]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/recovery.c
arcv2: Set IOC aperture so it covers available DDR
[people/ms/u-boot.git] / fs / ubifs / recovery.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12 /*
13 * This file implements functions needed to recover from unclean un-mounts.
14 * When UBIFS is mounted, it checks a flag on the master node to determine if
15 * an un-mount was completed successfully. If not, the process of mounting
16 * incorporates additional checking and fixing of on-flash data structures.
17 * UBIFS always cleans away all remnants of an unclean un-mount, so that
18 * errors do not accumulate. However UBIFS defers recovery if it is mounted
19 * read-only, and the flash is not modified in that case.
20 *
21 * The general UBIFS approach to the recovery is that it recovers from
22 * corruptions which could be caused by power cuts, but it refuses to recover
23 * from corruption caused by other reasons. And UBIFS tries to distinguish
24 * between these 2 reasons of corruptions and silently recover in the former
25 * case and loudly complain in the latter case.
26 *
27 * UBIFS writes only to erased LEBs, so it writes only to the flash space
28 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
29 * of the LEB to the end. And UBIFS assumes that the underlying flash media
30 * writes in @c->max_write_size bytes at a time.
31 *
32 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
33 * I/O unit corresponding to offset X to contain corrupted data, all the
34 * following min. I/O units have to contain empty space (all 0xFFs). If this is
35 * not true, the corruption cannot be the result of a power cut, and UBIFS
36 * refuses to mount.
37 */
38
39 #ifndef __UBOOT__
40 #include <linux/crc32.h>
41 #include <linux/slab.h>
42 #else
43 #include <linux/err.h>
44 #endif
45 #include "ubifs.h"
46
47 /**
48 * is_empty - determine whether a buffer is empty (contains all 0xff).
49 * @buf: buffer to clean
50 * @len: length of buffer
51 *
52 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
53 * %0 is returned.
54 */
55 static int is_empty(void *buf, int len)
56 {
57 uint8_t *p = buf;
58 int i;
59
60 for (i = 0; i < len; i++)
61 if (*p++ != 0xff)
62 return 0;
63 return 1;
64 }
65
66 /**
67 * first_non_ff - find offset of the first non-0xff byte.
68 * @buf: buffer to search in
69 * @len: length of buffer
70 *
71 * This function returns offset of the first non-0xff byte in @buf or %-1 if
72 * the buffer contains only 0xff bytes.
73 */
74 static int first_non_ff(void *buf, int len)
75 {
76 uint8_t *p = buf;
77 int i;
78
79 for (i = 0; i < len; i++)
80 if (*p++ != 0xff)
81 return i;
82 return -1;
83 }
84
85 /**
86 * get_master_node - get the last valid master node allowing for corruption.
87 * @c: UBIFS file-system description object
88 * @lnum: LEB number
89 * @pbuf: buffer containing the LEB read, is returned here
90 * @mst: master node, if found, is returned here
91 * @cor: corruption, if found, is returned here
92 *
93 * This function allocates a buffer, reads the LEB into it, and finds and
94 * returns the last valid master node allowing for one area of corruption.
95 * The corrupt area, if there is one, must be consistent with the assumption
96 * that it is the result of an unclean unmount while the master node was being
97 * written. Under those circumstances, it is valid to use the previously written
98 * master node.
99 *
100 * This function returns %0 on success and a negative error code on failure.
101 */
102 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
103 struct ubifs_mst_node **mst, void **cor)
104 {
105 const int sz = c->mst_node_alsz;
106 int err, offs, len;
107 void *sbuf, *buf;
108
109 sbuf = vmalloc(c->leb_size);
110 if (!sbuf)
111 return -ENOMEM;
112
113 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
114 if (err && err != -EBADMSG)
115 goto out_free;
116
117 /* Find the first position that is definitely not a node */
118 offs = 0;
119 buf = sbuf;
120 len = c->leb_size;
121 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
122 struct ubifs_ch *ch = buf;
123
124 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
125 break;
126 offs += sz;
127 buf += sz;
128 len -= sz;
129 }
130 /* See if there was a valid master node before that */
131 if (offs) {
132 int ret;
133
134 offs -= sz;
135 buf -= sz;
136 len += sz;
137 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
138 if (ret != SCANNED_A_NODE && offs) {
139 /* Could have been corruption so check one place back */
140 offs -= sz;
141 buf -= sz;
142 len += sz;
143 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
144 if (ret != SCANNED_A_NODE)
145 /*
146 * We accept only one area of corruption because
147 * we are assuming that it was caused while
148 * trying to write a master node.
149 */
150 goto out_err;
151 }
152 if (ret == SCANNED_A_NODE) {
153 struct ubifs_ch *ch = buf;
154
155 if (ch->node_type != UBIFS_MST_NODE)
156 goto out_err;
157 dbg_rcvry("found a master node at %d:%d", lnum, offs);
158 *mst = buf;
159 offs += sz;
160 buf += sz;
161 len -= sz;
162 }
163 }
164 /* Check for corruption */
165 if (offs < c->leb_size) {
166 if (!is_empty(buf, min_t(int, len, sz))) {
167 *cor = buf;
168 dbg_rcvry("found corruption at %d:%d", lnum, offs);
169 }
170 offs += sz;
171 buf += sz;
172 len -= sz;
173 }
174 /* Check remaining empty space */
175 if (offs < c->leb_size)
176 if (!is_empty(buf, len))
177 goto out_err;
178 *pbuf = sbuf;
179 return 0;
180
181 out_err:
182 err = -EINVAL;
183 out_free:
184 vfree(sbuf);
185 *mst = NULL;
186 *cor = NULL;
187 return err;
188 }
189
190 /**
191 * write_rcvrd_mst_node - write recovered master node.
192 * @c: UBIFS file-system description object
193 * @mst: master node
194 *
195 * This function returns %0 on success and a negative error code on failure.
