]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/super.c
arcv2: Set IOC aperture so it covers available DDR
[people/ms/u-boot.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 */
11
12 /*
13 * This file implements UBIFS initialization and VFS superblock operations. Some
14 * initialization stuff which is rather large and complex is placed at
15 * corresponding subsystems, but most of it is here.
16 */
17
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #include <linux/stat.h>
37 #include <linux/err.h>
38 #include "ubifs.h"
39 #include <ubi_uboot.h>
40 #include <mtd/ubi-user.h>
41
42 struct dentry;
43 struct file;
44 struct iattr;
45 struct kstat;
46 struct vfsmount;
47
48 #define INODE_LOCKED_MAX 64
49
50 struct super_block *ubifs_sb;
51
52 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
53
54 int set_anon_super(struct super_block *s, void *data)
55 {
56 return 0;
57 }
58
59 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
60 {
61 struct inode *inode;
62
63 inode = (struct inode *)malloc_cache_aligned(
64 sizeof(struct ubifs_inode));
65 if (inode) {
66 inode->i_ino = ino;
67 inode->i_sb = sb;
68 list_add(&inode->i_sb_list, &sb->s_inodes);
69 inode->i_state = I_LOCK | I_NEW;
70 }
71
72 return inode;
73 }
74
75 void iget_failed(struct inode *inode)
76 {
77 }
78
79 int ubifs_iput(struct inode *inode)
80 {
81 list_del_init(&inode->i_sb_list);
82
83 free(inode);
84 return 0;
85 }
86
87 /*
88 * Lock (save) inode in inode array for readback after recovery
89 */
90 void iput(struct inode *inode)
91 {
92 int i;
93 struct inode *ino;
94
95 /*
96 * Search end of list
97 */
98 for (i = 0; i < INODE_LOCKED_MAX; i++) {
99 if (inodes_locked_down[i] == NULL)
100 break;
101 }
102
103 if (i >= INODE_LOCKED_MAX) {
104 dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
105 return;
106 }
107
108 /*
109 * Allocate and use new inode
110 */
111 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
112 memcpy(ino, inode, sizeof(struct ubifs_inode));
113
114 /*
115 * Finally save inode in array
116 */
117 inodes_locked_down[i] = ino;
118 }
119
120 /* from fs/inode.c */
121 /**
122 * clear_nlink - directly zero an inode's link count
123 * @inode: inode
124 *
125 * This is a low-level filesystem helper to replace any
126 * direct filesystem manipulation of i_nlink. See
127 * drop_nlink() for why we care about i_nlink hitting zero.
128 */
129 void clear_nlink(struct inode *inode)
130 {
131 if (inode->i_nlink) {
132 inode->__i_nlink = 0;
133 atomic_long_inc(&inode->i_sb->s_remove_count);
134 }
135 }
136 EXPORT_SYMBOL(clear_nlink);
137
138 /**
139 * set_nlink - directly set an inode's link count
140 * @inode: inode
141 * @nlink: new nlink (should be non-zero)
142 *
143 * This is a low-level filesystem helper to replace any
144 * direct filesystem manipulation of i_nlink.
145 */
146 void set_nlink(struct inode *inode, unsigned int nlink)
147 {
148 if (!nlink) {
149 clear_nlink(inode);
150 } else {
151 /* Yes, some filesystems do change nlink from zero to one */
152 if (inode->i_nlink == 0)
153 atomic_long_dec(&inode->i_sb->s_remove_count);
154
155 inode->__i_nlink = nlink;
156 }
157 }
158 EXPORT_SYMBOL(set_nlink);
159
160 /* from include/linux/fs.h */
161 static inline void i_uid_write(struct inode *inode, uid_t uid)
162 {
163 inode->i_uid.val = uid;
164 }
165
166 static inline void i_gid_write(struct inode *inode, gid_t gid)
167 {
168 inode->i_gid.val = gid;
169 }
170
171 void unlock_new_inode(struct inode *inode)
172 {
173 return;
174 }
175 #endif
176
177 /*
178 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
179 * allocating too much.
