUT_REG);
1162 #endif
1163
1164 /* The VBUS_MODE bit selects whether VBUS detection is done via
1165 * software (1) or hardware (0). When software detection is
1166 * selected, VBUS_CTRL selects whether USB is not connected (0)
1167 * or connected (1).
1168 */
1169 outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
1170 outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
1171 UDCREGL (FUNC_MUX_CTRL_0);
1172
1173 /*
1174 * At this point, device is ready for configuration...
1175 */
1176
1177 UDCDBG ("disable USB interrupts");
1178 outw (0, UDC_IRQ_EN);
1179 UDCREG (UDC_IRQ_EN);
1180
1181 UDCDBG ("disable USB DMA");
1182 outw (0, UDC_DMA_IRQ_EN);
1183 UDCREG (UDC_DMA_IRQ_EN);
1184
1185 UDCDBG ("initialize SYSCON1");
1186 outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1);
1187 UDCREG (UDC_SYSCON1);
1188
1189 return 0;
1190 }
1191
1192 /* Stall endpoint */
1193 static void udc_stall_ep (unsigned int ep_addr)
1194 {
1195 /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1196 int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1197
1198 UDCDBGA ("stall ep_addr %d", ep_addr);
1199
1200 /* REVISIT?
1201 * The OMAP TRM section 14.2.4.2 says we must check that the FIFO
1202 * is empty before halting the endpoint. The current implementation
1203 * doesn't check that the FIFO is empty.
1204 */
1205
1206 if (!ep_num) {
1207 outw (UDC_Stall_Cmd, UDC_SYSCON2);
1208 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
1209 if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
1210 /* we have a valid rx endpoint, so halt it */
1211 outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
1212 outw (UDC_Set_Halt, UDC_CTRL);
1213 outw (ep_num, UDC_EP_NUM);
1214 }
1215 } else {
1216 if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
1217 /* we have a valid tx endpoint, so halt it */
1218 outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM);
1219 outw (UDC_Set_Halt, UDC_CTRL);
1220 outw (ep_num, UDC_EP_NUM);
1221 }
1222 }
1223 }
1224
1225 /* Reset endpoint */
1226 #if 0
1227 static void udc_reset_ep (unsigned int ep_addr)
1228 {
1229 /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1230 int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1231
1232 UDCDBGA ("reset ep_addr %d", ep_addr);
1233
1234 if (!ep_num) {
1235 /* control endpoint 0 can't be reset */
1236 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
1237 UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num,
1238 inw (UDC_EP_RX (ep_num)));
1239 if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
1240 /* we have a valid rx endpoint, so reset it */
1241 outw (ep_num | UDC_EP_Sel, UDC_EP_NUM);
1242 outw (UDC_Reset_EP, UDC_CTRL);
1243 outw (ep_num, UDC_EP_NUM);
1244 UDCDBGA ("OUT endpoint %d reset", ep_num);
1245 }
1246 } else {
1247 UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num,
1248 inw (UDC_EP_TX (ep_num)));
1249 /* Resetting of tx endpoints seems to be causing the USB function
1250 * module to fail, which causes problems when the driver is
1251 * uninstalled. We'll skip resetting tx endpoints for now until
1252 * we figure out what the problem is.
1253 */
1254 #if 0
1255 if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
1256 /* we have a valid tx endpoint, so reset it */
1257 outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
1258 outw (UDC_Reset_EP, UDC_CTRL);
1259 outw (ep_num | UDC_EP_Dir, UDC_EP_NUM);
1260 UDCDBGA ("IN endpoint %d reset", ep_num);
1261 }
1262 #endif
1263 }
1264 }
1265 #endif
1266
1267 /* ************************************************************************** */
1268
1269 /**
1270 * udc_check_ep - check logical endpoint
1271 *
1272 * Return physical endpoint number to use for this logical endpoint or zero if not valid.
