]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/super.c
mtd, ubi, ubifs: resync with Linux-3.14
[people/ms/u-boot.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 */
11
12 /*
13 * This file implements UBIFS initialization and VFS superblock operations. Some
14 * initialization stuff which is rather large and complex is placed at
15 * corresponding subsystems, but most of it is here.
16 */
17
18 #define __UBOOT__
19 #ifndef __UBOOT__
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/ctype.h>
24 #include <linux/kthread.h>
25 #include <linux/parser.h>
26 #include <linux/seq_file.h>
27 #include <linux/mount.h>
28 #include <linux/math64.h>
29 #include <linux/writeback.h>
30 #else
31
32 #include <linux/compat.h>
33 #include <linux/stat.h>
34 #include <linux/err.h>
35 #include "ubifs.h"
36 #include <ubi_uboot.h>
37 #include <mtd/ubi-user.h>
38
39 struct dentry;
40 struct file;
41 struct iattr;
42 struct kstat;
43 struct vfsmount;
44
45 #define INODE_LOCKED_MAX 64
46
47 struct super_block *ubifs_sb;
48 LIST_HEAD(super_blocks);
49
50 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
51
52 int set_anon_super(struct super_block *s, void *data)
53 {
54 return 0;
55 }
56
57 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
58 {
59 struct inode *inode;
60
61 inode = (struct inode *)malloc(sizeof(struct ubifs_inode));
62 if (inode) {
63 inode->i_ino = ino;
64 inode->i_sb = sb;
65 list_add(&inode->i_sb_list, &sb->s_inodes);
66 inode->i_state = I_LOCK | I_NEW;
67 }
68
69 return inode;
70 }
71
72 void iget_failed(struct inode *inode)
73 {
74 }
75
76 int ubifs_iput(struct inode *inode)
77 {
78 list_del_init(&inode->i_sb_list);
79
80 free(inode);
81 return 0;
82 }
83
84 /*
85 * Lock (save) inode in inode array for readback after recovery
86 */
87 void iput(struct inode *inode)
88 {
89 int i;
90 struct inode *ino;
91
92 /*
93 * Search end of list
94 */
95 for (i = 0; i < INODE_LOCKED_MAX; i++) {
96 if (inodes_locked_down[i] == NULL)
97 break;
98 }
99
100 if (i >= INODE_LOCKED_MAX) {
101 ubifs_err("Error, can't lock (save) more inodes while recovery!!!");
102 return;
103 }
104
105 /*
106 * Allocate and use new inode
107 */
108 ino = (struct inode *)malloc(sizeof(struct ubifs_inode));
109 memcpy(ino, inode, sizeof(struct ubifs_inode));
110
111 /*
112 * Finally save inode in array
113 */
114 inodes_locked_down[i] = ino;
115 }
116
117 /* from fs/inode.c */
118 /**
119 * clear_nlink - directly zero an inode's link count
120 * @inode: inode
121 *
122 * This is a low-level filesystem helper to replace any
123 * direct filesystem manipulation of i_nlink. See
124 * drop_nlink() for why we care about i_nlink hitting zero.
125 */
126 void clear_nlink(struct inode *inode)
127 {
128 if (inode->i_nlink) {
129 inode->__i_nlink = 0;
130 atomic_long_inc(&inode->i_sb->s_remove_count);
131 }
132 }
133 EXPORT_SYMBOL(clear_nlink);
134
135 /**
136 * set_nlink - directly set an inode's link count
137 * @inode: inode
138 * @nlink: new nlink (should be non-zero)
139 *
140 * This is a low-level filesystem helper to replace any
141 * direct filesystem manipulation of i_nlink.
142 */
143 void set_nlink(struct inode *inode, unsigned int nlink)
144 {
145 if (!nlink) {
146 clear_nlink(inode);
147 } else {
148 /* Yes, some filesystems do change nlink from zero to one */
149 if (inode->i_nlink == 0)
150 atomic_long_dec(&inode->i_sb->s_remove_count);
151
152 inode->__i_nlink = nlink;
153 }
154 }
155 EXPORT_SYMBOL(set_nlink);
156
157 /* from include/linux/fs.h */
158 static inline void i_uid_write(struct inode *inode, uid_t uid)
159 {
160 inode->i_uid.val = uid;
161 }
162
163 static inline void i_gid_write(struct inode *inode, gid_t gid)
164 {
165 inode->i_gid.val = gid;
166 }
167
168 void unlock_new_inode(struct inode *inode)
169 {
170 return;
171 }
172 #endif
173
174 /*
175 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
176 * allocating too much.
177 */
178 #define UBIFS_KMALLOC_OK (128*1024)
179
180 /* Slab cache for UBIFS inodes */
181 struct kmem_cache *ubifs_inode_slab;
182
183 #ifndef __UBOOT__
184 /* UBIFS TNC shrinker description */
185 static struct shrinker ubifs_shrinker_info = {
186 .scan_objects = ubifs_shrink_scan,
187 .count_objects = ubifs_shrink_count,
188 .seeks = DEFAULT_SEEKS,
189 };
190 #endif
191
192 /**
193 * validate_inode - validate inode.
194 * @c: UBIFS file-system description object
195 * @inode: the inode to validate
196 *
197 * This is a helper function for 'ubifs_iget()' which validates various fields
198 * of a newly built inode to make sure they contain sane values and prevent
199 * possible vulnerabilities. Returns zero if the inode is all right and
200 * a non-zero error code if not.
201 */
202 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
203 {
204 int err;
205 const struct ubifs_inode *ui = ubifs_inode(inode);
206
207 if (inode->i_size > c->max_inode_sz) {
208 ubifs_err("inode is too large (%lld)",
209 (long long)inode->i_size);
210 return 1;
211 }
212
213 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
214 ubifs_err("unknown compression type %d", ui->compr_type);
215 return 2;
216 }
217
218 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
219 return 3;
220
221 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
222 return 4;
223
224 if (ui->xattr && !S_ISREG(inode->i_mode))
225 return 5;
226
227 if (!ubifs_compr_present(ui->compr_type)) {
228 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
229 inode->i_ino, ubifs_compr_name(ui->compr_type));
230 }
231
232 err = dbg_check_dir(c, inode);
233 return err;
234 }
235
236 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
237 {
238 int err;
239 union ubifs_key key;
240 struct ubifs_ino_node *ino;
241 struct ubifs_info *c = sb->s_fs_info;
242 struct inode *inode;
243 struct ubifs_inode *ui;
244 #ifdef __UBOOT__
245 int i;
246 #endif
247
248 dbg_gen("inode %lu", inum);
249
250 #ifdef __UBOOT__
251 /*
252 * U-Boot special handling of locked down inodes via recovery
253 * e.g. ubifs_recover_size()
254 */
255 for (i = 0; i < INODE_LOCKED_MAX; i++) {
256 /*
257 * Exit on last entry (NULL), inode not found in list
258 */
259 if (inodes_locked_down[i] == NULL)
260 break;
261
262 if (inodes_locked_down[i]->i_ino == inum) {
263 /*
264 * We found the locked down inode in our array,
265 * so just return this pointer instead of creating
266 * a new one.