196 */
197 static int write_rcvrd_mst_node(struct ubifs_info *c,
198 struct ubifs_mst_node *mst)
199 {
200 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
201 __le32 save_flags;
202
203 dbg_rcvry("recovery");
204
205 save_flags = mst->flags;
206 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
207
208 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
209 err = ubifs_leb_change(c, lnum, mst, sz);
210 if (err)
211 goto out;
212 err = ubifs_leb_change(c, lnum + 1, mst, sz);
213 if (err)
214 goto out;
215 out:
216 mst->flags = save_flags;
217 return err;
218 }
219
220 /**
221 * ubifs_recover_master_node - recover the master node.
222 * @c: UBIFS file-system description object
223 *
224 * This function recovers the master node from corruption that may occur due to
225 * an unclean unmount.
226 *
227 * This function returns %0 on success and a negative error code on failure.
228 */
229 int ubifs_recover_master_node(struct ubifs_info *c)
230 {
231 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
232 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
233 const int sz = c->mst_node_alsz;
234 int err, offs1, offs2;
235
236 dbg_rcvry("recovery");
237
238 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
239 if (err)
240 goto out_free;
241
242 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
243 if (err)
244 goto out_free;
245
246 if (mst1) {
247 offs1 = (void *)mst1 - buf1;
248 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
249 (offs1 == 0 && !cor1)) {
250 /*
251 * mst1 was written by recovery at offset 0 with no
252 * corruption.
253 */
254 dbg_rcvry("recovery recovery");
255 mst = mst1;
256 } else if (mst2) {
257 offs2 = (void *)mst2 - buf2;
258 if (offs1 == offs2) {
259 /* Same offset, so must be the same */
260 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
261 (void *)mst2 + UBIFS_CH_SZ,
262 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
263 goto out_err;
264 mst = mst1;
265 } else if (offs2 + sz == offs1) {
266 /* 1st LEB was written, 2nd was not */
267 if (cor1)
268 goto out_err;
269 mst = mst1;
270 } else if (offs1 == 0 &&
271 c->leb_size - offs2 - sz < sz) {
272 /* 1st LEB was unmapped and written, 2nd not */
273 if (cor1)
274 goto out_err;
275 mst = mst1;
276 } else
277 goto out_err;
278 } else {
279 /*
280 * 2nd LEB was unmapped and about to be written, so
281 * there must be only one master node in the first LEB
282 * and no corruption.
283 */
284 if (offs1 != 0 || cor1)
285 goto out_err;
286 mst = mst1;
287 }
288 } else {
289 if (!mst2)
290 goto out_err;
291 /*
292 * 1st LEB was unmapped and about to be written, so there must
293 * be no room left in 2nd LEB.
294 */
295 offs2 = (void *)mst2 - buf2;
296 if (offs2 + sz + sz <= c->leb_size)
297 goto out_err;
298 mst = mst2;
299 }
300
301 ubifs_msg(c, "recovered master node from LEB %d",
302 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
303
304 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
305
306 if (c->ro_mount) {
307 /* Read-only mode. Keep a copy for switching to rw mode */
308 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
309 if (!c->rcvrd_mst_node) {
310 err = -ENOMEM;
311 goto out_free;
312 }
313 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
314
315 /*
316 * We had to recover the master node, which means there was an
317 * unclean reboot. However, it is possible that the master node
318 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
319 * E.g., consider the following chain of events:
320 *
321 * 1. UBIFS was cleanly unmounted, so the master node is clean
322 * 2. UBIFS is being mounted R/W and starts changing the master
323 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
324 * so this LEB ends up with some amount of garbage at the
325 * end.
326 * 3. UBIFS is being mounted R/O. We reach this place and
327 * recover the master node from the second LEB
328 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
329 * because we are being mounted R/O. We have to defer the
330 * operation.
331 * 4. However, this master node (@c->mst_node) is marked as
332 * clean (since the step 1). And if we just return, the
333 * mount code will be confused and won't recover the master
334 * node when it is re-mounter R/W later.
335 *
336 * Thus, to force the recovery by marking the master node as
337 * dirty.
338 */
339 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
340 #ifndef __UBOOT__
341 } else {
342 /* Write the recovered master node */
343 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
344 err = write_rcvrd_mst_node(c, c->mst_node);
345 if (err)
346 goto out_free;
347 #endif
348 }
349
350 vfree(buf2);
351 vfree(buf1);
352
353 return 0;
354
355 out_err:
356 err = -EINVAL;
357 out_free:
358 ubifs_err(c, "failed to recover master node");
359 if (mst1) {
360 ubifs_err(c, "dumping first master node");
361 ubifs_dump_node(c, mst1);
362 }
363 if (mst2) {
364 ubifs_err(c, "dumping second master node");
365 ubifs_dump_node(c, mst2);
366 }
367 vfree(buf2);
368 vfree(buf1);
369 return err;
370 }
371
372 /**
373 * ubifs_write_rcvrd_mst_node - write the recovered master node.
374 * @c: UBIFS file-system description object
375 *
376 * This function writes the master node that was recovered during mounting in
377 * read-only mode and must now be written because we are remounting rw.
378 *
379 * This function returns %0 on success and a negative error code on failure.
380 */
381 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
382 {
383 int err;
384
385 if (!c->rcvrd_mst_node)
386 return 0;
387 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
388 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
390 if (err)
391 return err;
392 kfree(c->rcvrd_mst_node);
393 c->rcvrd_mst_node = NULL;
394 return 0;
395 }
396
397 /**
398 * is_last_write - determine if an offset was in the last write to a LEB.
399 * @c: UBIFS file-system description object
400 * @buf: buffer to check
401 * @offs: offset to check
402 *
403 * This function returns %1 if @offs was in the last write to the LEB whose data
404 * is in @buf, otherwise %0 is returned. The determination is made by checking
405 * for subsequent empty space starting from the next @c->max_write_size
406 * boundary.