1273 */
1274 #if 0
1275 int udc_check_ep (int logical_endpoint, int packetsize)
1276 {
1277 if ((logical_endpoint == 0x80) ||
1278 ((logical_endpoint & 0x8f) != logical_endpoint)) {
1279 return 0;
1280 }
1281
1282 switch (packetsize) {
1283 case 8:
1284 case 16:
1285 case 32:
1286 case 64:
1287 case 128:
1288 case 256:
1289 case 512:
1290 break;
1291 default:
1292 return 0;
1293 }
1294
1295 return EP_ADDR_TO_PHYS_EP (logical_endpoint);
1296 }
1297 #endif
1298
1299 /*
1300 * udc_setup_ep - setup endpoint
1301 *
1302 * Associate a physical endpoint with endpoint_instance
1303 */
1304 void udc_setup_ep (struct usb_device_instance *device,
1305 unsigned int ep, struct usb_endpoint_instance *endpoint)
1306 {
1307 UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address);
1308
1309 /* This routine gets called by bi_modinit for endpoint 0 and from
1310 * bi_config for all of the other endpoints. bi_config gets called
1311 * during the DEVICE_CREATE, DEVICE_CONFIGURED, and
1312 * DEVICE_SET_INTERFACE events. We need to reconfigure the OMAP packet
1313 * RAM after bi_config scans the selected device configuration and
1314 * initializes the endpoint structures, but before this routine enables
1315 * the OUT endpoint FIFOs. Since bi_config calls this routine in a
1316 * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our
1317 * packet RAM here when ep==1.
1318 * I really hate to do this here, but it seems like the API exported
1319 * by the USB bus interface controller driver to the usbd-bi module
1320 * isn't quite right so there is no good place to do this.
1321 */
1322 if (ep == 1) {
1323 omap1510_deconfigure_device ();
1324 omap1510_configure_device (device);
1325 }
1326
1327 if (endpoint && (ep < UDC_MAX_ENDPOINTS)) {
1328 int ep_addr = endpoint->endpoint_address;
1329
1330 if (!ep_addr) {
1331 /* nothing to do for endpoint 0 */
1332 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
1333 /* nothing to do for IN (tx) endpoints */
1334 } else { /* OUT (rx) endpoint */
1335 if (endpoint->rcv_packetSize) {
1336 /*struct urb* urb = &(urb_out_array[ep&0xFF]); */
1337 /*urb->endpoint = endpoint; */
1338 /*urb->device = device; */
1339 /*urb->buffer_length = sizeof(urb->buffer); */
1340
1341 /*endpoint->rcv_urb = urb; */
1342 omap1510_prepare_endpoint_for_rx (ep_addr);
1343 }
1344 }
1345 }
1346 }
1347
1348 /**
1349 * udc_disable_ep - disable endpoint
1350 * @ep:
1351 *
1352 * Disable specified endpoint
1353 */
1354 #if 0
1355 void udc_disable_ep (unsigned int ep_addr)
1356 {
1357 /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1358 int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1359 struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr); /*udc_device->bus->endpoint_array + ep; */
1360
1361 UDCDBGA ("disable ep_addr %d", ep_addr);
1362
1363 if (!ep_num) {
1364 /* nothing to do for endpoint 0 */ ;
1365 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
1366 if (endpoint->tx_packetSize) {
1367 /* we have a valid tx endpoint */
1368 /*usbd_flush_tx(endpoint); */
1369 endpoint->tx_urb = NULL;
1370 }
1371 } else {
1372 if (endpoint->rcv_packetSize) {
1373 /* we have a valid rx endpoint */
1374 /*usbd_flush_rcv(endpoint); */
1375 endpoint->rcv_urb = NULL;
1376 }
1377 }
1378 }
1379 #endif
1380
1381 /* ************************************************************************** */
1382
1383 /**
1384 * udc_connected - is the USB cable connected
1385 *
1386 * Return non-zero if cable is connected.