180 */
181 #define UBIFS_KMALLOC_OK (128*1024)
182
183 /* Slab cache for UBIFS inodes */
184 struct kmem_cache *ubifs_inode_slab;
185
186 #ifndef __UBOOT__
187 /* UBIFS TNC shrinker description */
188 static struct shrinker ubifs_shrinker_info = {
189 .scan_objects = ubifs_shrink_scan,
190 .count_objects = ubifs_shrink_count,
191 .seeks = DEFAULT_SEEKS,
192 };
193 #endif
194
195 /**
196 * validate_inode - validate inode.
197 * @c: UBIFS file-system description object
198 * @inode: the inode to validate
199 *
200 * This is a helper function for 'ubifs_iget()' which validates various fields
201 * of a newly built inode to make sure they contain sane values and prevent
202 * possible vulnerabilities. Returns zero if the inode is all right and
203 * a non-zero error code if not.
204 */
205 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
206 {
207 int err;
208 const struct ubifs_inode *ui = ubifs_inode(inode);
209
210 if (inode->i_size > c->max_inode_sz) {
211 ubifs_err(c, "inode is too large (%lld)",
212 (long long)inode->i_size);
213 return 1;
214 }
215
216 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
217 ubifs_err(c, "unknown compression type %d", ui->compr_type);
218 return 2;
219 }
220
221 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
222 return 3;
223
224 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
225 return 4;
226
227 if (ui->xattr && !S_ISREG(inode->i_mode))
228 return 5;
229
230 if (!ubifs_compr_present(ui->compr_type)) {
231 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
232 inode->i_ino, ubifs_compr_name(ui->compr_type));
233 }
234
235 err = dbg_check_dir(c, inode);
236 return err;
237 }
238
239 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
240 {
241 int err;
242 union ubifs_key key;
243 struct ubifs_ino_node *ino;
244 struct ubifs_info *c = sb->s_fs_info;
245 struct inode *inode;
246 struct ubifs_inode *ui;
247 #ifdef __UBOOT__
248 int i;
249 #endif
250
251 dbg_gen("inode %lu", inum);
252
253 #ifdef __UBOOT__
254 /*
255 * U-Boot special handling of locked down inodes via recovery
256 * e.g. ubifs_recover_size()
257 */
258 for (i = 0; i < INODE_LOCKED_MAX; i++) {
259 /*
260 * Exit on last entry (NULL), inode not found in list
261 */
262 if (inodes_locked_down[i] == NULL)
263 break;
264
265 if (inodes_locked_down[i]->i_ino == inum) {
266 /*
267 * We found the locked down inode in our array,
268 * so just return this pointer instead of creating
269 * a new one.
270 */
271 return inodes_locked_down[i];
272 }
273 }
274 #endif
275
276 inode = iget_locked(sb, inum);
277 if (!inode)
278 return ERR_PTR(-ENOMEM);
279 if (!(inode->i_state & I_NEW))
280 return inode;
281 ui = ubifs_inode(inode);
282
283 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
284 if (!ino) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 ino_key_init(c, &key, inode->i_ino);
290
291 err = ubifs_tnc_lookup(c, &key, ino);
292 if (err)
293 goto out_ino;
294
295 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
296 set_nlink(inode, le32_to_cpu(ino->nlink));
297 i_uid_write(inode, le32_to_cpu(ino->uid));
298 i_gid_write(inode, le32_to_cpu(ino->gid));
299 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
300 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
301 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
302 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
303 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
304 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
305 inode->i_mode = le32_to_cpu(ino->mode);
306 inode->i_size = le64_to_cpu(ino->size);
307
308 ui->data_len = le32_to_cpu(ino->data_len);
309 ui->flags = le32_to_cpu(ino->flags);
310 ui->compr_type = le16_to_cpu(ino->compr_type);
311 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
312 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
313 ui->xattr_size = le32_to_cpu(ino->xattr_size);
314 ui->xattr_names = le32_to_cpu(ino->xattr_names);
315 ui->synced_i_size = ui->ui_size = inode->i_size;
316