407 */
408 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
409 {
410 int empty_offs, check_len;
411 uint8_t *p;
412
413 /*
414 * Round up to the next @c->max_write_size boundary i.e. @offs is in
415 * the last wbuf written. After that should be empty space.
416 */
417 empty_offs = ALIGN(offs + 1, c->max_write_size);
418 check_len = c->leb_size - empty_offs;
419 p = buf + empty_offs - offs;
420 return is_empty(p, check_len);
421 }
422
423 /**
424 * clean_buf - clean the data from an LEB sitting in a buffer.
425 * @c: UBIFS file-system description object
426 * @buf: buffer to clean
427 * @lnum: LEB number to clean
428 * @offs: offset from which to clean
429 * @len: length of buffer
430 *
431 * This function pads up to the next min_io_size boundary (if there is one) and
432 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
433 * @c->min_io_size boundary.
434 */
435 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
436 int *offs, int *len)
437 {
438 int empty_offs, pad_len;
439
440 lnum = lnum;
441 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
442
443 ubifs_assert(!(*offs & 7));
444 empty_offs = ALIGN(*offs, c->min_io_size);
445 pad_len = empty_offs - *offs;
446 ubifs_pad(c, *buf, pad_len);
447 *offs += pad_len;
448 *buf += pad_len;
449 *len -= pad_len;
450 memset(*buf, 0xff, c->leb_size - empty_offs);
451 }
452
453 /**
454 * no_more_nodes - determine if there are no more nodes in a buffer.
455 * @c: UBIFS file-system description object
456 * @buf: buffer to check
457 * @len: length of buffer
458 * @lnum: LEB number of the LEB from which @buf was read
459 * @offs: offset from which @buf was read
460 *
461 * This function ensures that the corrupted node at @offs is the last thing
462 * written to a LEB. This function returns %1 if more data is not found and
463 * %0 if more data is found.
464 */
465 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
466 int lnum, int offs)
467 {
468 struct ubifs_ch *ch = buf;
469 int skip, dlen = le32_to_cpu(ch->len);
470
471 /* Check for empty space after the corrupt node's common header */
472 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
473 if (is_empty(buf + skip, len - skip))
474 return 1;
475 /*
476 * The area after the common header size is not empty, so the common
477 * header must be intact. Check it.
478 */
479 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
480 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
481 return 0;
482 }
483 /* Now we know the corrupt node's length we can skip over it */
484 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
485 /* After which there should be empty space */
486 if (is_empty(buf + skip, len - skip))
487 return 1;
488 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
489 return 0;
490 }
491
492 /**
493 * fix_unclean_leb - fix an unclean LEB.
494 * @c: UBIFS file-system description object
495 * @sleb: scanned LEB information
496 * @start: offset where scan started
497 */
498 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
499 int start)
500 {
501 int lnum = sleb->lnum, endpt = start;
502
503 /* Get the end offset of the last node we are keeping */
504 if (!list_empty(&sleb->nodes)) {
505 struct ubifs_scan_node *snod;
506
507 snod = list_entry(sleb->nodes.prev,
508 struct ubifs_scan_node, list);
509 endpt = snod->offs + snod->len;
510 }
511
512 if (c->ro_mount && !c->remounting_rw) {
513 /* Add to recovery list */
514 struct ubifs_unclean_leb *ucleb;
515
516 dbg_rcvry("need to fix LEB %d start %d endpt %d",
517 lnum, start, sleb->endpt);
518 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
519 if (!ucleb)
520 return -ENOMEM;
521 ucleb->lnum = lnum;
522 ucleb->endpt = endpt;
523 list_add_tail(&ucleb->list, &c->unclean_leb_list);
524 #ifndef __UBOOT__
525 } else {
526 /* Write the fixed LEB back to flash */
527 int err;
528
529 dbg_rcvry("fixing LEB %d start %d endpt %d",
530 lnum, start, sleb->endpt);
531 if (endpt == 0) {
532 err = ubifs_leb_unmap(c, lnum);
533 if (err)
534 return err;
535 } else {
536 int len = ALIGN(endpt, c->min_io_size);
537
538 if (start) {
539 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
540 start, 1);
541 if (err)
542 return err;
543 }
544 /* Pad to min_io_size */
545 if (len > endpt) {
546 int pad_len = len - ALIGN(endpt, 8);
547
548 if (pad_len > 0) {
549 void *buf = sleb->buf + len - pad_len;
550
551 ubifs_pad(c, buf, pad_len);
552 }
553 }
554 err = ubifs_leb_change(c, lnum, sleb->buf, len);
555 if (err)
556 return err;
557 }
558 #endif
559 }
560 return 0;
561 }
562
563 /**
564 * drop_last_group - drop the last group of nodes.
565 * @sleb: scanned LEB information
566 * @offs: offset of dropped nodes is returned here
567 *
568 * This is a helper function for 'ubifs_recover_leb()' which drops the last
569 * group of nodes of the scanned LEB.
570 */
571 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
572 {
573 while (!list_empty(&sleb->nodes)) {
574 struct ubifs_scan_node *snod;
575 struct ubifs_ch *ch;
576
577 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
578 list);
579 ch = snod->node;
580 if (ch->group_type != UBIFS_IN_NODE_GROUP)
581 break;
582
583 dbg_rcvry("dropping grouped node at %d:%d",
584 sleb->lnum, snod->offs);
585 *offs = snod->offs;
586 list_del(&snod->list);
587 kfree(snod);
588 sleb->nodes_cnt -= 1;
589 }
590 }
591
592 /**
593 * drop_last_node - drop the last node.
594 * @sleb: scanned LEB information
595 * @offs: offset of dropped nodes is returned here
596 *
597 * This is a helper function for 'ubifs_recover_leb()' which drops the last
598 * node of the scanned LEB.
