]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/host/xhci-mem.c
62db51d01851c1eb1909a79de4271cf0e0ff7497
[people/ms/u-boot.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * USB HOST XHCI Controller stack
3 *
4 * Based on xHCI host controller driver in linux-kernel
5 * by Sarah Sharp.
6 *
7 * Copyright (C) 2008 Intel Corp.
8 * Author: Sarah Sharp
9 *
10 * Copyright (C) 2013 Samsung Electronics Co.Ltd
11 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12 * Vikas Sajjan <vikas.sajjan@samsung.com>
13 *
14 * SPDX-License-Identifier: GPL-2.0+
15 */
16
17 #include <common.h>
18 #include <dm.h>
19 #include <asm/byteorder.h>
20 #include <usb.h>
21 #include <malloc.h>
22 #include <asm/cache.h>
23 #include <linux/errno.h>
24
25 #include "xhci.h"
26
27 #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
28 /**
29 * flushes the address passed till the length
30 *
31 * @param addr pointer to memory region to be flushed
32 * @param len the length of the cache line to be flushed
33 * @return none
34 */
35 void xhci_flush_cache(uintptr_t addr, u32 len)
36 {
37 BUG_ON((void *)addr == NULL || len == 0);
38
39 flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
40 ALIGN(addr + len, CACHELINE_SIZE));
41 }
42
43 /**
44 * invalidates the address passed till the length
45 *
46 * @param addr pointer to memory region to be invalidates
47 * @param len the length of the cache line to be invalidated
48 * @return none
49 */
50 void xhci_inval_cache(uintptr_t addr, u32 len)
51 {
52 BUG_ON((void *)addr == NULL || len == 0);
53
54 invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
55 ALIGN(addr + len, CACHELINE_SIZE));
56 }
57
58
59 /**
60 * frees the "segment" pointer passed
61 *
62 * @param ptr pointer to "segement" to be freed
63 * @return none
64 */
65 static void xhci_segment_free(struct xhci_segment *seg)
66 {
67 free(seg->trbs);
68 seg->trbs = NULL;
69
70 free(seg);
71 }
72
73 /**
74 * frees the "ring" pointer passed
75 *
76 * @param ptr pointer to "ring" to be freed
77 * @return none
78 */
79 static void xhci_ring_free(struct xhci_ring *ring)
80 {
81 struct xhci_segment *seg;
82 struct xhci_segment *first_seg;
83
84 BUG_ON(!ring);
85
86 first_seg = ring->first_seg;
87 seg = first_seg->next;
88 while (seg != first_seg) {
89 struct xhci_segment *next = seg->next;
90 xhci_segment_free(seg);
91 seg = next;
92 }
93 xhci_segment_free(first_seg);
94
95 free(ring);
96 }
97
98 /**
99 * frees the "xhci_container_ctx" pointer passed
100 *
101 * @param ptr pointer to "xhci_container_ctx" to be freed
102 * @return none
103 */
104 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
105 {
106 free(ctx->bytes);
107 free(ctx);
108 }
109
110 /**
111 * frees the virtual devices for "xhci_ctrl" pointer passed
112 *
113 * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed
114 * @return none
115 */
116 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
117 {
118 int i;
119 int slot_id;
120 struct xhci_virt_device *virt_dev;
121
122 /*
123 * refactored here to loop through all virt_dev
124 * Slot ID 0 is reserved
125 */
126 for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
127 virt_dev = ctrl->devs[slot_id];
128 if (!virt_dev)
129 continue;
130
131 ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
132
133 for (i = 0; i < 31; ++i)
134 if (virt_dev->eps[i].ring)
135 xhci_ring_free(virt_dev->eps[i].ring);
136
137 if (virt_dev->in_ctx)
138 xhci_free_container_ctx(virt_dev->in_ctx);
139 if (virt_dev->out_ctx)
140 xhci_free_container_ctx(virt_dev->out_ctx);
141
142 free(virt_dev);
143 /* make sure we are pointing to NULL */
144 ctrl->devs[slot_id] = NULL;
145 }
146 }
147
148 /**
149 * frees all the memory allocated
150 *
151 * @param ptr pointer to "xhci_ctrl" to be cleaned up
152 * @return none
153 */
154 void xhci_cleanup(struct xhci_ctrl *ctrl)
155 {
156 xhci_ring_free(ctrl->event_ring);
157 xhci_ring_free(ctrl->cmd_ring);
158 xhci_free_virt_devices(ctrl);
159 free(ctrl->erst.entries);
160 free(ctrl->dcbaa);
161 memset(ctrl, '\0', sizeof(struct xhci_ctrl));
162 }
163
164 /**
165 * Malloc the aligned memory
166 *
167 * @param size size of memory to be allocated
168 * @return allocates the memory and returns the aligned pointer
169 */
170 static void *xhci_malloc(unsigned int size)
171 {
172 void *ptr;
173 size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
174
175 ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
176 BUG_ON(!ptr);
177 memset(ptr, '\0', size);
178
179 xhci_flush_cache((uintptr_t)ptr, size);
180
181 return ptr;
182 }
183
184 /**
185 * Make the prev segment point to the next segment.