317 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
318
319 err = validate_inode(c, inode);
320 if (err)
321 goto out_invalid;
322
323 #ifndef __UBOOT__
324 switch (inode->i_mode & S_IFMT) {
325 case S_IFREG:
326 inode->i_mapping->a_ops = &ubifs_file_address_operations;
327 inode->i_op = &ubifs_file_inode_operations;
328 inode->i_fop = &ubifs_file_operations;
329 if (ui->xattr) {
330 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
331 if (!ui->data) {
332 err = -ENOMEM;
333 goto out_ino;
334 }
335 memcpy(ui->data, ino->data, ui->data_len);
336 ((char *)ui->data)[ui->data_len] = '\0';
337 } else if (ui->data_len != 0) {
338 err = 10;
339 goto out_invalid;
340 }
341 break;
342 case S_IFDIR:
343 inode->i_op = &ubifs_dir_inode_operations;
344 inode->i_fop = &ubifs_dir_operations;
345 if (ui->data_len != 0) {
346 err = 11;
347 goto out_invalid;
348 }
349 break;
350 case S_IFLNK:
351 inode->i_op = &ubifs_symlink_inode_operations;
352 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
353 err = 12;
354 goto out_invalid;
355 }
356 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
357 if (!ui->data) {
358 err = -ENOMEM;
359 goto out_ino;
360 }
361 memcpy(ui->data, ino->data, ui->data_len);
362 ((char *)ui->data)[ui->data_len] = '\0';
363 inode->i_link = ui->data;
364 break;
365 case S_IFBLK:
366 case S_IFCHR:
367 {
368 dev_t rdev;
369 union ubifs_dev_desc *dev;
370
371 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
372 if (!ui->data) {
373 err = -ENOMEM;
374 goto out_ino;
375 }
376
377 dev = (union ubifs_dev_desc *)ino->data;
378 if (ui->data_len == sizeof(dev->new))
379 rdev = new_decode_dev(le32_to_cpu(dev->new));
380 else if (ui->data_len == sizeof(dev->huge))
381 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
382 else {
383 err = 13;
384 goto out_invalid;
385 }
386 memcpy(ui->data, ino->data, ui->data_len);
387 inode->i_op = &ubifs_file_inode_operations;
388 init_special_inode(inode, inode->i_mode, rdev);
389 break;
390 }
391 case S_IFSOCK:
392 case S_IFIFO:
393 inode->i_op = &ubifs_file_inode_operations;
394 init_special_inode(inode, inode->i_mode, 0);
395 if (ui->data_len != 0) {
396 err = 14;
397 goto out_invalid;
398 }
399 break;
400 default:
401 err = 15;
402 goto out_invalid;
403 }
404 #else
405 if ((inode->i_mode & S_IFMT) == S_IFLNK) {
406 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
407 err = 12;
408 goto out_invalid;
409 }
410 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
411 if (!ui->data) {
412 err = -ENOMEM;
413 goto out_ino;
414 }
415 memcpy(ui->data, ino->data, ui->data_len);
416 ((char *)ui->data)[ui->data_len] = '\0';
417 }
418 #endif
419
420 kfree(ino);
421 #ifndef __UBOOT__
422 ubifs_set_inode_flags(inode);
423 #endif
424 unlock_new_inode(inode);
425 return inode;
426
427 out_invalid:
428 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
429 ubifs_dump_node(c, ino);
430 ubifs_dump_inode(c, inode);
431 err = -EINVAL;
432 out_ino:
433 kfree(ino);
434 out:
435 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
436 iget_failed(inode);
437 return ERR_PTR(err);
438 }
439
440 static struct inode *ubifs_alloc_inode(struct super_block *sb)
441 {
442 struct ubifs_inode *ui;
443
444 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
445 if (!ui)
446 return NULL;
447
448 memset((void *)ui + sizeof(struct inode), 0,
449 sizeof(struct ubifs_inode) - sizeof(struct inode));
450 mutex_init(&ui->ui_mutex);
451 spin_lock_init(&ui->ui_lock);
452 return &ui->vfs_inode;
453 };
454
455 #ifndef __UBOOT__
456 static void ubifs_i_callback(struct rcu_head *head)
457 {
458 struct inode *inode = container_of(head, struct inode, i_rcu);
459 struct ubifs_inode *ui = ubifs_inode(inode);
460 kmem_cache_free(ubifs_inode_slab, ui);
461 }
462
463 static void ubifs_destroy_inode(struct inode *inode)
464 {
465 struct ubifs_inode *ui = ubifs_inode(inode);
466
467 kfree(ui->data);
468 call_rcu(&inode->i_rcu, ubifs_i_callback);
469 }
470
471 /*
472 * Note, Linux write-back code calls this without 'i_mutex'.