599 */
600 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
601 {
602 struct ubifs_scan_node *snod;
603
604 if (!list_empty(&sleb->nodes)) {
605 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
606 list);
607
608 dbg_rcvry("dropping last node at %d:%d",
609 sleb->lnum, snod->offs);
610 *offs = snod->offs;
611 list_del(&snod->list);
612 kfree(snod);
613 sleb->nodes_cnt -= 1;
614 }
615 }
616
617 /**
618 * ubifs_recover_leb - scan and recover a LEB.
619 * @c: UBIFS file-system description object
620 * @lnum: LEB number
621 * @offs: offset
622 * @sbuf: LEB-sized buffer to use
623 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
624 * belong to any journal head)
625 *
626 * This function does a scan of a LEB, but caters for errors that might have
627 * been caused by the unclean unmount from which we are attempting to recover.
628 * Returns the scanned information on success and a negative error code on
629 * failure.
630 */
631 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
632 int offs, void *sbuf, int jhead)
633 {
634 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
635 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
636 struct ubifs_scan_leb *sleb;
637 void *buf = sbuf + offs;
638
639 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
640
641 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
642 if (IS_ERR(sleb))
643 return sleb;
644
645 ubifs_assert(len >= 8);
646 while (len >= 8) {
647 dbg_scan("look at LEB %d:%d (%d bytes left)",
648 lnum, offs, len);
649
650 cond_resched();
651
652 /*
653 * Scan quietly until there is an error from which we cannot
654 * recover
655 */
656 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
657 if (ret == SCANNED_A_NODE) {
658 /* A valid node, and not a padding node */
659 struct ubifs_ch *ch = buf;
660 int node_len;
661
662 err = ubifs_add_snod(c, sleb, buf, offs);
663 if (err)
664 goto error;
665 node_len = ALIGN(le32_to_cpu(ch->len), 8);
666 offs += node_len;
667 buf += node_len;
668 len -= node_len;
669 } else if (ret > 0) {
670 /* Padding bytes or a valid padding node */
671 offs += ret;
672 buf += ret;
673 len -= ret;
674 } else if (ret == SCANNED_EMPTY_SPACE ||
675 ret == SCANNED_GARBAGE ||
676 ret == SCANNED_A_BAD_PAD_NODE ||
677 ret == SCANNED_A_CORRUPT_NODE) {
678 dbg_rcvry("found corruption (%d) at %d:%d",
679 ret, lnum, offs);
680 break;
681 } else {
682 ubifs_err(c, "unexpected return value %d", ret);
683 err = -EINVAL;
684 goto error;
685 }
686 }
687
688 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
689 if (!is_last_write(c, buf, offs))
690 goto corrupted_rescan;
691 } else if (ret == SCANNED_A_CORRUPT_NODE) {
692 if (!no_more_nodes(c, buf, len, lnum, offs))
693 goto corrupted_rescan;
694 } else if (!is_empty(buf, len)) {
695 if (!is_last_write(c, buf, offs)) {
696 int corruption = first_non_ff(buf, len);
697
698 /*
699 * See header comment for this file for more
700 * explanations about the reasons we have this check.
701 */
702 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
703 lnum, offs, corruption);
704 /* Make sure we dump interesting non-0xFF data */
705 offs += corruption;
706 buf += corruption;
707 goto corrupted;
708 }
709 }
710
711 min_io_unit = round_down(offs, c->min_io_size);
712 if (grouped)
713 /*
714 * If nodes are grouped, always drop the incomplete group at
715 * the end.
716 */
717 drop_last_group(sleb, &offs);
718
719 if (jhead == GCHD) {
720 /*
721 * If this LEB belongs to the GC head then while we are in the
722 * middle of the same min. I/O unit keep dropping nodes. So
723 * basically, what we want is to make sure that the last min.
724 * I/O unit where we saw the corruption is dropped completely
725 * with all the uncorrupted nodes which may possibly sit there.
726 *
727 * In other words, let's name the min. I/O unit where the
728 * corruption starts B, and the previous min. I/O unit A. The
729 * below code tries to deal with a situation when half of B
730 * contains valid nodes or the end of a valid node, and the
731 * second half of B contains corrupted data or garbage. This
732 * means that UBIFS had been writing to B just before the power
733 * cut happened. I do not know how realistic is this scenario
734 * that half of the min. I/O unit had been written successfully
735 * and the other half not, but this is possible in our 'failure
736 * mode emulation' infrastructure at least.
737 *
738 * So what is the problem, why we need to drop those nodes? Why
739 * can't we just clean-up the second half of B by putting a
740 * padding node there? We can, and this works fine with one
741 * exception which was reproduced with power cut emulation
742 * testing and happens extremely rarely.
743 *
744 * Imagine the file-system is full, we run GC which starts
745 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
746 * the current GC head LEB). The @c->gc_lnum is -1, which means
747 * that GC will retain LEB X and will try to continue. Imagine
748 * that LEB X is currently the dirtiest LEB, and the amount of
749 * used space in LEB Y is exactly the same as amount of free
750 * space in LEB X.
751 *
752 * And a power cut happens when nodes are moved from LEB X to
753 * LEB Y. We are here trying to recover LEB Y which is the GC
754 * head LEB. We find the min. I/O unit B as described above.
755 * Then we clean-up LEB Y by padding min. I/O unit. And later
756 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
757 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
758 * does not match because the amount of valid nodes there does
759 * not fit the free space in LEB Y any more! And this is
760 * because of the padding node which we added to LEB Y. The
761 * user-visible effect of this which I once observed and
762 * analysed is that we cannot mount the file-system with
763 * -ENOSPC error.
764 *
765 * So obviously, to make sure that situation does not happen we
766 * should free min. I/O unit B in LEB Y completely and the last
767 * used min. I/O unit in LEB Y should be A. This is basically
768 * what the below code tries to do.