267 */
268 return inodes_locked_down[i];
269 }
270 }
271 #endif
272
273 inode = iget_locked(sb, inum);
274 if (!inode)
275 return ERR_PTR(-ENOMEM);
276 if (!(inode->i_state & I_NEW))
277 return inode;
278 ui = ubifs_inode(inode);
279
280 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
281 if (!ino) {
282 err = -ENOMEM;
283 goto out;
284 }
285
286 ino_key_init(c, &key, inode->i_ino);
287
288 err = ubifs_tnc_lookup(c, &key, ino);
289 if (err)
290 goto out_ino;
291
292 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
293 set_nlink(inode, le32_to_cpu(ino->nlink));
294 i_uid_write(inode, le32_to_cpu(ino->uid));
295 i_gid_write(inode, le32_to_cpu(ino->gid));
296 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
297 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
298 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
299 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
300 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
301 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
302 inode->i_mode = le32_to_cpu(ino->mode);
303 inode->i_size = le64_to_cpu(ino->size);
304
305 ui->data_len = le32_to_cpu(ino->data_len);
306 ui->flags = le32_to_cpu(ino->flags);
307 ui->compr_type = le16_to_cpu(ino->compr_type);
308 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
309 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
310 ui->xattr_size = le32_to_cpu(ino->xattr_size);
311 ui->xattr_names = le32_to_cpu(ino->xattr_names);
312 ui->synced_i_size = ui->ui_size = inode->i_size;
313
314 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
315
316 err = validate_inode(c, inode);
317 if (err)
318 goto out_invalid;
319
320 #ifndef __UBOOT__
321 /* Disable read-ahead */
322 inode->i_mapping->backing_dev_info = &c->bdi;
323
324 switch (inode->i_mode & S_IFMT) {
325 case S_IFREG:
326 inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 inode->i_op = &ubifs_file_inode_operations;
328 inode->i_fop = &ubifs_file_operations;
329 if (ui->xattr) {
330 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 if (!ui->data) {
332 err = -ENOMEM;
333 goto out_ino;
334 }
335 memcpy(ui->data, ino->data, ui->data_len);
336 ((char *)ui->data)[ui->data_len] = '\0';
337 } else if (ui->data_len != 0) {
338 err = 10;
339 goto out_invalid;
340 }
341 break;
342 case S_IFDIR:
343 inode->i_op = &ubifs_dir_inode_operations;
344 inode->i_fop = &ubifs_dir_operations;
345 if (ui->data_len != 0) {
346 err = 11;
347 goto out_invalid;
348 }
349 break;
350 case S_IFLNK:
351 inode->i_op = &ubifs_symlink_inode_operations;
352 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 err = 12;
354 goto out_invalid;
355 }
356 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 if (!ui->data) {
358 err = -ENOMEM;
359 goto out_ino;
360 }
361 memcpy(ui->data, ino->data, ui->data_len);
362 ((char *)ui->data)[ui->data_len] = '\0';
363 break;
364 case S_IFBLK:
365 case S_IFCHR:
366 {
367 dev_t rdev;
368 union ubifs_dev_desc *dev;
369
370 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
371 if (!ui->data) {
372 err = -ENOMEM;
373 goto out_ino;
374 }
375
376 dev = (union ubifs_dev_desc *)ino->data;
377 if (ui->data_len == sizeof(dev->new))
378 rdev = new_decode_dev(le32_to_cpu(dev->new));
379 else if (ui->data_len == sizeof(dev->huge))
380 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
381 else {
382 err = 13;
383 goto out_invalid;
384 }
385 memcpy(ui->data, ino->data, ui->data_len);
386 inode->i_op = &ubifs_file_inode_operations;
387 init_special_inode(inode, inode->i_mode, rdev);
388 break;
389 }
390 case S_IFSOCK:
391 case S_IFIFO:
392 inode->i_op = &ubifs_file_inode_operations;
393 init_special_inode(inode, inode->i_mode, 0);
394 if (ui->data_len != 0) {
395 err = 14;
396 goto out_invalid;
397 }
398 break;
399 default:
400 err = 15;
401 goto out_invalid;
402 }
403 #else
404 if ((inode->i_mode & S_IFMT) == S_IFLNK) {
405 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
406 err = 12;
407 goto out_invalid;
408 }
409 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
410 if (!ui->data) {
411 err = -ENOMEM;
412 goto out_ino;
413 }
414 memcpy(ui->data, ino->data, ui->data_len);
415 ((char *)ui->data)[ui->data_len] = '\0';
416 }
417 #endif
418
419 kfree(ino);
420 #ifndef __UBOOT__
421 ubifs_set_inode_flags(inode);
422 #endif
423 unlock_new_inode(inode);
424 return inode;
425
426 out_invalid:
427 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
428 ubifs_dump_node(c, ino);
429 ubifs_dump_inode(c, inode);
430 err = -EINVAL;
431 out_ino:
432 kfree(ino);
433 out:
434 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
435 iget_failed(inode);
436 return ERR_PTR(err);
437 }
438
439 static struct inode *ubifs_alloc_inode(struct super_block *sb)
440 {
441 struct ubifs_inode *ui;
442
443 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
444 if (!ui)
445 return NULL;
446
447 memset((void *)ui + sizeof(struct inode), 0,
448 sizeof(struct ubifs_inode) - sizeof(struct inode));
449 mutex_init(&ui->ui_mutex);
450 spin_lock_init(&ui->ui_lock);
451 return &ui->vfs_inode;
452 };
453
454 #ifndef __UBOOT__
455 static void ubifs_i_callback(struct rcu_head *head)
456 {
457 struct inode *inode = container_of(head, struct inode, i_rcu);
458 struct ubifs_inode *ui = ubifs_inode(inode);
459 kmem_cache_free(ubifs_inode_slab, ui);
460 }
461
462 static void ubifs_destroy_inode(struct inode *inode)
463 {
464 struct ubifs_inode *ui = ubifs_inode(inode);
465
466 kfree(ui->data);
467 call_rcu(&inode->i_rcu, ubifs_i_callback);
468 }
469
470 /*
471 * Note, Linux write-back code calls this without 'i_mutex'.
472 */
473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
474 {
475 int err = 0;
476 struct ubifs_info *c = inode->i_sb->s_fs_info;
477 struct ubifs_inode *ui = ubifs_inode(inode);
478
479 ubifs_assert(!ui->xattr);
480 if (is_bad_inode(inode))
481 return 0;
482
483 mutex_lock(&ui->ui_mutex);
484 /*
485 * Due to races between write-back forced by budgeting
486 * (see 'sync_some_inodes()') and background write-back, the inode may
487 * have already been synchronized, do not do this again. This might
488 * also happen if it was synchronized in an VFS operation, e.g.
489 * 'ubifs_link()'.
490 */
491 if (!ui->dirty) {
492 mutex_unlock(&ui->ui_mutex);
493 return 0;
494 }
495
496 /*
497 * As an optimization, do not write orphan inodes to the media just
498 * because this is not needed.
499 */
500 dbg_gen("inode %lu, mode %#x, nlink %u",
501 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
502 if (inode->i_nlink) {
503 err = ubifs_jnl_write_inode(c, inode);
504 if (err)
505 ubifs_err("can't write inode %lu, error %d",
506 inode->i_ino, err);
507 else
508 err = dbg_check_inode_size(c, inode, ui->ui_size);
509 }
510
511 ui->dirty = 0;
512 mutex_unlock(&ui->ui_mutex);
513 ubifs_release_dirty_inode_budget(c, ui);
514 return err;
515 }
516
517 static void ubifs_evict_inode(struct inode *inode)
518 {
519 int err;
520 struct ubifs_info *c = inode->i_sb->s_fs_info;
521 struct ubifs_inode *ui = ubifs_inode(inode);
522
523 if (ui->xattr)
524 /*
525 * Extended attribute inode deletions are fully handled in
526 * 'ubifs_removexattr()'. These inodes are special and have
527 * limited usage, so there is nothing to do here.
528 */
529 goto out;
530
531 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
532 ubifs_assert(!atomic_read(&inode->i_count));
533
534 truncate_inode_pages(&inode->i_data, 0);
535
536 if (inode->i_nlink)
537 goto done;
538
539 if (is_bad_inode(inode))
540 goto out;
541
542 ui->ui_size = inode->i_size = 0;
543 err = ubifs_jnl_delete_inode(c, inode);
544 if (err)
545 /*
546 * Worst case we have a lost orphan inode wasting space, so a
547 * simple error message is OK here.
548 */
549 ubifs_err("can't delete inode %lu, error %d",
550 inode->i_ino, err);
551
552 out:
553 if (ui->dirty)
554 ubifs_release_dirty_inode_budget(c, ui);
555 else {
556 /* We've deleted something - clean the "no space" flags */
557 c->bi.nospace = c->bi.nospace_rp = 0;
558 smp_wmb();
559 }
560 done:
561 clear_inode(inode);
562 }
563 #endif
564
565 static void ubifs_dirty_inode(struct inode *inode, int flags)
566 {
567 struct ubifs_inode *ui = ubifs_inode(inode);
568
569 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
570 if (!ui->dirty) {
571 ui->dirty = 1;
572 dbg_gen("inode %lu", inode->i_ino);
573 }
574 }
575
576 #ifndef __UBOOT__
577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
578 {
579 struct ubifs_info *c = dentry->d_sb->s_fs_info;
580 unsigned long long free;
581 __le32 *uuid = (__le32 *)c->uuid;
582
583 free = ubifs_get_free_space(c);
584 dbg_gen("free space %lld bytes (%lld blocks)",
585 free, free >> UBIFS_BLOCK_SHIFT);
586
587 buf->f_type = UBIFS_SUPER_MAGIC;
588 buf->f_bsize = UBIFS_BLOCK_SIZE;
589 buf->f_blocks = c->block_cnt;
590 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
591 if (free > c->report_rp_size)
592 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
593 else
594 buf->f_bavail = 0;
595 buf->f_files = 0;
596 buf->f_ffree = 0;
597 buf->f_namelen = UBIFS_MAX_NLEN;
598 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
599 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
600 ubifs_assert(buf->f_bfree <= c->block_cnt);
601 return 0;
602 }
603
604 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
605 {
606 struct ubifs_info *c = root->d_sb->s_fs_info;
607
608 if (c->mount_opts.unmount_mode == 2)
609 seq_printf(s, ",fast_unmount");
610 else if (c->mount_opts.unmount_mode == 1)
611 seq_printf(s, ",norm_unmount");
612
613 if (c->mount_opts.bulk_read == 2)
614 seq_printf(s, ",bulk_read");
615 else if (c->mount_opts.bulk_read == 1)
616 seq_printf(s, ",no_bulk_read");
617
618 if (c->mount_opts.chk_data_crc == 2)
619 seq_printf(s, ",chk_data_crc");
620 else if (c->mount_opts.chk_data_crc == 1)
621 seq_printf(s, ",no_chk_data_crc");
622
623 if (c->mount_opts.override_compr) {
624 seq_printf(s, ",compr=%s",
625 ubifs_compr_name(c->mount_opts.compr_type));
626 }
627
628 return 0;
629 }
630
631 static int ubifs_sync_fs(struct super_block *sb, int wait)
632 {
633 int i, err;
634 struct ubifs_info *c = sb->s_fs_info;
635
636 /*
637 * Zero @wait is just an advisory thing to help the file system shove
638 * lots of data into the queues, and there will be the second
639 * '->sync_fs()' call, with non-zero @wait.
640 */
641 if (!wait)
642 return 0;
643
644 /*
645 * Synchronize write buffers, because 'ubifs_run_commit()' does not
646 * do this if it waits for an already running commit.
647 */
648 for (i = 0; i < c->jhead_cnt; i++) {
649 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
650 if (err)
651 return err;
652 }
653
654 /*
655 * Strictly speaking, it is not necessary to commit the journal here,
656 * synchronizing write-buffers would be enough. But committing makes
657 * UBIFS free space predictions much more accurate, so we want to let
658 * the user be able to get more accurate results of 'statfs()' after
659 * they synchronize the file system.
660 */
661 err = ubifs_run_commit(c);
662 if (err)
663 return err;
664
665 return ubi_sync(c->vi.ubi_num);
666 }
667 #endif
668
669 /**
670 * init_constants_early - initialize UBIFS constants.
671 * @c: UBIFS file-system description object
672 *
673 * This function initialize UBIFS constants which do not need the superblock to
674 * be read. It also checks that the UBI volume satisfies basic UBIFS
675 * requirements. Returns zero in case of success and a negative error code in
676 * case of failure.