186 * Change the last TRB in the prev segment to be a Link TRB which points to the
187 * address of the next segment. The caller needs to set any Link TRB
188 * related flags, such as End TRB, Toggle Cycle, and no snoop.
189 *
190 * @param prev pointer to the previous segment
191 * @param next pointer to the next segment
192 * @param link_trbs flag to indicate whether to link the trbs or NOT
193 * @return none
194 */
195 static void xhci_link_segments(struct xhci_segment *prev,
196 struct xhci_segment *next, bool link_trbs)
197 {
198 u32 val;
199 u64 val_64 = 0;
200
201 if (!prev || !next)
202 return;
203 prev->next = next;
204 if (link_trbs) {
205 val_64 = (uintptr_t)next->trbs;
206 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
207
208 /*
209 * Set the last TRB in the segment to
210 * have a TRB type ID of Link TRB
211 */
212 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
213 val &= ~TRB_TYPE_BITMASK;
214 val |= (TRB_LINK << TRB_TYPE_SHIFT);
215
216 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
217 }
218 }
219
220 /**
221 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
222 *
223 * @param ring pointer to the RING to be intialised
224 * @return none
225 */
226 static void xhci_initialize_ring_info(struct xhci_ring *ring)
227 {
228 /*
229 * The ring is empty, so the enqueue pointer == dequeue pointer
230 */
231 ring->enqueue = ring->first_seg->trbs;
232 ring->enq_seg = ring->first_seg;
233 ring->dequeue = ring->enqueue;
234 ring->deq_seg = ring->first_seg;
235
236 /*
237 * The ring is initialized to 0. The producer must write 1 to the
238 * cycle bit to handover ownership of the TRB, so PCS = 1.
239 * The consumer must compare CCS to the cycle bit to
240 * check ownership, so CCS = 1.
241 */
242 ring->cycle_state = 1;
243 }
244
245 /**
246 * Allocates a generic ring segment from the ring pool, sets the dma address,
247 * initializes the segment to zero, and sets the private next pointer to NULL.
248 * Section 4.11.1.1:
249 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
250 *
251 * @param none
252 * @return pointer to the newly allocated SEGMENT
253 */
254 static struct xhci_segment *xhci_segment_alloc(void)
255 {
256 struct xhci_segment *seg;
257
258 seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
259 BUG_ON(!seg);
260
261 seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
262
263 seg->next = NULL;
264
265 return seg;
266 }
267
268 /**
269 * Create a new ring with zero or more segments.
270 * TODO: current code only uses one-time-allocated single-segment rings
271 * of 1KB anyway, so we might as well get rid of all the segment and
272 * linking code (and maybe increase the size a bit, e.g. 4KB).
273 *
274 *
275 * Link each segment together into a ring.
276 * Set the end flag and the cycle toggle bit on the last segment.