769 */
770 while (offs > min_io_unit)
771 drop_last_node(sleb, &offs);
772 }
773
774 buf = sbuf + offs;
775 len = c->leb_size - offs;
776
777 clean_buf(c, &buf, lnum, &offs, &len);
778 ubifs_end_scan(c, sleb, lnum, offs);
779
780 err = fix_unclean_leb(c, sleb, start);
781 if (err)
782 goto error;
783
784 return sleb;
785
786 corrupted_rescan:
787 /* Re-scan the corrupted data with verbose messages */
788 ubifs_err(c, "corruption %d", ret);
789 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
790 corrupted:
791 ubifs_scanned_corruption(c, lnum, offs, buf);
792 err = -EUCLEAN;
793 error:
794 ubifs_err(c, "LEB %d scanning failed", lnum);
795 ubifs_scan_destroy(sleb);
796 return ERR_PTR(err);
797 }
798
799 /**
800 * get_cs_sqnum - get commit start sequence number.
801 * @c: UBIFS file-system description object
802 * @lnum: LEB number of commit start node
803 * @offs: offset of commit start node
804 * @cs_sqnum: commit start sequence number is returned here
805 *
806 * This function returns %0 on success and a negative error code on failure.
807 */
808 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
809 unsigned long long *cs_sqnum)
810 {
811 struct ubifs_cs_node *cs_node = NULL;
812 int err, ret;
813
814 dbg_rcvry("at %d:%d", lnum, offs);
815 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
816 if (!cs_node)
817 return -ENOMEM;
818 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
819 goto out_err;
820 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
821 UBIFS_CS_NODE_SZ, 0);
822 if (err && err != -EBADMSG)
823 goto out_free;
824 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
825 if (ret != SCANNED_A_NODE) {
826 ubifs_err(c, "Not a valid node");
827 goto out_err;
828 }
829 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
830 ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
831 goto out_err;
832 }
833 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
834 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
835 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
836 c->cmt_no);
837 goto out_err;
838 }
839 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
840 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
841 kfree(cs_node);
842 return 0;
843
844 out_err:
845 err = -EINVAL;
846 out_free:
847 ubifs_err(c, "failed to get CS sqnum");
848 kfree(cs_node);
849 return err;
850 }
851
852 /**
853 * ubifs_recover_log_leb - scan and recover a log LEB.
854 * @c: UBIFS file-system description object
855 * @lnum: LEB number
856 * @offs: offset
857 * @sbuf: LEB-sized buffer to use
858 *
859 * This function does a scan of a LEB, but caters for errors that might have
860 * been caused by unclean reboots from which we are attempting to recover
861 * (assume that only the last log LEB can be corrupted by an unclean reboot).
862 *
863 * This function returns %0 on success and a negative error code on failure.
864 */
865 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
866 int offs, void *sbuf)
867 {
868 struct ubifs_scan_leb *sleb;
869 int next_lnum;
870
871 dbg_rcvry("LEB %d", lnum);
872 next_lnum = lnum + 1;
873 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
874 next_lnum = UBIFS_LOG_LNUM;
875 if (next_lnum != c->ltail_lnum) {
876 /*
877 * We can only recover at the end of the log, so check that the
878 * next log LEB is empty or out of date.
879 */
880 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
881 if (IS_ERR(sleb))
882 return sleb;
883 if (sleb->nodes_cnt) {
884 struct ubifs_scan_node *snod;
885 unsigned long long cs_sqnum = c->cs_sqnum;
886
887 snod = list_entry(sleb->nodes.next,
888 struct ubifs_scan_node, list);
889 if (cs_sqnum == 0) {
890 int err;
891
892 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
893 if (err) {
894 ubifs_scan_destroy(sleb);
895 return ERR_PTR(err);
896 }
897 }
898 if (snod->sqnum > cs_sqnum) {
899 ubifs_err(c, "unrecoverable log corruption in LEB %d",
900 lnum);
901 ubifs_scan_destroy(sleb);
902 return ERR_PTR(-EUCLEAN);
903 }
904 }
905 ubifs_scan_destroy(sleb);
906 }
907 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
908 }
909
910 /**
911 * recover_head - recover a head.
912 * @c: UBIFS file-system description object
913 * @lnum: LEB number of head to recover
914 * @offs: offset of head to recover
915 * @sbuf: LEB-sized buffer to use
916 *
917 * This function ensures that there is no data on the flash at a head location.
918 *
919 * This function returns %0 on success and a negative error code on failure.
920 */
921 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
922 {
923 int len = c->max_write_size, err;
924
925 if (offs + len > c->leb_size)
926 len = c->leb_size - offs;
927
928 if (!len)
929 return 0;
930
931 /* Read at the head location and check it is empty flash */
932 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
933 if (err || !is_empty(sbuf, len)) {
934 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
935 if (offs == 0)
936 return ubifs_leb_unmap(c, lnum);
937 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
938 if (err)
939 return err;
940 return ubifs_leb_change(c, lnum, sbuf, offs);
941 }
942
943 return 0;
944 }
945
946 /**
947 * ubifs_recover_inl_heads - recover index and LPT heads.
948 * @c: UBIFS file-system description object
949 * @sbuf: LEB-sized buffer to use
950 *
951 * This function ensures that there is no data on the flash at the index and
952 * LPT head locations.
953 *
954 * This deals with the recovery of a half-completed journal commit. UBIFS is
955 * careful never to overwrite the last version of the index or the LPT. Because
956 * the index and LPT are wandering trees, data from a half-completed commit will
957 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
958 * assumed to be empty and will be unmapped anyway before use, or in the index
959 * and LPT heads.
960 *
961 * This function returns %0 on success and a negative error code on failure.
962 */
963 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
964 {
965 int err;
966
967 ubifs_assert(!c->ro_mount || c->remounting_rw);
968
969 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
970 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
971 if (err)
972 return err;
973
974 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
975
976 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
977 }
978
979 /**
980 * clean_an_unclean_leb - read and write a LEB to remove corruption.