1387 */
1388 #if 0
1389 int udc_connected (void)
1390 {
1391 return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT);
1392 }
1393 #endif
1394
1395 /* Turn on the USB connection by enabling the pullup resistor */
1396 void udc_connect (void)
1397 {
1398 UDCDBG ("connect, enable Pullup");
1399 outl (0x00000018, FUNC_MUX_CTRL_D);
1400 }
1401
1402 /* Turn off the USB connection by disabling the pullup resistor */
1403 void udc_disconnect (void)
1404 {
1405 UDCDBG ("disconnect, disable Pullup");
1406 outl (0x00000000, FUNC_MUX_CTRL_D);
1407 }
1408
1409 /* ************************************************************************** */
1410
1411
1412 /*
1413 * udc_disable_interrupts - disable interrupts
1414 * switch off interrupts
1415 */
1416 #if 0
1417 void udc_disable_interrupts (struct usb_device_instance *device)
1418 {
1419 UDCDBG ("disabling all interrupts");
1420 outw (0, UDC_IRQ_EN);
1421 }
1422 #endif
1423
1424 /* ************************************************************************** */
1425
1426 /**
1427 * udc_ep0_packetsize - return ep0 packetsize
1428 */
1429 #if 0
1430 int udc_ep0_packetsize (void)
1431 {
1432 return EP0_PACKETSIZE;
1433 }
1434 #endif
1435
1436 /* Switch on the UDC */
1437 void udc_enable (struct usb_device_instance *device)
1438 {
1439 UDCDBGA ("enable device %p, status %d", device, device->status);
1440
1441 /* initialize driver state variables */
1442 udc_devstat = 0;
1443
1444 /* Save the device structure pointer */
1445 udc_device = device;
1446
1447 /* Setup ep0 urb */
1448 if (!ep0_urb) {
1449 ep0_urb =
1450 usbd_alloc_urb (udc_device,
1451 udc_device->bus->endpoint_array);
1452 } else {
1453 serial_printf ("udc_enable: ep0_urb already allocated %p\n",
1454 ep0_urb);
1455 }
1456
1457 UDCDBG ("Check clock status");
1458 UDCREG (STATUS_REQ);
1459
1460 /* The VBUS_MODE bit selects whether VBUS detection is done via
1461 * software (1) or hardware (0). When software detection is
1462 * selected, VBUS_CTRL selects whether USB is not connected (0)
1463 * or connected (1).
1464 */
1465 outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE,
1466 FUNC_MUX_CTRL_0);
1467 UDCREGL (FUNC_MUX_CTRL_0);
1468
1469 omap1510_configure_device (device);
1470 }
1471
1472 /* Switch off the UDC */
1473 void udc_disable (void)
1474 {
1475 UDCDBG ("disable UDC");
1476
1477 omap1510_deconfigure_device ();
1478
1479 /* The VBUS_MODE bit selects whether VBUS detection is done via
1480 * software (1) or hardware (0). When software detection is
1481 * selected, VBUS_CTRL selects whether USB is not connected (0)
1482 * or connected (1).
1483 */
1484 outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
1485 outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
1486 UDCREGL (FUNC_MUX_CTRL_0);
1487
1488 /* Free ep0 URB */
1489 if (ep0_urb) {
1490 /*usbd_dealloc_urb(ep0_urb); */
1491 ep0_urb = NULL;
1492 }
1493
1494 /* Reset device pointer.
1495 * We ought to do this here to balance the initialization of udc_device
1496 * in udc_enable, but some of our other exported functions get called
1497 * by the bus interface driver after udc_disable, so we have to hang on
1498 * to the device pointer to avoid a null pointer dereference. */
1499 /* udc_device = NULL; */
1500 }
1501
1502 /**
1503 * udc_startup - allow udc code to do any additional startup
1504 */
1505 void udc_startup_events (struct usb_device_instance *device)
1506 {
1507 /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
1508 usbd_device_event_irq (device, DEVICE_INIT, 0);
1509
1510 /* The DEVICE_CREATE event puts the USB device in the state
1511 * STATE_ATTACHED.
1512 */
1513 usbd_device_event_irq (device, DEVICE_CREATE, 0);
1514
1515 /* Some USB controller driver implementations signal
1516 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
1517 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
1518 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
1519 * The OMAP USB client controller has the capability to detect when the
1520 * USB cable is connected to a powered USB bus via the ATT bit in the
1521 * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and
1522 * DEVICE_RESET events until later.
1523 */
1524
1525 udc_enable (device);
1526 }
1527
1528 /**
1529 * udc_irq - do pseudo interrupts
1530 */
1531 void udc_irq(void)
1532 {
1533 /* Loop while we have interrupts.
1534 * If we don't do this, the input chain
1535 * polling delay is likely to miss
1536 * host requests.
1537 */
1538 while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) {
1539 /* Handle any new IRQs */
1540 omap1510_udc_irq ();
1541 omap1510_udc_noniso_irq ();
1542 }
1543 }
1544
1545 /* Flow control */
1546 void udc_set_nak(int epid)
1547 {
1548 /* TODO: implement this functionality in omap1510 */
1549 }
1550
1551 void udc_unset_nak (int epid)
1552 {
1553 /* TODO: implement this functionality in omap1510 */
1554 }