]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/host/xhci-mem.c
usb: xhci: Initialize scratchpad buffer array and scratchpad buffers
[people/ms/u-boot.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * USB HOST XHCI Controller stack
3 *
4 * Based on xHCI host controller driver in linux-kernel
5 * by Sarah Sharp.
6 *
7 * Copyright (C) 2008 Intel Corp.
8 * Author: Sarah Sharp
9 *
10 * Copyright (C) 2013 Samsung Electronics Co.Ltd
11 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12 * Vikas Sajjan <vikas.sajjan@samsung.com>
13 *
14 * SPDX-License-Identifier: GPL-2.0+
15 */
16
17 #include <common.h>
18 #include <dm.h>
19 #include <asm/byteorder.h>
20 #include <usb.h>
21 #include <malloc.h>
22 #include <asm/cache.h>
23 #include <linux/errno.h>
24
25 #include "xhci.h"
26
27 #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
28 /**
29 * flushes the address passed till the length
30 *
31 * @param addr pointer to memory region to be flushed
32 * @param len the length of the cache line to be flushed
33 * @return none
34 */
35 void xhci_flush_cache(uintptr_t addr, u32 len)
36 {
37 BUG_ON((void *)addr == NULL || len == 0);
38
39 flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
40 ALIGN(addr + len, CACHELINE_SIZE));
41 }
42
43 /**
44 * invalidates the address passed till the length
45 *
46 * @param addr pointer to memory region to be invalidates
47 * @param len the length of the cache line to be invalidated
48 * @return none
49 */
50 void xhci_inval_cache(uintptr_t addr, u32 len)
51 {
52 BUG_ON((void *)addr == NULL || len == 0);
53
54 invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
55 ALIGN(addr + len, CACHELINE_SIZE));
56 }
57
58
59 /**
60 * frees the "segment" pointer passed
61 *
62 * @param ptr pointer to "segement" to be freed
63 * @return none
64 */
65 static void xhci_segment_free(struct xhci_segment *seg)
66 {
67 free(seg->trbs);
68 seg->trbs = NULL;
69
70 free(seg);
71 }
72
73 /**
74 * frees the "ring" pointer passed
75 *
76 * @param ptr pointer to "ring" to be freed
77 * @return none
78 */
79 static void xhci_ring_free(struct xhci_ring *ring)
80 {
81 struct xhci_segment *seg;
82 struct xhci_segment *first_seg;
83
84 BUG_ON(!ring);
85
86 first_seg = ring->first_seg;
87 seg = first_seg->next;
88 while (seg != first_seg) {
89 struct xhci_segment *next = seg->next;
90 xhci_segment_free(seg);
91 seg = next;
92 }
93 xhci_segment_free(first_seg);
94
95 free(ring);
96 }
97
98 /**
99 * Free the scratchpad buffer array and scratchpad buffers
100 *
101 * @ctrl host controller data structure
102 * @return none
103 */
104 static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
105 {
106 if (!ctrl->scratchpad)
107 return;
108
109 ctrl->dcbaa->dev_context_ptrs[0] = 0;
110
111 free((void *)(uintptr_t)ctrl->scratchpad->sp_array[0]);
112 free(ctrl->scratchpad->sp_array);
113 free(ctrl->scratchpad);
114 ctrl->scratchpad = NULL;
115 }
116
117 /**
118 * frees the "xhci_container_ctx" pointer passed
119 *
120 * @param ptr pointer to "xhci_container_ctx" to be freed
121 * @return none
122 */
123 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
124 {
125 free(ctx->bytes);
126 free(ctx);
127 }
128
129 /**
130 * frees the virtual devices for "xhci_ctrl" pointer passed
131 *
132 * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed
133 * @return none
134 */
135 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
136 {
137 int i;
138 int slot_id;
139 struct xhci_virt_device *virt_dev;
140
141 /*
142 * refactored here to loop through all virt_dev