277 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
278 *
279 * @param num_segs number of segments in the ring
280 * @param link_trbs flag to indicate whether to link the trbs or NOT
281 * @return pointer to the newly created RING
282 */
283 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
284 {
285 struct xhci_ring *ring;
286 struct xhci_segment *prev;
287
288 ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
289 BUG_ON(!ring);
290
291 if (num_segs == 0)
292 return ring;
293
294 ring->first_seg = xhci_segment_alloc();
295 BUG_ON(!ring->first_seg);
296
297 num_segs--;
298
299 prev = ring->first_seg;
300 while (num_segs > 0) {
301 struct xhci_segment *next;
302
303 next = xhci_segment_alloc();
304 BUG_ON(!next);
305
306 xhci_link_segments(prev, next, link_trbs);
307
308 prev = next;
309 num_segs--;
310 }
311 xhci_link_segments(prev, ring->first_seg, link_trbs);
312 if (link_trbs) {
313 /* See section 4.9.2.1 and 6.4.4.1 */
314 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
315 cpu_to_le32(LINK_TOGGLE);
316 }
317 xhci_initialize_ring_info(ring);
318
319 return ring;
320 }
321
322 /**
323 * Allocates the Container context
324 *
325 * @param ctrl Host controller data structure
326 * @param type type of XHCI Container Context
327 * @return NULL if failed else pointer to the context on success
328 */
329 static struct xhci_container_ctx
330 *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
331 {
332 struct xhci_container_ctx *ctx;
333
334 ctx = (struct xhci_container_ctx *)
335 malloc(sizeof(struct xhci_container_ctx));
336 BUG_ON(!ctx);
337
338 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
339 ctx->type = type;
340 ctx->size = (MAX_EP_CTX_NUM + 1) *
341 CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
342 if (type == XHCI_CTX_TYPE_INPUT)
343 ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
344
345 ctx->bytes = (u8 *)xhci_malloc(ctx->size);
346
347 return ctx;
348 }
349
350 /**
351 * Allocating virtual device
352 *
353 * @param udev pointer to USB deivce structure
354 * @return 0 on success else -1 on failure
355 */
356 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
357 {
358 u64 byte_64 = 0;
359 struct xhci_virt_device *virt_dev;
360
361 /* Slot ID 0 is reserved */
362 if (ctrl->devs[slot_id]) {
363 printf("Virt dev for slot[%d] already allocated\n", slot_id);
364 return -EEXIST;
365 }
366
367 ctrl->devs[slot_id] = (struct xhci_virt_device *)
368 malloc(sizeof(struct xhci_virt_device));
369
370 if (!ctrl->devs[slot_id]) {
371 puts("Failed to allocate virtual device\n");
372 return -ENOMEM;
373 }
374
375 memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
376 virt_dev = ctrl->devs[slot_id];
377
378 /* Allocate the (output) device context that will be used in the HC. */
379 virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
380 XHCI_CTX_TYPE_DEVICE);
381 if (!virt_dev->out_ctx) {
382 puts("Failed to allocate out context for virt dev\n");
383 return -ENOMEM;
384 }
385
386 /* Allocate the (input) device context for address device command */
387 virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
388 XHCI_CTX_TYPE_INPUT);
389 if (!virt_dev->in_ctx) {
390 puts("Failed to allocate in context for virt dev\n");
391 return -ENOMEM;
392 }
393
394 /* Allocate endpoint 0 ring */
395 virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
396
397 byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
398
399 /* Point to output device context in dcbaa. */
400 ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
401
402 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
403 sizeof(__le64));
404 return 0;
405 }
406
407 /**
408 * Allocates the necessary data structures
409 * for XHCI host controller
410 *
411 * @param ctrl Host controller data structure
412 * @param hccr pointer to HOST Controller Control Registers
413 * @param hcor pointer to HOST Controller Operational Registers
414 * @return 0 if successful else -1 on failure
415 */
416 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
417 struct xhci_hcor *hcor)
418 {
419 uint64_t val_64;
420 uint64_t trb_64;
421 uint32_t val;
422 unsigned long deq;
423 int i;
424 struct xhci_segment *seg;
425
426 /* DCBAA initialization */
427 ctrl->dcbaa = (struct xhci_device_context_array *)
428 xhci_malloc(sizeof(struct xhci_device_context_array));
429 if (ctrl->dcbaa == NULL) {
430 puts("unable to allocate DCBA\n");
431 return -ENOMEM;
432 }
433
434 val_64 = (uintptr_t)ctrl->dcbaa;
435 /* Set the pointer in DCBAA register */