677 */
678 static int init_constants_early(struct ubifs_info *c)
679 {
680 if (c->vi.corrupted) {
681 ubifs_warn("UBI volume is corrupted - read-only mode");
682 c->ro_media = 1;
683 }
684
685 if (c->di.ro_mode) {
686 ubifs_msg("read-only UBI device");
687 c->ro_media = 1;
688 }
689
690 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
691 ubifs_msg("static UBI volume - read-only mode");
692 c->ro_media = 1;
693 }
694
695 c->leb_cnt = c->vi.size;
696 c->leb_size = c->vi.usable_leb_size;
697 c->leb_start = c->di.leb_start;
698 c->half_leb_size = c->leb_size / 2;
699 c->min_io_size = c->di.min_io_size;
700 c->min_io_shift = fls(c->min_io_size) - 1;
701 c->max_write_size = c->di.max_write_size;
702 c->max_write_shift = fls(c->max_write_size) - 1;
703
704 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
705 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
706 c->leb_size, UBIFS_MIN_LEB_SZ);
707 return -EINVAL;
708 }
709
710 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
711 ubifs_err("too few LEBs (%d), min. is %d",
712 c->leb_cnt, UBIFS_MIN_LEB_CNT);
713 return -EINVAL;
714 }
715
716 if (!is_power_of_2(c->min_io_size)) {
717 ubifs_err("bad min. I/O size %d", c->min_io_size);
718 return -EINVAL;
719 }
720
721 /*
722 * Maximum write size has to be greater or equivalent to min. I/O
723 * size, and be multiple of min. I/O size.
724 */
725 if (c->max_write_size < c->min_io_size ||
726 c->max_write_size % c->min_io_size ||
727 !is_power_of_2(c->max_write_size)) {
728 ubifs_err("bad write buffer size %d for %d min. I/O unit",
729 c->max_write_size, c->min_io_size);
730 return -EINVAL;
731 }
732
733 /*
734 * UBIFS aligns all node to 8-byte boundary, so to make function in
735 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
736 * less than 8.
737 */
738 if (c->min_io_size < 8) {
739 c->min_io_size = 8;
740 c->min_io_shift = 3;
741 if (c->max_write_size < c->min_io_size) {
742 c->max_write_size = c->min_io_size;
743 c->max_write_shift = c->min_io_shift;
744 }
745 }
746
747 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
748 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
749
750 /*
751 * Initialize node length ranges which are mostly needed for node
752 * length validation.
753 */
754 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
755 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
756 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
757 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
758 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
759 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
760
761 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
762 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
763 c->ranges[UBIFS_ORPH_NODE].min_len =
764 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
765 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
766 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
767 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
768 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
769 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
770 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
771 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
772 /*
773 * Minimum indexing node size is amended later when superblock is
774 * read and the key length is known.
775 */
776 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
777 /*
778 * Maximum indexing node size is amended later when superblock is
779 * read and the fanout is known.
780 */
781 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
782
783 /*
784 * Initialize dead and dark LEB space watermarks. See gc.c for comments
785 * about these values.
786 */
787 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
788 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
789
790 /*
791 * Calculate how many bytes would be wasted at the end of LEB if it was
792 * fully filled with data nodes of maximum size. This is used in
793 * calculations when reporting free space.
794 */
795 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
796
797 /* Buffer size for bulk-reads */
798 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
799 if (c->max_bu_buf_len > c->leb_size)
800 c->max_bu_buf_len = c->leb_size;
801 return 0;
802 }
803
804 /**
805 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
806 * @c: UBIFS file-system description object
807 * @lnum: LEB the write-buffer was synchronized to
808 * @free: how many free bytes left in this LEB
809 * @pad: how many bytes were padded
810 *
811 * This is a callback function which is called by the I/O unit when the
812 * write-buffer is synchronized. We need this to correctly maintain space
813 * accounting in bud logical eraseblocks. This function returns zero in case of
814 * success and a negative error code in case of failure.
815 *
816 * This function actually belongs to the journal, but we keep it here because
817 * we want to keep it static.
818 */
819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
820 {
821 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
822 }
823
824 /*
825 * init_constants_sb - initialize UBIFS constants.
826 * @c: UBIFS file-system description object
827 *
828 * This is a helper function which initializes various UBIFS constants after
829 * the superblock has been read. It also checks various UBIFS parameters and
830 * makes sure they are all right. Returns zero in case of success and a
831 * negative error code in case of failure.
832 */
833 static int init_constants_sb(struct ubifs_info *c)
834 {
835 int tmp, err;
836 long long tmp64;
837
838 c->main_bytes = (long long)c->main_lebs * c->leb_size;
839 c->max_znode_sz = sizeof(struct ubifs_znode) +
840 c->fanout * sizeof(struct ubifs_zbranch);
841
842 tmp = ubifs_idx_node_sz(c, 1);
843 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
844 c->min_idx_node_sz = ALIGN(tmp, 8);
845
846 tmp = ubifs_idx_node_sz(c, c->fanout);
847 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
848 c->max_idx_node_sz = ALIGN(tmp, 8);
849
850 /* Make sure LEB size is large enough to fit full commit */
851 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
852 tmp = ALIGN(tmp, c->min_io_size);
853 if (tmp > c->leb_size) {
854 ubifs_err("too small LEB size %d, at least %d needed",
855 c->leb_size, tmp);
856 return -EINVAL;
857 }
858
859 /*
860 * Make sure that the log is large enough to fit reference nodes for
861 * all buds plus one reserved LEB.
862 */
863 tmp64 = c->max_bud_bytes + c->leb_size - 1;
864 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
865 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
866 tmp /= c->leb_size;
867 tmp += 1;
868 if (c->log_lebs < tmp) {
869 ubifs_err("too small log %d LEBs, required min. %d LEBs",
870 c->log_lebs, tmp);
871 return -EINVAL;
872 }
873
874 /*
875 * When budgeting we assume worst-case scenarios when the pages are not
876 * be compressed and direntries are of the maximum size.
877 *
878 * Note, data, which may be stored in inodes is budgeted separately, so
879 * it is not included into 'c->bi.inode_budget'.
880 */
881 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
882 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
883 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
884
885 /*
886 * When the amount of flash space used by buds becomes
887 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
888 * The writers are unblocked when the commit is finished. To avoid
889 * writers to be blocked UBIFS initiates background commit in advance,
890 * when number of bud bytes becomes above the limit defined below.
891 */
892 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
893
894 /*
895 * Ensure minimum journal size. All the bytes in the journal heads are
896 * considered to be used, when calculating the current journal usage.
897 * Consequently, if the journal is too small, UBIFS will treat it as
898 * always full.
899 */
900 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
901 if (c->bg_bud_bytes < tmp64)
902 c->bg_bud_bytes = tmp64;
903 if (c->max_bud_bytes < tmp64 + c->leb_size)
904 c->max_bud_bytes = tmp64 + c->leb_size;
905
906 err = ubifs_calc_lpt_geom(c);
907 if (err)
908 return err;
909
910 /* Initialize effective LEB size used in budgeting calculations */
911 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
912 return 0;
913 }
914
915 /*
916 * init_constants_master - initialize UBIFS constants.
917 * @c: UBIFS file-system description object
918 *
919 * This is a helper function which initializes various UBIFS constants after
920 * the master node has been read. It also checks various UBIFS parameters and
921 * makes sure they are all right.
922 */
923 static void init_constants_master(struct ubifs_info *c)
924 {
925 long long tmp64;
926
927 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
928 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
929
930 /*
931 * Calculate total amount of FS blocks. This number is not used
932 * internally because it does not make much sense for UBIFS, but it is
933 * necessary to report something for the 'statfs()' call.
934 *
935 * Subtract the LEB reserved for GC, the LEB which is reserved for
936 * deletions, minimum LEBs for the index, and assume only one journal
937 * head is available.
938 */
939 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
940 tmp64 *= (long long)c->leb_size - c->leb_overhead;
941 tmp64 = ubifs_reported_space(c, tmp64);
942 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
943 }
944
945 /**
946 * take_gc_lnum - reserve GC LEB.
947 * @c: UBIFS file-system description object
948 *
949 * This function ensures that the LEB reserved for garbage collection is marked
950 * as "taken" in lprops. We also have to set free space to LEB size and dirty
951 * space to zero, because lprops may contain out-of-date information if the
952 * file-system was un-mounted before it has been committed. This function
953 * returns zero in case of success and a negative error code in case of
954 * failure.
955 */
956 static int take_gc_lnum(struct ubifs_info *c)
957 {
958 int err;
959
960 if (c->gc_lnum == -1) {
961 ubifs_err("no LEB for GC");
962 return -EINVAL;
963 }
964
965 /* And we have to tell lprops that this LEB is taken */
966 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
967 LPROPS_TAKEN, 0, 0);
968 return err;
969 }
970
971 /**
972 * alloc_wbufs - allocate write-buffers.
973 * @c: UBIFS file-system description object
974 *
975 * This helper function allocates and initializes UBIFS write-buffers. Returns
976 * zero in case of success and %-ENOMEM in case of failure.
977 */
978 static int alloc_wbufs(struct ubifs_info *c)
979 {
980 int i, err;
981
982 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
983 GFP_KERNEL);
984 if (!c->jheads)
985 return -ENOMEM;
986
987 /* Initialize journal heads */
988 for (i = 0; i < c->jhead_cnt; i++) {
989 INIT_LIST_HEAD(&c->jheads[i].buds_list);
990 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
991 if (err)
992 return err;
993
994 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
995 c->jheads[i].wbuf.jhead = i;
996 c->jheads[i].grouped = 1;
997 }
998
999 /*
1000 * Garbage Collector head does not need to be synchronized by timer.
1001 * Also GC head nodes are not grouped.
1002 */
1003 c->jheads[GCHD].wbuf.no_timer = 1;
1004 c->jheads[GCHD].grouped = 0;
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * free_wbufs - free write-buffers.
1011 * @c: UBIFS file-system description object
1012 */
1013 static void free_wbufs(struct ubifs_info *c)
1014 {
1015 int i;
1016
1017 if (c->jheads) {
1018 for (i = 0; i < c->jhead_cnt; i++) {
1019 kfree(c->jheads[i].wbuf.buf);
1020 kfree(c->jheads[i].wbuf.inodes);
1021 }
1022 kfree(c->jheads);
1023 c->jheads = NULL;
1024 }
1025 }
1026
1027 /**
1028 * free_orphans - free orphans.