143 * Slot ID 0 is reserved
144 */
145 for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
146 virt_dev = ctrl->devs[slot_id];
147 if (!virt_dev)
148 continue;
149
150 ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
151
152 for (i = 0; i < 31; ++i)
153 if (virt_dev->eps[i].ring)
154 xhci_ring_free(virt_dev->eps[i].ring);
155
156 if (virt_dev->in_ctx)
157 xhci_free_container_ctx(virt_dev->in_ctx);
158 if (virt_dev->out_ctx)
159 xhci_free_container_ctx(virt_dev->out_ctx);
160
161 free(virt_dev);
162 /* make sure we are pointing to NULL */
163 ctrl->devs[slot_id] = NULL;
164 }
165 }
166
167 /**
168 * frees all the memory allocated
169 *
170 * @param ptr pointer to "xhci_ctrl" to be cleaned up
171 * @return none
172 */
173 void xhci_cleanup(struct xhci_ctrl *ctrl)
174 {
175 xhci_ring_free(ctrl->event_ring);
176 xhci_ring_free(ctrl->cmd_ring);
177 xhci_scratchpad_free(ctrl);
178 xhci_free_virt_devices(ctrl);
179 free(ctrl->erst.entries);
180 free(ctrl->dcbaa);
181 memset(ctrl, '\0', sizeof(struct xhci_ctrl));
182 }
183
184 /**
185 * Malloc the aligned memory
186 *
187 * @param size size of memory to be allocated
188 * @return allocates the memory and returns the aligned pointer
189 */
190 static void *xhci_malloc(unsigned int size)
191 {
192 void *ptr;
193 size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
194
195 ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
196 BUG_ON(!ptr);
197 memset(ptr, '\0', size);
198
199 xhci_flush_cache((uintptr_t)ptr, size);
200
201 return ptr;
202 }
203
204 /**
205 * Make the prev segment point to the next segment.
206 * Change the last TRB in the prev segment to be a Link TRB which points to the
207 * address of the next segment. The caller needs to set any Link TRB
208 * related flags, such as End TRB, Toggle Cycle, and no snoop.
209 *
210 * @param prev pointer to the previous segment
211 * @param next pointer to the next segment
212 * @param link_trbs flag to indicate whether to link the trbs or NOT
213 * @return none
214 */
215 static void xhci_link_segments(struct xhci_segment *prev,
216 struct xhci_segment *next, bool link_trbs)
217 {
218 u32 val;
219 u64 val_64 = 0;
220
221 if (!prev || !next)
222 return;
223 prev->next = next;
224 if (link_trbs) {
225 val_64 = (uintptr_t)next->trbs;
226 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
227
228 /*
229 * Set the last TRB in the segment to
230 * have a TRB type ID of Link TRB
231 */
232 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
233 val &= ~TRB_TYPE_BITMASK;
234 val |= (TRB_LINK << TRB_TYPE_SHIFT);
235
236 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
237 }
238 }
239
240 /**
241 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
242 *
243 * @param ring pointer to the RING to be intialised
244 * @return none
245 */
246 static void xhci_initialize_ring_info(struct xhci_ring *ring)
247 {
248 /*
249 * The ring is empty, so the enqueue pointer == dequeue pointer
250 */
251 ring->enqueue = ring->first_seg->trbs;
252 ring->enq_seg = ring->first_seg;
253 ring->dequeue = ring->enqueue;
254 ring->deq_seg = ring->first_seg;
255
256 /*
257 * The ring is initialized to 0. The producer must write 1 to the
258 * cycle bit to handover ownership of the TRB, so PCS = 1.
259 * The consumer must compare CCS to the cycle bit to
260 * check ownership, so CCS = 1.
261 */
262 ring->cycle_state = 1;
263 }
264
265 /**
266 * Allocates a generic ring segment from the ring pool, sets the dma address,
267 * initializes the segment to zero, and sets the private next pointer to NULL.