436 xhci_writeq(&hcor->or_dcbaap, val_64);
437
438 /* Command ring control pointer register initialization */
439 ctrl->cmd_ring = xhci_ring_alloc(1, true);
440
441 /* Set the address in the Command Ring Control register */
442 trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
443 val_64 = xhci_readq(&hcor->or_crcr);
444 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
445 (trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
446 ctrl->cmd_ring->cycle_state;
447 xhci_writeq(&hcor->or_crcr, val_64);
448
449 /* write the address of db register */
450 val = xhci_readl(&hccr->cr_dboff);
451 val &= DBOFF_MASK;
452 ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
453
454 /* write the address of runtime register */
455 val = xhci_readl(&hccr->cr_rtsoff);
456 val &= RTSOFF_MASK;
457 ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
458
459 /* writting the address of ir_set structure */
460 ctrl->ir_set = &ctrl->run_regs->ir_set[0];
461
462 /* Event ring does not maintain link TRB */
463 ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
464 ctrl->erst.entries = (struct xhci_erst_entry *)
465 xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
466
467 ctrl->erst.num_entries = ERST_NUM_SEGS;
468
469 for (val = 0, seg = ctrl->event_ring->first_seg;
470 val < ERST_NUM_SEGS;
471 val++) {
472 trb_64 = 0;
473 trb_64 = (uintptr_t)seg->trbs;
474 struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
475 xhci_writeq(&entry->seg_addr, trb_64);
476 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
477 entry->rsvd = 0;
478 seg = seg->next;
479 }
480 xhci_flush_cache((uintptr_t)ctrl->erst.entries,
481 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
482
483 deq = (unsigned long)ctrl->event_ring->dequeue;
484
485 /* Update HC event ring dequeue pointer */
486 xhci_writeq(&ctrl->ir_set->erst_dequeue,
487 (u64)deq & (u64)~ERST_PTR_MASK);
488
489 /* set ERST count with the number of entries in the segment table */
490 val = xhci_readl(&ctrl->ir_set->erst_size);
491 val &= ERST_SIZE_MASK;
492 val |= ERST_NUM_SEGS;
493 xhci_writel(&ctrl->ir_set->erst_size, val);
494
495 /* this is the event ring segment table pointer */
496 val_64 = xhci_readq(&ctrl->ir_set->erst_base);
497 val_64 &= ERST_PTR_MASK;
498 val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
499
500 xhci_writeq(&ctrl->ir_set->erst_base, val_64);
501
502 /* initializing the virtual devices to NULL */
503 for (i = 0; i < MAX_HC_SLOTS; ++i)
504 ctrl->devs[i] = NULL;
505
506 /*
507 * Just Zero'ing this register completely,
508 * or some spurious Device Notification Events
509 * might screw things here.
510 */
511 xhci_writel(&hcor->or_dnctrl, 0x0);
512
513 return 0;
514 }
515
516 /**
517 * Give the input control context for the passed container context
518 *
519 * @param ctx pointer to the context
520 * @return pointer to the Input control context data
521 */
522 struct xhci_input_control_ctx
523 *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
524 {
525 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
526 return (struct xhci_input_control_ctx *)ctx->bytes;
527 }
528
529 /**
530 * Give the slot context for the passed container context
531 *
532 * @param ctrl Host controller data structure
533 * @param ctx pointer to the context
534 * @return pointer to the slot control context data
535 */
536 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
537 struct xhci_container_ctx *ctx)
538 {
539 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
540 return (struct xhci_slot_ctx *)ctx->bytes;
541
542 return (struct xhci_slot_ctx *)
543 (ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
544 }
545
546 /**
547 * Gets the EP context from based on the ep_index
548 *
549 * @param ctrl Host controller data structure
550 * @param ctx context container
551 * @param ep_index index of the endpoint
552 * @return pointer to the End point context
553 */
554 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
555 struct xhci_container_ctx *ctx,
556 unsigned int ep_index)
557 {
558 /* increment ep index by offset of start of ep ctx array */
559 ep_index++;
560 if (ctx->type == XHCI_CTX_TYPE_INPUT)
561 ep_index++;
562
563 return (struct xhci_ep_ctx *)
564 (ctx->bytes +
565 (ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
566 }
567
568 /**
569 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
570 * Useful when you want to change one particular aspect of the endpoint
571 * and then issue a configure endpoint command.