1029 * @c: UBIFS file-system description object
1030 */
1031 static void free_orphans(struct ubifs_info *c)
1032 {
1033 struct ubifs_orphan *orph;
1034
1035 while (c->orph_dnext) {
1036 orph = c->orph_dnext;
1037 c->orph_dnext = orph->dnext;
1038 list_del(&orph->list);
1039 kfree(orph);
1040 }
1041
1042 while (!list_empty(&c->orph_list)) {
1043 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1044 list_del(&orph->list);
1045 kfree(orph);
1046 ubifs_err("orphan list not empty at unmount");
1047 }
1048
1049 vfree(c->orph_buf);
1050 c->orph_buf = NULL;
1051 }
1052
1053 #ifndef __UBOOT__
1054 /**
1055 * free_buds - free per-bud objects.
1056 * @c: UBIFS file-system description object
1057 */
1058 static void free_buds(struct ubifs_info *c)
1059 {
1060 struct ubifs_bud *bud, *n;
1061
1062 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063 kfree(bud);
1064 }
1065 #endif
1066
1067 /**
1068 * check_volume_empty - check if the UBI volume is empty.
1069 * @c: UBIFS file-system description object
1070 *
1071 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1072 * mapped or not. The result of checking is stored in the @c->empty variable.
1073 * Returns zero in case of success and a negative error code in case of
1074 * failure.
1075 */
1076 static int check_volume_empty(struct ubifs_info *c)
1077 {
1078 int lnum, err;
1079
1080 c->empty = 1;
1081 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1082 err = ubifs_is_mapped(c, lnum);
1083 if (unlikely(err < 0))
1084 return err;
1085 if (err == 1) {
1086 c->empty = 0;
1087 break;
1088 }
1089
1090 cond_resched();
1091 }
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * UBIFS mount options.
1098 *
1099 * Opt_fast_unmount: do not run a journal commit before un-mounting
1100 * Opt_norm_unmount: run a journal commit before un-mounting
1101 * Opt_bulk_read: enable bulk-reads
1102 * Opt_no_bulk_read: disable bulk-reads
1103 * Opt_chk_data_crc: check CRCs when reading data nodes
1104 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1105 * Opt_override_compr: override default compressor
1106 * Opt_err: just end of array marker
1107 */
1108 enum {
1109 Opt_fast_unmount,
1110 Opt_norm_unmount,
1111 Opt_bulk_read,
1112 Opt_no_bulk_read,
1113 Opt_chk_data_crc,
1114 Opt_no_chk_data_crc,
1115 Opt_override_compr,
1116 Opt_err,
1117 };
1118
1119 #ifndef __UBOOT__
1120 static const match_table_t tokens = {
1121 {Opt_fast_unmount, "fast_unmount"},
1122 {Opt_norm_unmount, "norm_unmount"},
1123 {Opt_bulk_read, "bulk_read"},
1124 {Opt_no_bulk_read, "no_bulk_read"},
1125 {Opt_chk_data_crc, "chk_data_crc"},
1126 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1127 {Opt_override_compr, "compr=%s"},
1128 {Opt_err, NULL},
1129 };
1130
1131 /**
1132 * parse_standard_option - parse a standard mount option.
1133 * @option: the option to parse
1134 *
1135 * Normally, standard mount options like "sync" are passed to file-systems as
1136 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1137 * be present in the options string. This function tries to deal with this
1138 * situation and parse standard options. Returns 0 if the option was not
1139 * recognized, and the corresponding integer flag if it was.
1140 *
1141 * UBIFS is only interested in the "sync" option, so do not check for anything
1142 * else.
1143 */
1144 static int parse_standard_option(const char *option)
1145 {
1146 ubifs_msg("parse %s", option);
1147 if (!strcmp(option, "sync"))
1148 return MS_SYNCHRONOUS;
1149 return 0;
1150 }
1151
1152 /**
1153 * ubifs_parse_options - parse mount parameters.
1154 * @c: UBIFS file-system description object
1155 * @options: parameters to parse
1156 * @is_remount: non-zero if this is FS re-mount
1157 *
1158 * This function parses UBIFS mount options and returns zero in case success
1159 * and a negative error code in case of failure.
1160 */
1161 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162 int is_remount)
1163 {
1164 char *p;
1165 substring_t args[MAX_OPT_ARGS];
1166
1167 if (!options)
1168 return 0;
1169
1170 while ((p = strsep(&options, ","))) {
1171 int token;
1172
1173 if (!*p)
1174 continue;
1175
1176 token = match_token(p, tokens, args);
1177 switch (token) {
1178 /*
1179 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180 * We accept them in order to be backward-compatible. But this
1181 * should be removed at some point.
1182 */
1183 case Opt_fast_unmount:
1184 c->mount_opts.unmount_mode = 2;
1185 break;
1186 case Opt_norm_unmount:
1187 c->mount_opts.unmount_mode = 1;
1188 break;
1189 case Opt_bulk_read:
1190 c->mount_opts.bulk_read = 2;
1191 c->bulk_read = 1;
1192 break;
1193 case Opt_no_bulk_read:
1194 c->mount_opts.bulk_read = 1;
1195 c->bulk_read = 0;
1196 break;
1197 case Opt_chk_data_crc:
1198 c->mount_opts.chk_data_crc = 2;
1199 c->no_chk_data_crc = 0;
1200 break;
1201 case Opt_no_chk_data_crc:
1202 c->mount_opts.chk_data_crc = 1;
1203 c->no_chk_data_crc = 1;
1204 break;
1205 case Opt_override_compr:
1206 {
1207 char *name = match_strdup(&args[0]);
1208
1209 if (!name)
1210 return -ENOMEM;
1211 if (!strcmp(name, "none"))
1212 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213 else if (!strcmp(name, "lzo"))
1214 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215 else if (!strcmp(name, "zlib"))
1216 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217 else {
1218 ubifs_err("unknown compressor \"%s\"", name);
1219 kfree(name);
1220 return -EINVAL;
1221 }
1222 kfree(name);
1223 c->mount_opts.override_compr = 1;
1224 c->default_compr = c->mount_opts.compr_type;
1225 break;
1226 }
1227 default:
1228 {
1229 unsigned long flag;
1230 struct super_block *sb = c->vfs_sb;
1231
1232 flag = parse_standard_option(p);
1233 if (!flag) {
1234 ubifs_err("unrecognized mount option \"%s\" or missing value",
1235 p);
1236 return -EINVAL;
1237 }
1238 sb->s_flags |= flag;
1239 break;
1240 }
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247 /**
1248 * destroy_journal - destroy journal data structures.
1249 * @c: UBIFS file-system description object
1250 *
1251 * This function destroys journal data structures including those that may have
1252 * been created by recovery functions.
1253 */
1254 static void destroy_journal(struct ubifs_info *c)
1255 {
1256 while (!list_empty(&c->unclean_leb_list)) {
1257 struct ubifs_unclean_leb *ucleb;
1258
1259 ucleb = list_entry(c->unclean_leb_list.next,
1260 struct ubifs_unclean_leb, list);
1261 list_del(&ucleb->list);
1262 kfree(ucleb);
1263 }
1264 while (!list_empty(&c->old_buds)) {
1265 struct ubifs_bud *bud;
1266
1267 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1268 list_del(&bud->list);
1269 kfree(bud);
1270 }
1271 ubifs_destroy_idx_gc(c);
1272 ubifs_destroy_size_tree(c);
1273 ubifs_tnc_close(c);
1274 free_buds(c);
1275 }
1276 #endif
1277
1278 /**
1279 * bu_init - initialize bulk-read information.
1280 * @c: UBIFS file-system description object
1281 */
1282 static void bu_init(struct ubifs_info *c)
1283 {
1284 ubifs_assert(c->bulk_read == 1);
1285
1286 if (c->bu.buf)
1287 return; /* Already initialized */
1288
1289 again:
1290 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291 if (!c->bu.buf) {
1292 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294 goto again;
1295 }
1296
1297 /* Just disable bulk-read */
1298 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1299 c->max_bu_buf_len);
1300 c->mount_opts.bulk_read = 1;
1301 c->bulk_read = 0;
1302 return;
1303 }
1304 }
1305
1306 #ifndef __UBOOT__
1307 /**
1308 * check_free_space - check if there is enough free space to mount.
1309 * @c: UBIFS file-system description object
1310 *
1311 * This function makes sure UBIFS has enough free space to be mounted in
1312 * read/write mode. UBIFS must always have some free space to allow deletions.
1313 */
1314 static int check_free_space(struct ubifs_info *c)
1315 {
1316 ubifs_assert(c->dark_wm > 0);
1317 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318 ubifs_err("insufficient free space to mount in R/W mode");
1319 ubifs_dump_budg(c, &c->bi);
1320 ubifs_dump_lprops(c);
1321 return -ENOSPC;
1322 }
1323 return 0;
1324 }
1325 #endif
1326
1327 /**
1328 * mount_ubifs - mount UBIFS file-system.
1329 * @c: UBIFS file-system description object
1330 *
1331 * This function mounts UBIFS file system. Returns zero in case of success and
1332 * a negative error code in case of failure.
1333 */
1334 static int mount_ubifs(struct ubifs_info *c)
1335 {
1336 int err;
1337 long long x, y;
1338 size_t sz;
1339
1340 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1341 #ifdef __UBOOT__
1342 if (!c->ro_mount) {
1343 printf("UBIFS: only ro mode in U-Boot allowed.\n");
1344 return -EACCES;
1345 }
1346 #endif
1347
1348 err = init_constants_early(c);
1349 if (err)
1350 return err;
1351
1352 err = ubifs_debugging_init(c);
1353 if (err)
1354 return err;
1355
1356 err = check_volume_empty(c);
1357 if (err)
1358 goto out_free;
1359
1360 if (c->empty && (c->ro_mount || c->ro_media)) {
1361 /*
1362 * This UBI volume is empty, and read-only, or the file system
1363 * is mounted read-only - we cannot format it.