981 * @c: UBIFS file-system description object
982 * @ucleb: unclean LEB information
983 * @sbuf: LEB-sized buffer to use
984 *
985 * This function reads a LEB up to a point pre-determined by the mount recovery,
986 * checks the nodes, and writes the result back to the flash, thereby cleaning
987 * off any following corruption, or non-fatal ECC errors.
988 *
989 * This function returns %0 on success and a negative error code on failure.
990 */
991 static int clean_an_unclean_leb(struct ubifs_info *c,
992 struct ubifs_unclean_leb *ucleb, void *sbuf)
993 {
994 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
995 void *buf = sbuf;
996
997 dbg_rcvry("LEB %d len %d", lnum, len);
998
999 if (len == 0) {
1000 /* Nothing to read, just unmap it */
1001 return ubifs_leb_unmap(c, lnum);
1002 }
1003
1004 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1005 if (err && err != -EBADMSG)
1006 return err;
1007
1008 while (len >= 8) {
1009 int ret;
1010
1011 cond_resched();
1012
1013 /* Scan quietly until there is an error */
1014 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1015
1016 if (ret == SCANNED_A_NODE) {
1017 /* A valid node, and not a padding node */
1018 struct ubifs_ch *ch = buf;
1019 int node_len;
1020
1021 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1022 offs += node_len;
1023 buf += node_len;
1024 len -= node_len;
1025 continue;
1026 }
1027
1028 if (ret > 0) {
1029 /* Padding bytes or a valid padding node */
1030 offs += ret;
1031 buf += ret;
1032 len -= ret;
1033 continue;
1034 }
1035
1036 if (ret == SCANNED_EMPTY_SPACE) {
1037 ubifs_err(c, "unexpected empty space at %d:%d",
1038 lnum, offs);
1039 return -EUCLEAN;
1040 }
1041
1042 if (quiet) {
1043 /* Redo the last scan but noisily */
1044 quiet = 0;
1045 continue;
1046 }
1047
1048 ubifs_scanned_corruption(c, lnum, offs, buf);
1049 return -EUCLEAN;
1050 }
1051
1052 /* Pad to min_io_size */
1053 len = ALIGN(ucleb->endpt, c->min_io_size);
1054 if (len > ucleb->endpt) {
1055 int pad_len = len - ALIGN(ucleb->endpt, 8);
1056
1057 if (pad_len > 0) {
1058 buf = c->sbuf + len - pad_len;
1059 ubifs_pad(c, buf, pad_len);
1060 }
1061 }
1062
1063 /* Write back the LEB atomically */
1064 err = ubifs_leb_change(c, lnum, sbuf, len);
1065 if (err)
1066 return err;
1067
1068 dbg_rcvry("cleaned LEB %d", lnum);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1075 * @c: UBIFS file-system description object
1076 * @sbuf: LEB-sized buffer to use
1077 *
1078 * This function cleans a LEB identified during recovery that needs to be
1079 * written but was not because UBIFS was mounted read-only. This happens when
1080 * remounting to read-write mode.
1081 *
1082 * This function returns %0 on success and a negative error code on failure.
1083 */
1084 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1085 {
1086 dbg_rcvry("recovery");
1087 while (!list_empty(&c->unclean_leb_list)) {
1088 struct ubifs_unclean_leb *ucleb;
1089 int err;
1090
1091 ucleb = list_entry(c->unclean_leb_list.next,
1092 struct ubifs_unclean_leb, list);
1093 err = clean_an_unclean_leb(c, ucleb, sbuf);
1094 if (err)
1095 return err;
1096 list_del(&ucleb->list);
1097 kfree(ucleb);
1098 }
1099 return 0;
1100 }
1101
1102 #ifndef __UBOOT__
1103 /**
1104 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1105 * @c: UBIFS file-system description object
1106 *
1107 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1108 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1109 * zero in case of success and a negative error code in case of failure.
1110 */
1111 static int grab_empty_leb(struct ubifs_info *c)
1112 {
1113 int lnum, err;
1114
1115 /*
1116 * Note, it is very important to first search for an empty LEB and then
1117 * run the commit, not vice-versa. The reason is that there might be
1118 * only one empty LEB at the moment, the one which has been the
1119 * @c->gc_lnum just before the power cut happened. During the regular
1120 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1121 * one but GC can grab it. But at this moment this single empty LEB is
1122 * not marked as taken, so if we run commit - what happens? Right, the
1123 * commit will grab it and write the index there. Remember that the
1124 * index always expands as long as there is free space, and it only
1125 * starts consolidating when we run out of space.
1126 *
1127 * IOW, if we run commit now, we might not be able to find a free LEB
1128 * after this.
1129 */
1130 lnum = ubifs_find_free_leb_for_idx(c);
1131 if (lnum < 0) {
1132 ubifs_err(c, "could not find an empty LEB");
1133 ubifs_dump_lprops(c);
1134 ubifs_dump_budg(c, &c->bi);
1135 return lnum;
1136 }
1137
1138 /* Reset the index flag */
1139 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1140 LPROPS_INDEX, 0);
1141 if (err)
1142 return err;
1143
1144 c->gc_lnum = lnum;
1145 dbg_rcvry("found empty LEB %d, run commit", lnum);
1146
1147 return ubifs_run_commit(c);
1148 }
1149
1150 /**
1151 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1152 * @c: UBIFS file-system description object
1153 *
1154 * Out-of-place garbage collection requires always one empty LEB with which to
1155 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1156 * written to the master node on unmounting. In the case of an unclean unmount
1157 * the value of gc_lnum recorded in the master node is out of date and cannot
1158 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1159 * However, there may not be enough empty space, in which case it must be
1160 * possible to GC the dirtiest LEB into the GC head LEB.