268 * Section 4.11.1.1:
269 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
270 *
271 * @param none
272 * @return pointer to the newly allocated SEGMENT
273 */
274 static struct xhci_segment *xhci_segment_alloc(void)
275 {
276 struct xhci_segment *seg;
277
278 seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
279 BUG_ON(!seg);
280
281 seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
282
283 seg->next = NULL;
284
285 return seg;
286 }
287
288 /**
289 * Create a new ring with zero or more segments.
290 * TODO: current code only uses one-time-allocated single-segment rings
291 * of 1KB anyway, so we might as well get rid of all the segment and
292 * linking code (and maybe increase the size a bit, e.g. 4KB).
293 *
294 *
295 * Link each segment together into a ring.
296 * Set the end flag and the cycle toggle bit on the last segment.
297 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
298 *
299 * @param num_segs number of segments in the ring
300 * @param link_trbs flag to indicate whether to link the trbs or NOT
301 * @return pointer to the newly created RING
302 */
303 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
304 {
305 struct xhci_ring *ring;
306 struct xhci_segment *prev;
307
308 ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
309 BUG_ON(!ring);
310
311 if (num_segs == 0)
312 return ring;
313
314 ring->first_seg = xhci_segment_alloc();
315 BUG_ON(!ring->first_seg);
316
317 num_segs--;
318
319 prev = ring->first_seg;
320 while (num_segs > 0) {
321 struct xhci_segment *next;
322
323 next = xhci_segment_alloc();
324 BUG_ON(!next);
325
326 xhci_link_segments(prev, next, link_trbs);
327
328 prev = next;
329 num_segs--;
330 }
331 xhci_link_segments(prev, ring->first_seg, link_trbs);
332 if (link_trbs) {
333 /* See section 4.9.2.1 and 6.4.4.1 */
334 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
335 cpu_to_le32(LINK_TOGGLE);
336 }
337 xhci_initialize_ring_info(ring);
338
339 return ring;
340 }
341
342 /**
343 * Set up the scratchpad buffer array and scratchpad buffers
344 *
345 * @ctrl host controller data structure
346 * @return -ENOMEM if buffer allocation fails, 0 on success
347 */
348 static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
349 {
350 struct xhci_hccr *hccr = ctrl->hccr;
351 struct xhci_hcor *hcor = ctrl->hcor;
352 struct xhci_scratchpad *scratchpad;
353 int num_sp;
354 uint32_t page_size;
355 void *buf;
356 int i;
357
358 num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
359 if (!num_sp)
360 return 0;
361
362 scratchpad = malloc(sizeof(*scratchpad));
363 if (!scratchpad)
364 goto fail_sp;
365 ctrl->scratchpad = scratchpad;
366
367 scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
368 if (!scratchpad->sp_array)
369 goto fail_sp2;
370 ctrl->dcbaa->dev_context_ptrs[0] =
371 cpu_to_le64((uintptr_t)scratchpad->sp_array);
372
373 page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
374 for (i = 0; i < 16; i++) {
375 if ((0x1 & page_size) != 0)
376 break;
377 page_size = page_size >> 1;
378 }
379 BUG_ON(i == 16);
380
381 page_size = 1 << (i + 12);
382 buf = memalign(page_size, num_sp * page_size);
383 if (!buf)
384 goto fail_sp3;
385 memset(buf, '\0', num_sp * page_size);
386 xhci_flush_cache((uintptr_t)buf, num_sp * page_size);
387
388 for (i = 0; i < num_sp; i++) {
389 uintptr_t ptr = (uintptr_t)buf + i * page_size;
390 scratchpad->sp_array[i] = cpu_to_le64(ptr);
391 }
392
393 return 0;
394
395 fail_sp3:
396 free(scratchpad->sp_array);
397
398 fail_sp2:
399 free(scratchpad);
400 ctrl->scratchpad = NULL;
401
402 fail_sp:
403 return -ENOMEM;
404 }
405
406 /**
407 * Allocates the Container context
408 *
409 * @param ctrl Host controller data structure
410 * @param type type of XHCI Container Context
411 * @return NULL if failed else pointer to the context on success
412 */
413 static struct xhci_container_ctx