1364 */
1365 ubifs_err("can't format empty UBI volume: read-only %s",
1366 c->ro_media ? "UBI volume" : "mount");
1367 err = -EROFS;
1368 goto out_free;
1369 }
1370
1371 if (c->ro_media && !c->ro_mount) {
1372 ubifs_err("cannot mount read-write - read-only media");
1373 err = -EROFS;
1374 goto out_free;
1375 }
1376
1377 /*
1378 * The requirement for the buffer is that it should fit indexing B-tree
1379 * height amount of integers. We assume the height if the TNC tree will
1380 * never exceed 64.
1381 */
1382 err = -ENOMEM;
1383 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1384 if (!c->bottom_up_buf)
1385 goto out_free;
1386
1387 c->sbuf = vmalloc(c->leb_size);
1388 if (!c->sbuf)
1389 goto out_free;
1390
1391 #ifndef __UBOOT__
1392 if (!c->ro_mount) {
1393 c->ileb_buf = vmalloc(c->leb_size);
1394 if (!c->ileb_buf)
1395 goto out_free;
1396 }
1397 #endif
1398
1399 if (c->bulk_read == 1)
1400 bu_init(c);
1401
1402 #ifndef __UBOOT__
1403 if (!c->ro_mount) {
1404 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1405 GFP_KERNEL);
1406 if (!c->write_reserve_buf)
1407 goto out_free;
1408 }
1409 #endif
1410
1411 c->mounting = 1;
1412
1413 err = ubifs_read_superblock(c);
1414 if (err)
1415 goto out_free;
1416
1417 /*
1418 * Make sure the compressor which is set as default in the superblock
1419 * or overridden by mount options is actually compiled in.
1420 */
1421 if (!ubifs_compr_present(c->default_compr)) {
1422 ubifs_err("'compressor \"%s\" is not compiled in",
1423 ubifs_compr_name(c->default_compr));
1424 err = -ENOTSUPP;
1425 goto out_free;
1426 }
1427
1428 err = init_constants_sb(c);
1429 if (err)
1430 goto out_free;
1431
1432 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1433 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1434 c->cbuf = kmalloc(sz, GFP_NOFS);
1435 if (!c->cbuf) {
1436 err = -ENOMEM;
1437 goto out_free;
1438 }
1439
1440 err = alloc_wbufs(c);
1441 if (err)
1442 goto out_cbuf;
1443
1444 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1445 #ifndef __UBOOT__
1446 if (!c->ro_mount) {
1447 /* Create background thread */
1448 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1449 if (IS_ERR(c->bgt)) {
1450 err = PTR_ERR(c->bgt);
1451 c->bgt = NULL;
1452 ubifs_err("cannot spawn \"%s\", error %d",
1453 c->bgt_name, err);
1454 goto out_wbufs;
1455 }
1456 wake_up_process(c->bgt);
1457 }
1458 #endif
1459
1460 err = ubifs_read_master(c);
1461 if (err)
1462 goto out_master;
1463
1464 init_constants_master(c);
1465
1466 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1467 ubifs_msg("recovery needed");
1468 c->need_recovery = 1;
1469 }
1470
1471 #ifndef __UBOOT__
1472 if (c->need_recovery && !c->ro_mount) {
1473 err = ubifs_recover_inl_heads(c, c->sbuf);
1474 if (err)
1475 goto out_master;
1476 }
1477 #endif
1478
1479 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1480 if (err)
1481 goto out_master;
1482
1483 #ifndef __UBOOT__
1484 if (!c->ro_mount && c->space_fixup) {
1485 err = ubifs_fixup_free_space(c);
1486 if (err)
1487 goto out_lpt;
1488 }
1489
1490 if (!c->ro_mount) {
1491 /*
1492 * Set the "dirty" flag so that if we reboot uncleanly we
1493 * will notice this immediately on the next mount.
1494 */
1495 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1496 err = ubifs_write_master(c);
1497 if (err)
1498 goto out_lpt;
1499 }
1500 #endif
1501
1502 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1503 if (err)
1504 goto out_lpt;
1505
1506 #ifndef __UBOOT__
1507 err = ubifs_replay_journal(c);
1508 if (err)
1509 goto out_journal;
1510 #endif
1511
1512 /* Calculate 'min_idx_lebs' after journal replay */
1513 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1514
1515 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1516 if (err)
1517 goto out_orphans;
1518
1519 if (!c->ro_mount) {
1520 #ifndef __UBOOT__
1521 int lnum;
1522
1523 err = check_free_space(c);
1524 if (err)
1525 goto out_orphans;
1526
1527 /* Check for enough log space */
1528 lnum = c->lhead_lnum + 1;
1529 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1530 lnum = UBIFS_LOG_LNUM;
1531 if (lnum == c->ltail_lnum) {
1532 err = ubifs_consolidate_log(c);
1533 if (err)
1534 goto out_orphans;
1535 }
1536
1537 if (c->need_recovery) {
1538 err = ubifs_recover_size(c);
1539 if (err)
1540 goto out_orphans;
1541 err = ubifs_rcvry_gc_commit(c);
1542 if (err)
1543 goto out_orphans;
1544 } else {
1545 err = take_gc_lnum(c);
1546 if (err)
1547 goto out_orphans;
1548
1549 /*
1550 * GC LEB may contain garbage if there was an unclean
1551 * reboot, and it should be un-mapped.
1552 */
1553 err = ubifs_leb_unmap(c, c->gc_lnum);
1554 if (err)
1555 goto out_orphans;
1556 }
1557
1558 err = dbg_check_lprops(c);
1559 if (err)
1560 goto out_orphans;
1561 #endif
1562 } else if (c->need_recovery) {
1563 err = ubifs_recover_size(c);
1564 if (err)
1565 goto out_orphans;
1566 } else {
1567 /*
1568 * Even if we mount read-only, we have to set space in GC LEB
1569 * to proper value because this affects UBIFS free space
1570 * reporting. We do not want to have a situation when
1571 * re-mounting from R/O to R/W changes amount of free space.
1572 */
1573 err = take_gc_lnum(c);
1574 if (err)
1575 goto out_orphans;
1576 }
1577
1578 #ifndef __UBOOT__
1579 spin_lock(&ubifs_infos_lock);
1580 list_add_tail(&c->infos_list, &ubifs_infos);
1581 spin_unlock(&ubifs_infos_lock);
1582 #endif
1583
1584 if (c->need_recovery) {
1585 if (c->ro_mount)
1586 ubifs_msg("recovery deferred");
1587 else {
1588 c->need_recovery = 0;
1589 ubifs_msg("recovery completed");
1590 /*
1591 * GC LEB has to be empty and taken at this point. But
1592 * the journal head LEBs may also be accounted as
1593 * "empty taken" if they are empty.
1594 */
1595 ubifs_assert(c->lst.taken_empty_lebs > 0);
1596 }
1597 } else
1598 ubifs_assert(c->lst.taken_empty_lebs > 0);
1599
1600 err = dbg_check_filesystem(c);
1601 if (err)
1602 goto out_infos;
1603
1604 err = dbg_debugfs_init_fs(c);
1605 if (err)
1606 goto out_infos;
1607
1608 c->mounting = 0;
1609
1610 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1611 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1612 c->ro_mount ? ", R/O mode" : "");
1613 x = (long long)c->main_lebs * c->leb_size;
1614 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1615 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1616 c->leb_size, c->leb_size >> 10, c->min_io_size,
1617 c->max_write_size);
1618 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1619 x, x >> 20, c->main_lebs,
1620 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1621 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1622 c->report_rp_size, c->report_rp_size >> 10);
1623 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1624 c->fmt_version, c->ro_compat_version,
1625 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1626 c->big_lpt ? ", big LPT model" : ", small LPT model");
1627
1628 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1629 dbg_gen("data journal heads: %d",
1630 c->jhead_cnt - NONDATA_JHEADS_CNT);
1631 dbg_gen("log LEBs: %d (%d - %d)",
1632 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1633 dbg_gen("LPT area LEBs: %d (%d - %d)",
1634 c->lpt_lebs, c->lpt_first, c->lpt_last);
1635 dbg_gen("orphan area LEBs: %d (%d - %d)",
1636 c->orph_lebs, c->orph_first, c->orph_last);
1637 dbg_gen("main area LEBs: %d (%d - %d)",
1638 c->main_lebs, c->main_first, c->leb_cnt - 1);
1639 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1640 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1641 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1642 c->bi.old_idx_sz >> 20);
1643 dbg_gen("key hash type: %d", c->key_hash_type);
1644 dbg_gen("tree fanout: %d", c->fanout);
1645 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1646 dbg_gen("max. znode size %d", c->max_znode_sz);
1647 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1648 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1649 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1650 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1651 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1652 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1653 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1654 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1655 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1656 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1657 dbg_gen("dead watermark: %d", c->dead_wm);
1658 dbg_gen("dark watermark: %d", c->dark_wm);
1659 dbg_gen("LEB overhead: %d", c->leb_overhead);
1660 x = (long long)c->main_lebs * c->dark_wm;
1661 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1662 x, x >> 10, x >> 20);
1663 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1664 c->max_bud_bytes, c->max_bud_bytes >> 10,
1665 c->max_bud_bytes >> 20);
1666 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1667 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1668 c->bg_bud_bytes >> 20);
1669 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1670 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1671 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1672 dbg_gen("commit number: %llu", c->cmt_no);
1673
1674 return 0;
1675
1676 out_infos:
1677 spin_lock(&ubifs_infos_lock);
1678 list_del(&c->infos_list);
1679 spin_unlock(&ubifs_infos_lock);
1680 out_orphans:
1681 free_orphans(c);
1682 #ifndef __UBOOT__
1683 out_journal:
1684 destroy_journal(c);
1685 #endif
1686 out_lpt:
1687 ubifs_lpt_free(c, 0);
1688 out_master:
1689 kfree(c->mst_node);
1690 kfree(c->rcvrd_mst_node);
1691 if (c->bgt)
1692 kthread_stop(c->bgt);
1693 #ifndef __UBOOT__
1694 out_wbufs:
1695 #endif
1696 free_wbufs(c);
1697 out_cbuf:
1698 kfree(c->cbuf);
1699 out_free:
1700 kfree(c->write_reserve_buf);
1701 kfree(c->bu.buf);
1702 vfree(c->ileb_buf);
1703 vfree(c->sbuf);
1704 kfree(c->bottom_up_buf);
1705 ubifs_debugging_exit(c);
1706 return err;
1707 }
1708
1709 /**
1710 * ubifs_umount - un-mount UBIFS file-system.