1161 *
1162 * This function also runs the commit which causes the TNC updates from
1163 * size-recovery and orphans to be written to the flash. That is important to
1164 * ensure correct replay order for subsequent mounts.
1165 *
1166 * This function returns %0 on success and a negative error code on failure.
1167 */
1168 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1169 {
1170 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1171 struct ubifs_lprops lp;
1172 int err;
1173
1174 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1175
1176 c->gc_lnum = -1;
1177 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1178 return grab_empty_leb(c);
1179
1180 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1181 if (err) {
1182 if (err != -ENOSPC)
1183 return err;
1184
1185 dbg_rcvry("could not find a dirty LEB");
1186 return grab_empty_leb(c);
1187 }
1188
1189 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1190 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1191
1192 /*
1193 * We run the commit before garbage collection otherwise subsequent
1194 * mounts will see the GC and orphan deletion in a different order.
1195 */
1196 dbg_rcvry("committing");
1197 err = ubifs_run_commit(c);
1198 if (err)
1199 return err;
1200
1201 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1202 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1203 err = ubifs_garbage_collect_leb(c, &lp);
1204 if (err >= 0) {
1205 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1206
1207 if (err2)
1208 err = err2;
1209 }
1210 mutex_unlock(&wbuf->io_mutex);
1211 if (err < 0) {
1212 ubifs_err(c, "GC failed, error %d", err);
1213 if (err == -EAGAIN)
1214 err = -EINVAL;
1215 return err;
1216 }
1217
1218 ubifs_assert(err == LEB_RETAINED);
1219 if (err != LEB_RETAINED)
1220 return -EINVAL;
1221
1222 err = ubifs_leb_unmap(c, c->gc_lnum);
1223 if (err)
1224 return err;
1225
1226 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1227 return 0;
1228 }
1229 #else
1230 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1231 {
1232 return 0;
1233 }
1234 #endif
1235
1236 /**
1237 * struct size_entry - inode size information for recovery.
1238 * @rb: link in the RB-tree of sizes
1239 * @inum: inode number
1240 * @i_size: size on inode
1241 * @d_size: maximum size based on data nodes
1242 * @exists: indicates whether the inode exists
1243 * @inode: inode if pinned in memory awaiting rw mode to fix it
1244 */
1245 struct size_entry {
1246 struct rb_node rb;
1247 ino_t inum;
1248 loff_t i_size;
1249 loff_t d_size;
1250 int exists;
1251 struct inode *inode;
1252 };
1253
1254 /**
1255 * add_ino - add an entry to the size tree.
1256 * @c: UBIFS file-system description object
1257 * @inum: inode number
1258 * @i_size: size on inode
1259 * @d_size: maximum size based on data nodes
1260 * @exists: indicates whether the inode exists
1261 */
1262 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1263 loff_t d_size, int exists)
1264 {
1265 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1266 struct size_entry *e;
1267
1268 while (*p) {
1269 parent = *p;
1270 e = rb_entry(parent, struct size_entry, rb);
1271 if (inum < e->inum)
1272 p = &(*p)->rb_left;
1273 else
1274 p = &(*p)->rb_right;
1275 }
1276
1277 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1278 if (!e)
1279 return -ENOMEM;
1280
1281 e->inum = inum;
1282 e->i_size = i_size;
1283 e->d_size = d_size;
1284 e->exists = exists;
1285
1286 rb_link_node(&e->rb, parent, p);
1287 rb_insert_color(&e->rb, &c->size_tree);
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * find_ino - find an entry on the size tree.
1294 * @c: UBIFS file-system description object
1295 * @inum: inode number
1296 */
1297 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1298 {
1299 struct rb_node *p = c->size_tree.rb_node;
1300 struct size_entry *e;
1301
1302 while (p) {
1303 e = rb_entry(p, struct size_entry, rb);
1304 if (inum < e->inum)
1305 p = p->rb_left;
1306 else if (inum > e->inum)
1307 p = p->rb_right;
1308 else
1309 return e;
1310 }
1311 return NULL;
1312 }
1313
1314 /**
1315 * remove_ino - remove an entry from the size tree.
1316 * @c: UBIFS file-system description object
1317 * @inum: inode number
1318 */
1319 static void remove_ino(struct ubifs_info *c, ino_t inum)
1320 {
1321 struct size_entry *e = find_ino(c, inum);
1322
1323 if (!e)
1324 return;
1325 rb_erase(&e->rb, &c->size_tree);
1326 kfree(e);
1327 }
1328
1329 /**
1330 * ubifs_destroy_size_tree - free resources related to the size tree.
1331 * @c: UBIFS file-system description object
1332 */
1333 void ubifs_destroy_size_tree(struct ubifs_info *c)
1334 {
1335 struct size_entry *e, *n;
1336
1337 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1338 if (e->inode)
1339 iput(e->inode);
1340 kfree(e);
1341 }
1342
1343 c->size_tree = RB_ROOT;
1344 }
1345
1346 /**
1347 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1348 * @c: UBIFS file-system description object
1349 * @key: node key
1350 * @deletion: node is for a deletion
1351 * @new_size: inode size
1352 *
1353 * This function has two purposes:
1354 * 1) to ensure there are no data nodes that fall outside the inode size
1355 * 2) to ensure there are no data nodes for inodes that do not exist
1356 * To accomplish those purposes, a rb-tree is constructed containing an entry
1357 * for each inode number in the journal that has not been deleted, and recording
1358 * the size from the inode node, the maximum size of any data node (also altered
1359 * by truncations) and a flag indicating a inode number for which no inode node
1360 * was present in the journal.
1361 *
1362 * Note that there is still the possibility that there are data nodes that have
1363 * been committed that are beyond the inode size, however the only way to find
1364 * them would be to scan the entire index. Alternatively, some provision could
1365 * be made to record the size of inodes at the start of commit, which would seem
1366 * very cumbersome for a scenario that is quite unlikely and the only negative
1367 * consequence of which is wasted space.