414 *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
415 {
416 struct xhci_container_ctx *ctx;
417
418 ctx = (struct xhci_container_ctx *)
419 malloc(sizeof(struct xhci_container_ctx));
420 BUG_ON(!ctx);
421
422 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
423 ctx->type = type;
424 ctx->size = (MAX_EP_CTX_NUM + 1) *
425 CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
426 if (type == XHCI_CTX_TYPE_INPUT)
427 ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
428
429 ctx->bytes = (u8 *)xhci_malloc(ctx->size);
430
431 return ctx;
432 }
433
434 /**
435 * Allocating virtual device
436 *
437 * @param udev pointer to USB deivce structure
438 * @return 0 on success else -1 on failure
439 */
440 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
441 {
442 u64 byte_64 = 0;
443 struct xhci_virt_device *virt_dev;
444
445 /* Slot ID 0 is reserved */
446 if (ctrl->devs[slot_id]) {
447 printf("Virt dev for slot[%d] already allocated\n", slot_id);
448 return -EEXIST;
449 }
450
451 ctrl->devs[slot_id] = (struct xhci_virt_device *)
452 malloc(sizeof(struct xhci_virt_device));
453
454 if (!ctrl->devs[slot_id]) {
455 puts("Failed to allocate virtual device\n");
456 return -ENOMEM;
457 }
458
459 memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
460 virt_dev = ctrl->devs[slot_id];
461
462 /* Allocate the (output) device context that will be used in the HC. */
463 virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
464 XHCI_CTX_TYPE_DEVICE);
465 if (!virt_dev->out_ctx) {
466 puts("Failed to allocate out context for virt dev\n");
467 return -ENOMEM;
468 }
469
470 /* Allocate the (input) device context for address device command */
471 virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
472 XHCI_CTX_TYPE_INPUT);
473 if (!virt_dev->in_ctx) {
474 puts("Failed to allocate in context for virt dev\n");
475 return -ENOMEM;
476 }
477
478 /* Allocate endpoint 0 ring */
479 virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
480
481 byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
482
483 /* Point to output device context in dcbaa. */
484 ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
485
486 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
487 sizeof(__le64));
488 return 0;
489 }
490
491 /**
492 * Allocates the necessary data structures
493 * for XHCI host controller
494 *
495 * @param ctrl Host controller data structure
496 * @param hccr pointer to HOST Controller Control Registers
497 * @param hcor pointer to HOST Controller Operational Registers
498 * @return 0 if successful else -1 on failure
499 */
500 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
501 struct xhci_hcor *hcor)
502 {
503 uint64_t val_64;
504 uint64_t trb_64;
505 uint32_t val;
506 unsigned long deq;
507 int i;
508 struct xhci_segment *seg;
509
510 /* DCBAA initialization */
511 ctrl->dcbaa = (struct xhci_device_context_array *)
512 xhci_malloc(sizeof(struct xhci_device_context_array));
513 if (ctrl->dcbaa == NULL) {
514 puts("unable to allocate DCBA\n");
515 return -ENOMEM;
516 }
517
518 val_64 = (uintptr_t)ctrl->dcbaa;
519 /* Set the pointer in DCBAA register */
520 xhci_writeq(&hcor->or_dcbaap, val_64);
521
522 /* Command ring control pointer register initialization */
523 ctrl->cmd_ring = xhci_ring_alloc(1, true);
524
525 /* Set the address in the Command Ring Control register */
526 trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
527 val_64 = xhci_readq(&hcor->or_crcr);
528 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
529 (trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
530 ctrl->cmd_ring->cycle_state;
531 xhci_writeq(&hcor->or_crcr, val_64);
532
533 /* write the address of db register */
534 val = xhci_readl(&hccr->cr_dboff);
535 val &= DBOFF_MASK;
536 ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
537
538 /* write the address of runtime register */