1711 * @c: UBIFS file-system description object
1712 *
1713 * Note, this function is called to free allocated resourced when un-mounting,
1714 * as well as free resources when an error occurred while we were half way
1715 * through mounting (error path cleanup function). So it has to make sure the
1716 * resource was actually allocated before freeing it.
1717 */
1718 #ifndef __UBOOT__
1719 static void ubifs_umount(struct ubifs_info *c)
1720 #else
1721 void ubifs_umount(struct ubifs_info *c)
1722 #endif
1723 {
1724 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1725 c->vi.vol_id);
1726
1727 dbg_debugfs_exit_fs(c);
1728 spin_lock(&ubifs_infos_lock);
1729 list_del(&c->infos_list);
1730 spin_unlock(&ubifs_infos_lock);
1731
1732 #ifndef __UBOOT__
1733 if (c->bgt)
1734 kthread_stop(c->bgt);
1735
1736 destroy_journal(c);
1737 #endif
1738 free_wbufs(c);
1739 free_orphans(c);
1740 ubifs_lpt_free(c, 0);
1741
1742 kfree(c->cbuf);
1743 kfree(c->rcvrd_mst_node);
1744 kfree(c->mst_node);
1745 kfree(c->write_reserve_buf);
1746 kfree(c->bu.buf);
1747 vfree(c->ileb_buf);
1748 vfree(c->sbuf);
1749 kfree(c->bottom_up_buf);
1750 ubifs_debugging_exit(c);
1751 #ifdef __UBOOT__
1752 /* Finally free U-Boot's global copy of superblock */
1753 if (ubifs_sb != NULL) {
1754 free(ubifs_sb->s_fs_info);
1755 free(ubifs_sb);
1756 }
1757 #endif
1758 }
1759
1760 #ifndef __UBOOT__
1761 /**
1762 * ubifs_remount_rw - re-mount in read-write mode.
1763 * @c: UBIFS file-system description object
1764 *
1765 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1766 * mode. This function allocates the needed resources and re-mounts UBIFS in
1767 * read-write mode.
1768 */
1769 static int ubifs_remount_rw(struct ubifs_info *c)
1770 {
1771 int err, lnum;
1772
1773 if (c->rw_incompat) {
1774 ubifs_err("the file-system is not R/W-compatible");
1775 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1776 c->fmt_version, c->ro_compat_version,
1777 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1778 return -EROFS;
1779 }
1780
1781 mutex_lock(&c->umount_mutex);
1782 dbg_save_space_info(c);
1783 c->remounting_rw = 1;
1784 c->ro_mount = 0;
1785
1786 if (c->space_fixup) {
1787 err = ubifs_fixup_free_space(c);
1788 if (err)
1789 return err;
1790 }
1791
1792 err = check_free_space(c);
1793 if (err)
1794 goto out;
1795
1796 if (c->old_leb_cnt != c->leb_cnt) {
1797 struct ubifs_sb_node *sup;
1798
1799 sup = ubifs_read_sb_node(c);
1800 if (IS_ERR(sup)) {
1801 err = PTR_ERR(sup);
1802 goto out;
1803 }
1804 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1805 err = ubifs_write_sb_node(c, sup);
1806 kfree(sup);
1807 if (err)
1808 goto out;
1809 }
1810
1811 if (c->need_recovery) {
1812 ubifs_msg("completing deferred recovery");
1813 err = ubifs_write_rcvrd_mst_node(c);
1814 if (err)
1815 goto out;
1816 err = ubifs_recover_size(c);
1817 if (err)
1818 goto out;
1819 err = ubifs_clean_lebs(c, c->sbuf);
1820 if (err)
1821 goto out;
1822 err = ubifs_recover_inl_heads(c, c->sbuf);
1823 if (err)
1824 goto out;
1825 } else {
1826 /* A readonly mount is not allowed to have orphans */
1827 ubifs_assert(c->tot_orphans == 0);
1828 err = ubifs_clear_orphans(c);
1829 if (err)
1830 goto out;
1831 }
1832
1833 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1834 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1835 err = ubifs_write_master(c);
1836 if (err)
1837 goto out;
1838 }
1839
1840 c->ileb_buf = vmalloc(c->leb_size);
1841 if (!c->ileb_buf) {
1842 err = -ENOMEM;
1843 goto out;
1844 }
1845
1846 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1847 if (!c->write_reserve_buf) {
1848 err = -ENOMEM;
1849 goto out;
1850 }
1851
1852 err = ubifs_lpt_init(c, 0, 1);
1853 if (err)
1854 goto out;
1855
1856 /* Create background thread */
1857 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1858 if (IS_ERR(c->bgt)) {
1859 err = PTR_ERR(c->bgt);
1860 c->bgt = NULL;
1861 ubifs_err("cannot spawn \"%s\", error %d",
1862 c->bgt_name, err);
1863 goto out;
1864 }
1865 wake_up_process(c->bgt);
1866
1867 c->orph_buf = vmalloc(c->leb_size);
1868 if (!c->orph_buf) {
1869 err = -ENOMEM;
1870 goto out;
1871 }
1872
1873 /* Check for enough log space */
1874 lnum = c->lhead_lnum + 1;
1875 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1876 lnum = UBIFS_LOG_LNUM;
1877 if (lnum == c->ltail_lnum) {
1878 err = ubifs_consolidate_log(c);
1879 if (err)
1880 goto out;
1881 }
1882
1883 if (c->need_recovery)
1884 err = ubifs_rcvry_gc_commit(c);
1885 else
1886 err = ubifs_leb_unmap(c, c->gc_lnum);
1887 if (err)
1888 goto out;
1889
1890 dbg_gen("re-mounted read-write");
1891 c->remounting_rw = 0;
1892
1893 if (c->need_recovery) {
1894 c->need_recovery = 0;
1895 ubifs_msg("deferred recovery completed");
1896 } else {
1897 /*
1898 * Do not run the debugging space check if the were doing
1899 * recovery, because when we saved the information we had the
1900 * file-system in a state where the TNC and lprops has been
1901 * modified in memory, but all the I/O operations (including a
1902 * commit) were deferred. So the file-system was in
1903 * "non-committed" state. Now the file-system is in committed
1904 * state, and of course the amount of free space will change
1905 * because, for example, the old index size was imprecise.
1906 */
1907 err = dbg_check_space_info(c);
1908 }
1909
1910 mutex_unlock(&c->umount_mutex);
1911 return err;
1912
1913 out:
1914 c->ro_mount = 1;
1915 vfree(c->orph_buf);
1916 c->orph_buf = NULL;
1917 if (c->bgt) {
1918 kthread_stop(c->bgt);
1919 c->bgt = NULL;
1920 }
1921 free_wbufs(c);
1922 kfree(c->write_reserve_buf);
1923 c->write_reserve_buf = NULL;
1924 vfree(c->ileb_buf);
1925 c->ileb_buf = NULL;
1926 ubifs_lpt_free(c, 1);
1927 c->remounting_rw = 0;
1928 mutex_unlock(&c->umount_mutex);
1929 return err;
1930 }
1931
1932 /**
1933 * ubifs_remount_ro - re-mount in read-only mode.
1934 * @c: UBIFS file-system description object
1935 *
1936 * We assume VFS has stopped writing. Possibly the background thread could be
1937 * running a commit, however kthread_stop will wait in that case.
1938 */
1939 static void ubifs_remount_ro(struct ubifs_info *c)
1940 {
1941 int i, err;
1942
1943 ubifs_assert(!c->need_recovery);
1944 ubifs_assert(!c->ro_mount);
1945
1946 mutex_lock(&c->umount_mutex);
1947 if (c->bgt) {
1948 kthread_stop(c->bgt);
1949 c->bgt = NULL;
1950 }
1951
1952 dbg_save_space_info(c);
1953
1954 for (i = 0; i < c->jhead_cnt; i++)
1955 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1956
1957 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1958 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1959 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1960 err = ubifs_write_master(c);
1961 if (err)
1962 ubifs_ro_mode(c, err);
1963
1964 vfree(c->orph_buf);
1965 c->orph_buf = NULL;
1966 kfree(c->write_reserve_buf);
1967 c->write_reserve_buf = NULL;
1968 vfree(c->ileb_buf);
1969 c->ileb_buf = NULL;
1970 ubifs_lpt_free(c, 1);
1971 c->ro_mount = 1;
1972 err = dbg_check_space_info(c);
1973 if (err)
1974 ubifs_ro_mode(c, err);
1975 mutex_unlock(&c->umount_mutex);
1976 }
1977
1978 static void ubifs_put_super(struct super_block *sb)
1979 {
1980 int i;
1981 struct ubifs_info *c = sb->s_fs_info;
1982
1983 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1984 c->vi.vol_id);
1985
1986 /*
1987 * The following asserts are only valid if there has not been a failure
1988 * of the media. For example, there will be dirty inodes if we failed
1989 * to write them back because of I/O errors.
1990 */
1991 if (!c->ro_error) {
1992 ubifs_assert(c->bi.idx_growth == 0);
1993 ubifs_assert(c->bi.dd_growth == 0);
1994 ubifs_assert(c->bi.data_growth == 0);
1995 }
1996
1997 /*
1998 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1999 * and file system un-mount. Namely, it prevents the shrinker from
2000 * picking this superblock for shrinking - it will be just skipped if
2001 * the mutex is locked.
2002 */
2003 mutex_lock(&c->umount_mutex);
2004 if (!c->ro_mount) {
2005 /*
2006 * First of all kill the background thread to make sure it does
2007 * not interfere with un-mounting and freeing resources.
2008 */
2009 if (c->bgt) {
2010 kthread_stop(c->bgt);
2011 c->bgt = NULL;
2012 }
2013
2014 /*
2015 * On fatal errors c->ro_error is set to 1, in which case we do
2016 * not write the master node.