1368 *
1369 * This functions returns %0 on success and a negative error code on failure.
1370 */
1371 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1372 int deletion, loff_t new_size)
1373 {
1374 ino_t inum = key_inum(c, key);
1375 struct size_entry *e;
1376 int err;
1377
1378 switch (key_type(c, key)) {
1379 case UBIFS_INO_KEY:
1380 if (deletion)
1381 remove_ino(c, inum);
1382 else {
1383 e = find_ino(c, inum);
1384 if (e) {
1385 e->i_size = new_size;
1386 e->exists = 1;
1387 } else {
1388 err = add_ino(c, inum, new_size, 0, 1);
1389 if (err)
1390 return err;
1391 }
1392 }
1393 break;
1394 case UBIFS_DATA_KEY:
1395 e = find_ino(c, inum);
1396 if (e) {
1397 if (new_size > e->d_size)
1398 e->d_size = new_size;
1399 } else {
1400 err = add_ino(c, inum, 0, new_size, 0);
1401 if (err)
1402 return err;
1403 }
1404 break;
1405 case UBIFS_TRUN_KEY:
1406 e = find_ino(c, inum);
1407 if (e)
1408 e->d_size = new_size;
1409 break;
1410 }
1411 return 0;
1412 }
1413
1414 #ifndef __UBOOT__
1415 /**
1416 * fix_size_in_place - fix inode size in place on flash.
1417 * @c: UBIFS file-system description object
1418 * @e: inode size information for recovery
1419 */
1420 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1421 {
1422 struct ubifs_ino_node *ino = c->sbuf;
1423 unsigned char *p;
1424 union ubifs_key key;
1425 int err, lnum, offs, len;
1426 loff_t i_size;
1427 uint32_t crc;
1428
1429 /* Locate the inode node LEB number and offset */
1430 ino_key_init(c, &key, e->inum);
1431 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1432 if (err)
1433 goto out;
1434 /*
1435 * If the size recorded on the inode node is greater than the size that
1436 * was calculated from nodes in the journal then don't change the inode.
1437 */
1438 i_size = le64_to_cpu(ino->size);
1439 if (i_size >= e->d_size)
1440 return 0;
1441 /* Read the LEB */
1442 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1443 if (err)
1444 goto out;
1445 /* Change the size field and recalculate the CRC */
1446 ino = c->sbuf + offs;
1447 ino->size = cpu_to_le64(e->d_size);
1448 len = le32_to_cpu(ino->ch.len);
1449 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1450 ino->ch.crc = cpu_to_le32(crc);
1451 /* Work out where data in the LEB ends and free space begins */
1452 p = c->sbuf;
1453 len = c->leb_size - 1;
1454 while (p[len] == 0xff)
1455 len -= 1;
1456 len = ALIGN(len + 1, c->min_io_size);
1457 /* Atomically write the fixed LEB back again */
1458 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1459 if (err)
1460 goto out;
1461 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1462 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1463 return 0;
1464
1465 out:
1466 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1467 (unsigned long)e->inum, e->i_size, e->d_size, err);
1468 return err;
1469 }
1470 #endif
1471
1472 /**
1473 * ubifs_recover_size - recover inode size.
1474 * @c: UBIFS file-system description object
1475 *
1476 * This function attempts to fix inode size discrepancies identified by the
1477 * 'ubifs_recover_size_accum()' function.
1478 *
1479 * This functions returns %0 on success and a negative error code on failure.
1480 */
1481 int ubifs_recover_size(struct ubifs_info *c)
1482 {
1483 struct rb_node *this = rb_first(&c->size_tree);
1484
1485 while (this) {
1486 struct size_entry *e;
1487 int err;
1488
1489 e = rb_entry(this, struct size_entry, rb);
1490 if (!e->exists) {
1491 union ubifs_key key;
1492
1493 ino_key_init(c, &key, e->inum);
1494 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1495 if (err && err != -ENOENT)
1496 return err;
1497 if (err == -ENOENT) {
1498 /* Remove data nodes that have no inode */
1499 dbg_rcvry("removing ino %lu",
1500 (unsigned long)e->inum);
1501 err = ubifs_tnc_remove_ino(c, e->inum);
1502 if (err)
1503 return err;
1504 } else {
1505 struct ubifs_ino_node *ino = c->sbuf;
1506
1507 e->exists = 1;
1508 e->i_size = le64_to_cpu(ino->size);
1509 }
1510 }
1511
1512 if (e->exists && e->i_size < e->d_size) {
1513 if (c->ro_mount) {
1514 /* Fix the inode size and pin it in memory */
1515 struct inode *inode;
1516 struct ubifs_inode *ui;
1517
1518 ubifs_assert(!e->inode);
1519
1520 inode = ubifs_iget(c->vfs_sb, e->inum);
1521 if (IS_ERR(inode))
1522 return PTR_ERR(inode);
1523
1524 ui = ubifs_inode(inode);
1525 if (inode->i_size < e->d_size) {
1526 dbg_rcvry("ino %lu size %lld -> %lld",
1527 (unsigned long)e->inum,
1528 inode->i_size, e->d_size);
1529 inode->i_size = e->d_size;
1530 ui->ui_size = e->d_size;
1531 ui->synced_i_size = e->d_size;
1532 e->inode = inode;
1533 this = rb_next(this);
1534 continue;
1535 }
1536 iput(inode);
1537 #ifndef __UBOOT__
1538 } else {
1539 /* Fix the size in place */
1540 err = fix_size_in_place(c, e);
1541 if (err)
1542 return err;
1543 if (e->inode)
1544 iput(e->inode);
1545 #endif
1546 }
1547 }
1548
1549 this = rb_next(this);
1550 rb_erase(&e->rb, &c->size_tree);
1551 kfree(e);
1552 }
1553
1554 return 0;
1555 }