539 val = xhci_readl(&hccr->cr_rtsoff);
540 val &= RTSOFF_MASK;
541 ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
542
543 /* writting the address of ir_set structure */
544 ctrl->ir_set = &ctrl->run_regs->ir_set[0];
545
546 /* Event ring does not maintain link TRB */
547 ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
548 ctrl->erst.entries = (struct xhci_erst_entry *)
549 xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
550
551 ctrl->erst.num_entries = ERST_NUM_SEGS;
552
553 for (val = 0, seg = ctrl->event_ring->first_seg;
554 val < ERST_NUM_SEGS;
555 val++) {
556 trb_64 = 0;
557 trb_64 = (uintptr_t)seg->trbs;
558 struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
559 xhci_writeq(&entry->seg_addr, trb_64);
560 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
561 entry->rsvd = 0;
562 seg = seg->next;
563 }
564 xhci_flush_cache((uintptr_t)ctrl->erst.entries,
565 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
566
567 deq = (unsigned long)ctrl->event_ring->dequeue;
568
569 /* Update HC event ring dequeue pointer */
570 xhci_writeq(&ctrl->ir_set->erst_dequeue,
571 (u64)deq & (u64)~ERST_PTR_MASK);
572
573 /* set ERST count with the number of entries in the segment table */
574 val = xhci_readl(&ctrl->ir_set->erst_size);
575 val &= ERST_SIZE_MASK;
576 val |= ERST_NUM_SEGS;
577 xhci_writel(&ctrl->ir_set->erst_size, val);
578
579 /* this is the event ring segment table pointer */
580 val_64 = xhci_readq(&ctrl->ir_set->erst_base);
581 val_64 &= ERST_PTR_MASK;
582 val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
583
584 xhci_writeq(&ctrl->ir_set->erst_base, val_64);
585
586 /* set up the scratchpad buffer array and scratchpad buffers */
587 xhci_scratchpad_alloc(ctrl);
588
589 /* initializing the virtual devices to NULL */
590 for (i = 0; i < MAX_HC_SLOTS; ++i)
591 ctrl->devs[i] = NULL;
592
593 /*
594 * Just Zero'ing this register completely,
595 * or some spurious Device Notification Events
596 * might screw things here.
597 */
598 xhci_writel(&hcor->or_dnctrl, 0x0);
599
600 return 0;
601 }
602
603 /**
604 * Give the input control context for the passed container context
605 *
606 * @param ctx pointer to the context
607 * @return pointer to the Input control context data
608 */
609 struct xhci_input_control_ctx
610 *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
611 {
612 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
613 return (struct xhci_input_control_ctx *)ctx->bytes;
614 }
615
616 /**
617 * Give the slot context for the passed container context
618 *
619 * @param ctrl Host controller data structure
620 * @param ctx pointer to the context
621 * @return pointer to the slot control context data
622 */
623 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
624 struct xhci_container_ctx *ctx)
625 {
626 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
627 return (struct xhci_slot_ctx *)ctx->bytes;
628
629 return (struct xhci_slot_ctx *)
630 (ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
631 }
632
633 /**
634 * Gets the EP context from based on the ep_index
635 *
636 * @param ctrl Host controller data structure
637 * @param ctx context container
638 * @param ep_index index of the endpoint
639 * @return pointer to the End point context
640 */
641 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
642 struct xhci_container_ctx *ctx,
643 unsigned int ep_index)
644 {
645 /* increment ep index by offset of start of ep ctx array */
646 ep_index++;
647 if (ctx->type == XHCI_CTX_TYPE_INPUT)
648 ep_index++;
649
650 return (struct xhci_ep_ctx *)
651 (ctx->bytes +
652 (ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
653 }
654
655 /**
656 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
657 * Useful when you want to change one particular aspect of the endpoint
658 * and then issue a configure endpoint command.