2017 */
2018 if (!c->ro_error) {
2019 int err;
2020
2021 /* Synchronize write-buffers */
2022 for (i = 0; i < c->jhead_cnt; i++)
2023 ubifs_wbuf_sync(&c->jheads[i].wbuf);
2024
2025 /*
2026 * We are being cleanly unmounted which means the
2027 * orphans were killed - indicate this in the master
2028 * node. Also save the reserved GC LEB number.
2029 */
2030 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2031 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2032 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2033 err = ubifs_write_master(c);
2034 if (err)
2035 /*
2036 * Recovery will attempt to fix the master area
2037 * next mount, so we just print a message and
2038 * continue to unmount normally.
2039 */
2040 ubifs_err("failed to write master node, error %d",
2041 err);
2042 } else {
2043 #ifndef __UBOOT__
2044 for (i = 0; i < c->jhead_cnt; i++)
2045 /* Make sure write-buffer timers are canceled */
2046 hrtimer_cancel(&c->jheads[i].wbuf.timer);
2047 #endif
2048 }
2049 }
2050
2051 ubifs_umount(c);
2052 #ifndef __UBOOT__
2053 bdi_destroy(&c->bdi);
2054 #endif
2055 ubi_close_volume(c->ubi);
2056 mutex_unlock(&c->umount_mutex);
2057 }
2058 #endif
2059
2060 #ifndef __UBOOT__
2061 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2062 {
2063 int err;
2064 struct ubifs_info *c = sb->s_fs_info;
2065
2066 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2067
2068 err = ubifs_parse_options(c, data, 1);
2069 if (err) {
2070 ubifs_err("invalid or unknown remount parameter");
2071 return err;
2072 }
2073
2074 if (c->ro_mount && !(*flags & MS_RDONLY)) {
2075 if (c->ro_error) {
2076 ubifs_msg("cannot re-mount R/W due to prior errors");
2077 return -EROFS;
2078 }
2079 if (c->ro_media) {
2080 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
2081 return -EROFS;
2082 }
2083 err = ubifs_remount_rw(c);
2084 if (err)
2085 return err;
2086 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2087 if (c->ro_error) {
2088 ubifs_msg("cannot re-mount R/O due to prior errors");
2089 return -EROFS;
2090 }
2091 ubifs_remount_ro(c);
2092 }
2093
2094 if (c->bulk_read == 1)
2095 bu_init(c);
2096 else {
2097 dbg_gen("disable bulk-read");
2098 kfree(c->bu.buf);
2099 c->bu.buf = NULL;
2100 }
2101
2102 ubifs_assert(c->lst.taken_empty_lebs > 0);
2103 return 0;
2104 }
2105 #endif
2106
2107 const struct super_operations ubifs_super_operations = {
2108 .alloc_inode = ubifs_alloc_inode,
2109 #ifndef __UBOOT__
2110 .destroy_inode = ubifs_destroy_inode,
2111 .put_super = ubifs_put_super,
2112 .write_inode = ubifs_write_inode,
2113 .evict_inode = ubifs_evict_inode,
2114 .statfs = ubifs_statfs,
2115 #endif
2116 .dirty_inode = ubifs_dirty_inode,
2117 #ifndef __UBOOT__
2118 .remount_fs = ubifs_remount_fs,
2119 .show_options = ubifs_show_options,
2120 .sync_fs = ubifs_sync_fs,
2121 #endif
2122 };
2123
2124 /**
2125 * open_ubi - parse UBI device name string and open the UBI device.
2126 * @name: UBI volume name
2127 * @mode: UBI volume open mode
2128 *
2129 * The primary method of mounting UBIFS is by specifying the UBI volume
2130 * character device node path. However, UBIFS may also be mounted withoug any
2131 * character device node using one of the following methods:
2132 *
2133 * o ubiX_Y - mount UBI device number X, volume Y;
2134 * o ubiY - mount UBI device number 0, volume Y;
2135 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2136 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2137 *
2138 * Alternative '!' separator may be used instead of ':' (because some shells
2139 * like busybox may interpret ':' as an NFS host name separator). This function
2140 * returns UBI volume description object in case of success and a negative
2141 * error code in case of failure.
2142 */
2143 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2144 {
2145 #ifndef __UBOOT__
2146 struct ubi_volume_desc *ubi;
2147 #endif
2148 int dev, vol;
2149 char *endptr;
2150
2151 #ifndef __UBOOT__
2152 /* First, try to open using the device node path method */
2153 ubi = ubi_open_volume_path(name, mode);
2154 if (!IS_ERR(ubi))
2155 return ubi;
2156 #endif
2157
2158 /* Try the "nodev" method */
2159 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2160 return ERR_PTR(-EINVAL);
2161
2162 /* ubi:NAME method */
2163 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2164 return ubi_open_volume_nm(0, name + 4, mode);
2165
2166 if (!isdigit(name[3]))
2167 return ERR_PTR(-EINVAL);
2168
2169 dev = simple_strtoul(name + 3, &endptr, 0);
2170
2171 /* ubiY method */
2172 if (*endptr == '\0')
2173 return ubi_open_volume(0, dev, mode);
2174
2175 /* ubiX_Y method */
2176 if (*endptr == '_' && isdigit(endptr[1])) {
2177 vol = simple_strtoul(endptr + 1, &endptr, 0);
2178 if (*endptr != '\0')
2179 return ERR_PTR(-EINVAL);
2180 return ubi_open_volume(dev, vol, mode);
2181 }
2182
2183 /* ubiX:NAME method */
2184 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2185 return ubi_open_volume_nm(dev, ++endptr, mode);
2186
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2191 {
2192 struct ubifs_info *c;
2193
2194 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2195 if (c) {
2196 spin_lock_init(&c->cnt_lock);
2197 spin_lock_init(&c->cs_lock);
2198 spin_lock_init(&c->buds_lock);
2199 spin_lock_init(&c->space_lock);
2200 spin_lock_init(&c->orphan_lock);
2201 init_rwsem(&c->commit_sem);
2202 mutex_init(&c->lp_mutex);
2203 mutex_init(&c->tnc_mutex);
2204 mutex_init(&c->log_mutex);
2205 mutex_init(&c->mst_mutex);
2206 mutex_init(&c->umount_mutex);
2207 mutex_init(&c->bu_mutex);
2208 mutex_init(&c->write_reserve_mutex);
2209 init_waitqueue_head(&c->cmt_wq);
2210 c->buds = RB_ROOT;
2211 c->old_idx = RB_ROOT;
2212 c->size_tree = RB_ROOT;
2213 c->orph_tree = RB_ROOT;
2214 INIT_LIST_HEAD(&c->infos_list);
2215 INIT_LIST_HEAD(&c->idx_gc);
2216 INIT_LIST_HEAD(&c->replay_list);
2217 INIT_LIST_HEAD(&c->replay_buds);
2218 INIT_LIST_HEAD(&c->uncat_list);
2219 INIT_LIST_HEAD(&c->empty_list);
2220 INIT_LIST_HEAD(&c->freeable_list);
2221 INIT_LIST_HEAD(&c->frdi_idx_list);
2222 INIT_LIST_HEAD(&c->unclean_leb_list);
2223 INIT_LIST_HEAD(&c->old_buds);
2224 INIT_LIST_HEAD(&c->orph_list);
2225 INIT_LIST_HEAD(&c->orph_new);
2226 c->no_chk_data_crc = 1;
2227
2228 c->highest_inum = UBIFS_FIRST_INO;
2229 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2230
2231 ubi_get_volume_info(ubi, &c->vi);
2232 ubi_get_device_info(c->vi.ubi_num, &c->di);
2233 }
2234 return c;
2235 }
2236
2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2238 {
2239 struct ubifs_info *c = sb->s_fs_info;
2240 struct inode *root;
2241 int err;
2242
2243 c->vfs_sb = sb;
2244 /* Re-open the UBI device in read-write mode */
2245 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2246 if (IS_ERR(c->ubi)) {
2247 err = PTR_ERR(c->ubi);
2248 goto out;
2249 }
2250
2251 #ifndef __UBOOT__
2252 /*
2253 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2254 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2255 * which means the user would have to wait not just for their own I/O
2256 * but the read-ahead I/O as well i.e. completely pointless.