572 *
573 * @param ctrl Host controller data structure
574 * @param in_ctx contains the input context
575 * @param out_ctx contains the input context
576 * @param ep_index index of the end point
577 * @return none
578 */
579 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
580 struct xhci_container_ctx *in_ctx,
581 struct xhci_container_ctx *out_ctx,
582 unsigned int ep_index)
583 {
584 struct xhci_ep_ctx *out_ep_ctx;
585 struct xhci_ep_ctx *in_ep_ctx;
586
587 out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
588 in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
589
590 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
591 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
592 in_ep_ctx->deq = out_ep_ctx->deq;
593 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
594 }
595
596 /**
597 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
598 * Useful when you want to change one particular aspect of the endpoint
599 * and then issue a configure endpoint command.
600 * Only the context entries field matters, but
601 * we'll copy the whole thing anyway.
602 *
603 * @param ctrl Host controller data structure
604 * @param in_ctx contains the inpout context
605 * @param out_ctx contains the inpout context
606 * @return none
607 */
608 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
609 struct xhci_container_ctx *out_ctx)
610 {
611 struct xhci_slot_ctx *in_slot_ctx;
612 struct xhci_slot_ctx *out_slot_ctx;
613
614 in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
615 out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
616
617 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
618 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
619 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
620 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
621 }
622
623 /**
624 * Setup an xHCI virtual device for a Set Address command
625 *
626 * @param udev pointer to the Device Data Structure
627 * @return returns negative value on failure else 0 on success
628 */
629 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl, int slot_id,
630 int speed, int hop_portnr)
631 {
632 struct xhci_virt_device *virt_dev;
633 struct xhci_ep_ctx *ep0_ctx;
634 struct xhci_slot_ctx *slot_ctx;
635 u32 port_num = 0;
636 u64 trb_64 = 0;
637
638 virt_dev = ctrl->devs[slot_id];
639
640 BUG_ON(!virt_dev);
641
642 /* Extract the EP0 and Slot Ctrl */
643 ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
644 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
645
646 /* Only the control endpoint is valid - one endpoint context */
647 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0);
648
649 switch (speed) {
650 case USB_SPEED_SUPER:
651 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
652 break;
653 case USB_SPEED_HIGH:
654 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
655 break;
656 case USB_SPEED_FULL:
657 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
658 break;
659 case USB_SPEED_LOW:
660 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
661 break;
662 default:
663 /* Speed was set earlier, this shouldn't happen. */
664 BUG();
665 }
666
667 port_num = hop_portnr;
668 debug("port_num = %d\n", port_num);
669
670 slot_ctx->dev_info2 |=
671 cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
672 ROOT_HUB_PORT_SHIFT));
673
674 /* Step 4 - ring already allocated */
675 /* Step 5 */
676 ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
677 debug("SPEED = %d\n", speed);
678
679 switch (speed) {
680 case USB_SPEED_SUPER:
681 ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
682 MAX_PACKET_SHIFT));
683 debug("Setting Packet size = 512bytes\n");
684 break;
685 case USB_SPEED_HIGH:
686 /* USB core guesses at a 64-byte max packet first for FS devices */
687 case USB_SPEED_FULL:
688 ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
689 MAX_PACKET_SHIFT));
690 debug("Setting Packet size = 64bytes\n");
691 break;
692 case USB_SPEED_LOW:
693 ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
694 MAX_PACKET_SHIFT));
695 debug("Setting Packet size = 8bytes\n");
696 break;
697 default:
698 /* New speed? */
699 BUG();
700 }
701
702 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
703 ep0_ctx->ep_info2 |=
704 cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
705 ((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
706
707 trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
708 ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
709
710 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
711
712 xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
713 xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
714 }