659 *
660 * @param ctrl Host controller data structure
661 * @param in_ctx contains the input context
662 * @param out_ctx contains the input context
663 * @param ep_index index of the end point
664 * @return none
665 */
666 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
667 struct xhci_container_ctx *in_ctx,
668 struct xhci_container_ctx *out_ctx,
669 unsigned int ep_index)
670 {
671 struct xhci_ep_ctx *out_ep_ctx;
672 struct xhci_ep_ctx *in_ep_ctx;
673
674 out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
675 in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
676
677 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
678 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
679 in_ep_ctx->deq = out_ep_ctx->deq;
680 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
681 }
682
683 /**
684 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
685 * Useful when you want to change one particular aspect of the endpoint
686 * and then issue a configure endpoint command.
687 * Only the context entries field matters, but
688 * we'll copy the whole thing anyway.
689 *
690 * @param ctrl Host controller data structure
691 * @param in_ctx contains the inpout context
692 * @param out_ctx contains the inpout context
693 * @return none
694 */
695 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
696 struct xhci_container_ctx *out_ctx)
697 {
698 struct xhci_slot_ctx *in_slot_ctx;
699 struct xhci_slot_ctx *out_slot_ctx;
700
701 in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
702 out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
703
704 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
705 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
706 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
707 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
708 }
709
710 /**
711 * Setup an xHCI virtual device for a Set Address command
712 *
713 * @param udev pointer to the Device Data Structure
714 * @return returns negative value on failure else 0 on success
715 */
716 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl, int slot_id,
717 int speed, int hop_portnr)
718 {
719 struct xhci_virt_device *virt_dev;
720 struct xhci_ep_ctx *ep0_ctx;
721 struct xhci_slot_ctx *slot_ctx;
722 u32 port_num = 0;
723 u64 trb_64 = 0;
724
725 virt_dev = ctrl->devs[slot_id];
726
727 BUG_ON(!virt_dev);
728
729 /* Extract the EP0 and Slot Ctrl */
730 ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
731 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
732
733 /* Only the control endpoint is valid - one endpoint context */
734 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0);
735
736 switch (speed) {
737 case USB_SPEED_SUPER:
738 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
739 break;
740 case USB_SPEED_HIGH:
741 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
742 break;
743 case USB_SPEED_FULL:
744 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
745 break;
746 case USB_SPEED_LOW:
747 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
748 break;
749 default:
750 /* Speed was set earlier, this shouldn't happen. */
751 BUG();
752 }
753
754 port_num = hop_portnr;
755 debug("port_num = %d\n", port_num);
756
757 slot_ctx->dev_info2 |=
758 cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
759 ROOT_HUB_PORT_SHIFT));
760
761 /* Step 4 - ring already allocated */
762 /* Step 5 */
763 ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
764 debug("SPEED = %d\n", speed);
765
766 switch (speed) {
767 case USB_SPEED_SUPER:
768 ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
769 MAX_PACKET_SHIFT));
770 debug("Setting Packet size = 512bytes\n");
771 break;
772 case USB_SPEED_HIGH:
773 /* USB core guesses at a 64-byte max packet first for FS devices */
774 case USB_SPEED_FULL:
775 ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
776 MAX_PACKET_SHIFT));
777 debug("Setting Packet size = 64bytes\n");
778 break;
779 case USB_SPEED_LOW:
780 ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
781 MAX_PACKET_SHIFT));
782 debug("Setting Packet size = 8bytes\n");
783 break;
784 default:
785 /* New speed? */
786 BUG();
787 }
788
789 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
790 ep0_ctx->ep_info2 |=
791 cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
792 ((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
793
794 trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
795 ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
796
797 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
798
799 xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
800 xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
801 }