2257 *
2258 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2259 */
2260 co>bdi.name = "ubifs",
2261 c->bdi.capabilities = BDI_CAP_MAP_COPY;
2262 err = bdi_init(&c->bdi);
2263 if (err)
2264 goto out_close;
2265 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2266 c->vi.ubi_num, c->vi.vol_id);
2267 if (err)
2268 goto out_bdi;
2269
2270 err = ubifs_parse_options(c, data, 0);
2271 if (err)
2272 goto out_bdi;
2273
2274 sb->s_bdi = &c->bdi;
2275 #endif
2276 sb->s_fs_info = c;
2277 sb->s_magic = UBIFS_SUPER_MAGIC;
2278 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2279 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2280 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2281 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2282 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2283 sb->s_op = &ubifs_super_operations;
2284
2285 mutex_lock(&c->umount_mutex);
2286 err = mount_ubifs(c);
2287 if (err) {
2288 ubifs_assert(err < 0);
2289 goto out_unlock;
2290 }
2291
2292 /* Read the root inode */
2293 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2294 if (IS_ERR(root)) {
2295 err = PTR_ERR(root);
2296 goto out_umount;
2297 }
2298
2299 #ifndef __UBOOT__
2300 sb->s_root = d_make_root(root);
2301 if (!sb->s_root) {
2302 err = -ENOMEM;
2303 goto out_umount;
2304 }
2305 #else
2306 sb->s_root = NULL;
2307 #endif
2308
2309 mutex_unlock(&c->umount_mutex);
2310 return 0;
2311
2312 out_umount:
2313 ubifs_umount(c);
2314 out_unlock:
2315 mutex_unlock(&c->umount_mutex);
2316 #ifndef __UBOOT__
2317 out_bdi:
2318 bdi_destroy(&c->bdi);
2319 out_close:
2320 #endif
2321 ubi_close_volume(c->ubi);
2322 out:
2323 return err;
2324 }
2325
2326 static int sb_test(struct super_block *sb, void *data)
2327 {
2328 struct ubifs_info *c1 = data;
2329 struct ubifs_info *c = sb->s_fs_info;
2330
2331 return c->vi.cdev == c1->vi.cdev;
2332 }
2333
2334 static int sb_set(struct super_block *sb, void *data)
2335 {
2336 sb->s_fs_info = data;
2337 return set_anon_super(sb, NULL);
2338 }
2339
2340 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2341 {
2342 struct super_block *s;
2343 int err;
2344
2345 s = kzalloc(sizeof(struct super_block), GFP_USER);
2346 if (!s) {
2347 err = -ENOMEM;
2348 return ERR_PTR(err);
2349 }
2350
2351 INIT_HLIST_NODE(&s->s_instances);
2352 INIT_LIST_HEAD(&s->s_inodes);
2353 s->s_time_gran = 1000000000;
2354 s->s_flags = flags;
2355
2356 return s;
2357 }
2358
2359 /**
2360 * sget - find or create a superblock
2361 * @type: filesystem type superblock should belong to
2362 * @test: comparison callback
2363 * @set: setup callback
2364 * @flags: mount flags
2365 * @data: argument to each of them
2366 */
2367 struct super_block *sget(struct file_system_type *type,
2368 int (*test)(struct super_block *,void *),
2369 int (*set)(struct super_block *,void *),
2370 int flags,
2371 void *data)
2372 {
2373 struct super_block *s = NULL;
2374 #ifndef __UBOOT__
2375 struct super_block *old;
2376 #endif
2377 int err;
2378
2379 #ifndef __UBOOT__
2380 retry:
2381 spin_lock(&sb_lock);
2382 if (test) {
2383 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2384 if (!test(old, data))
2385 continue;
2386 if (!grab_super(old))
2387 goto retry;
2388 if (s) {
2389 up_write(&s->s_umount);
2390 destroy_super(s);
2391 s = NULL;
2392 }
2393 return old;
2394 }
2395 }
2396 #endif
2397 if (!s) {
2398 spin_unlock(&sb_lock);
2399 s = alloc_super(type, flags);
2400 if (!s)
2401 return ERR_PTR(-ENOMEM);
2402 #ifndef __UBOOT__
2403 goto retry;
2404 #endif
2405 }
2406
2407 err = set(s, data);
2408 if (err) {
2409 #ifndef __UBOOT__
2410 spin_unlock(&sb_lock);
2411 up_write(&s->s_umount);
2412 destroy_super(s);
2413 #endif
2414 return ERR_PTR(err);
2415 }
2416 s->s_type = type;
2417 #ifndef __UBOOT__
2418 strlcpy(s->s_id, type->name, sizeof(s->s_id));
2419 #else
2420 strncpy(s->s_id, type->name, sizeof(s->s_id));
2421 #endif
2422 list_add_tail(&s->s_list, &super_blocks);
2423 hlist_add_head(&s->s_instances, &type->fs_supers);
2424 #ifndef __UBOOT__
2425 spin_unlock(&sb_lock);
2426 get_filesystem(type);
2427 register_shrinker(&s->s_shrink);
2428 #endif
2429 return s;
2430 }
2431
2432 EXPORT_SYMBOL(sget);
2433
2434
2435 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2436 const char *name, void *data)
2437 {
2438 struct ubi_volume_desc *ubi;
2439 struct ubifs_info *c;
2440 struct super_block *sb;
2441 int err;
2442
2443 dbg_gen("name %s, flags %#x", name, flags);
2444
2445 /*
2446 * Get UBI device number and volume ID. Mount it read-only so far
2447 * because this might be a new mount point, and UBI allows only one
2448 * read-write user at a time.
2449 */
2450 ubi = open_ubi(name, UBI_READONLY);
2451 if (IS_ERR(ubi)) {
2452 ubifs_err("cannot open \"%s\", error %d",
2453 name, (int)PTR_ERR(ubi));
2454 return ERR_CAST(ubi);
2455 }
2456
2457 c = alloc_ubifs_info(ubi);
2458 if (!c) {
2459 err = -ENOMEM;
2460 goto out_close;
2461 }
2462
2463 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2464
2465 sb = sget(fs_type, sb_test, sb_set, flags, c);
2466 if (IS_ERR(sb)) {
2467 err = PTR_ERR(sb);
2468 kfree(c);
2469 goto out_close;
2470 }
2471
2472 if (sb->s_root) {
2473 struct ubifs_info *c1 = sb->s_fs_info;
2474 kfree(c);
2475 /* A new mount point for already mounted UBIFS */
2476 dbg_gen("this ubi volume is already mounted");
2477 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2478 err = -EBUSY;
2479 goto out_deact;
2480 }
2481 } else {
2482 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2483 if (err)
2484 goto out_deact;
2485 /* We do not support atime */
2486 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2487 }
2488
2489 /* 'fill_super()' opens ubi again so we must close it here */
2490 ubi_close_volume(ubi);
2491
2492 #ifdef __UBOOT__
2493 ubifs_sb = sb;
2494 return 0;
2495 #else
2496 return dget(sb->s_root);
2497 #endif
2498
2499 out_deact:
2500 #ifndef __UBOOT__
2501 deactivate_locked_super(sb);
2502 #endif
2503 out_close:
2504 ubi_close_volume(ubi);
2505 return ERR_PTR(err);
2506 }
2507
2508 static void kill_ubifs_super(struct super_block *s)
2509 {
2510 struct ubifs_info *c = s->s_fs_info;
2511 #ifndef __UBOOT__
2512 kill_anon_super(s);
2513 #endif
2514 kfree(c);
2515 }
2516
2517 static struct file_system_type ubifs_fs_type = {
2518 .name = "ubifs",
2519 .owner = THIS_MODULE,
2520 .mount = ubifs_mount,
2521 .kill_sb = kill_ubifs_super,
2522 };
2523 #ifndef __UBOOT__
2524 MODULE_ALIAS_FS("ubifs");
2525
2526 /*
2527 * Inode slab cache constructor.
2528 */
2529 static void inode_slab_ctor(void *obj)
2530 {
2531 struct ubifs_inode *ui = obj;
2532 inode_init_once(&ui->vfs_inode);
2533 }
2534
2535 static int __init ubifs_init(void)
2536 #else
2537 int ubifs_init(void)
2538 #endif
2539 {
2540 int err;
2541
2542 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2543
2544 /* Make sure node sizes are 8-byte aligned */
2545 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2546 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2547 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2548 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2549 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2550 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2551 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2552 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2553 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2554 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2555 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2556
2557 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2558 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2559 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2560 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2561 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2562 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2563
2564 /* Check min. node size */
2565 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2566 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2567 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2568 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2569
2570 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2571 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2572 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2573 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2574
2575 /* Defined node sizes */
2576 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2577 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2578 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2579 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2580
2581 /*
2582 * We use 2 bit wide bit-fields to store compression type, which should
2583 * be amended if more compressors are added. The bit-fields are:
2584 * @compr_type in 'struct ubifs_inode', @default_compr in
2585 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2586 */
2587 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2588
2589 /*
2590 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2591 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2592 */
2593 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2594 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2595 (unsigned int)PAGE_CACHE_SIZE);
2596 return -EINVAL;
2597 }
2598
2599 #ifndef __UBOOT__
2600 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2601 sizeof(struct ubifs_inode), 0,
2602 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2603 &inode_slab_ctor);
2604 if (!ubifs_inode_slab)
2605 return -ENOMEM;
2606
2607 register_shrinker(&ubifs_shrinker_info);
2608 #endif
2609
2610 err = ubifs_compressors_init();
2611 if (err)
2612 goto out_shrinker;
2613
2614 #ifndef __UBOOT__
2615 err = dbg_debugfs_init();
2616 if (err)
2617 goto out_compr;
2618
2619 err = register_filesystem(&ubifs_fs_type);
2620 if (err) {
2621 ubifs_err("cannot register file system, error %d", err);
2622 goto out_dbg;
2623 }
2624 #endif
2625 return 0;
2626
2627 #ifndef __UBOOT__
2628 out_dbg:
2629 dbg_debugfs_exit();
2630 out_compr:
2631 ubifs_compressors_exit();
2632 #endif
2633 out_shrinker:
2634 #ifndef __UBOOT__
2635 unregister_shrinker(&ubifs_shrinker_info);
2636 #endif
2637 kmem_cache_destroy(ubifs_inode_slab);
2638 return err;
2639 }
2640 /* late_initcall to let compressors initialize first */
2641 late_initcall(ubifs_init);
2642
2643 #ifndef __UBOOT__
2644 static void __exit ubifs_exit(void)
2645 {
2646 ubifs_assert(list_empty(&ubifs_infos));
2647 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2648
2649 dbg_debugfs_exit();
2650 ubifs_compressors_exit();
2651 unregister_shrinker(&ubifs_shrinker_info);
2652
2653 /*
2654 * Make sure all delayed rcu free inodes are flushed before we
2655 * destroy cache.
2656 */
2657 rcu_barrier();
2658 kmem_cache_destroy(ubifs_inode_slab);
2659 unregister_filesystem(&ubifs_fs_type);
2660 }
2661 module_exit(ubifs_exit);
2662
2663 MODULE_LICENSE("GPL");
2664 MODULE_VERSION(__stringify(UBIFS_VERSION));
2665 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2666 MODULE_DESCRIPTION("UBIFS - UBI File System");
2667 #else
2668 int uboot_ubifs_mount(char *vol_name)
2669 {
2670 struct dentry *ret;
2671 int flags;
2672
2673 /*
2674 * First unmount if allready mounted
2675 */
2676 if (ubifs_sb)
2677 ubifs_umount(ubifs_sb->s_fs_info);
2678
2679 /*
2680 * Mount in read-only mode
2681 */
2682 flags = MS_RDONLY;
2683 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2684 if (IS_ERR(ret)) {
2685 printf("Error reading superblock on volume '%s' " \
2686 "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2687 return -1;
2688 }
2689
2690 return 0;
2691 }
2692 #endif