473 */
474 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
475 {
476 int err = 0;
477 struct ubifs_info *c = inode->i_sb->s_fs_info;
478 struct ubifs_inode *ui = ubifs_inode(inode);
479
480 ubifs_assert(!ui->xattr);
481 if (is_bad_inode(inode))
482 return 0;
483
484 mutex_lock(&ui->ui_mutex);
485 /*
486 * Due to races between write-back forced by budgeting
487 * (see 'sync_some_inodes()') and background write-back, the inode may
488 * have already been synchronized, do not do this again. This might
489 * also happen if it was synchronized in an VFS operation, e.g.
490 * 'ubifs_link()'.
491 */
492 if (!ui->dirty) {
493 mutex_unlock(&ui->ui_mutex);
494 return 0;
495 }
496
497 /*
498 * As an optimization, do not write orphan inodes to the media just
499 * because this is not needed.
500 */
501 dbg_gen("inode %lu, mode %#x, nlink %u",
502 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
503 if (inode->i_nlink) {
504 err = ubifs_jnl_write_inode(c, inode);
505 if (err)
506 ubifs_err(c, "can't write inode %lu, error %d",
507 inode->i_ino, err);
508 else
509 err = dbg_check_inode_size(c, inode, ui->ui_size);
510 }
511
512 ui->dirty = 0;
513 mutex_unlock(&ui->ui_mutex);
514 ubifs_release_dirty_inode_budget(c, ui);
515 return err;
516 }
517
518 static void ubifs_evict_inode(struct inode *inode)
519 {
520 int err;
521 struct ubifs_info *c = inode->i_sb->s_fs_info;
522 struct ubifs_inode *ui = ubifs_inode(inode);
523
524 if (ui->xattr)
525 /*
526 * Extended attribute inode deletions are fully handled in
527 * 'ubifs_removexattr()'. These inodes are special and have
528 * limited usage, so there is nothing to do here.
529 */
530 goto out;
531
532 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
533 ubifs_assert(!atomic_read(&inode->i_count));
534
535 truncate_inode_pages_final(&inode->i_data);
536
537 if (inode->i_nlink)
538 goto done;
539
540 if (is_bad_inode(inode))
541 goto out;
542
543 ui->ui_size = inode->i_size = 0;
544 err = ubifs_jnl_delete_inode(c, inode);
545 if (err)
546 /*
547 * Worst case we have a lost orphan inode wasting space, so a
548 * simple error message is OK here.
549 */
550 ubifs_err(c, "can't delete inode %lu, error %d",
551 inode->i_ino, err);
552
553 out:
554 if (ui->dirty)
555 ubifs_release_dirty_inode_budget(c, ui);
556 else {
557 /* We've deleted something - clean the "no space" flags */
558 c->bi.nospace = c->bi.nospace_rp = 0;
559 smp_wmb();
560 }
561 done:
562 clear_inode(inode);
563 }
564 #endif
565
566 static void ubifs_dirty_inode(struct inode *inode, int flags)
567 {
568 struct ubifs_inode *ui = ubifs_inode(inode);
569
570 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
571 if (!ui->dirty) {
572 ui->dirty = 1;
573 dbg_gen("inode %lu", inode->i_ino);
574 }
575 }
576
577 #ifndef __UBOOT__
578 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
579 {
580 struct ubifs_info *c = dentry->d_sb->s_fs_info;
581 unsigned long long free;
582 __le32 *uuid = (__le32 *)c->uuid;
583
584 free = ubifs_get_free_space(c);
585 dbg_gen("free space %lld bytes (%lld blocks)",
586 free, free >> UBIFS_BLOCK_SHIFT);
587
588 buf->f_type = UBIFS_SUPER_MAGIC;
589 buf->f_bsize = UBIFS_BLOCK_SIZE;
590 buf->f_blocks = c->block_cnt;
591 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
592 if (free > c->report_rp_size)
593 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
594 else
595 buf->f_bavail = 0;
596 buf->f_files = 0;
597 buf->f_ffree = 0;
598 buf->f_namelen = UBIFS_MAX_NLEN;
599 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
600 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
601 ubifs_assert(buf->f_bfree <= c->block_cnt);
602 return 0;
603 }
604
605 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
606 {
607 struct ubifs_info *c = root->d_sb->s_fs_info;
608
609 if (c->mount_opts.unmount_mode == 2)
610 seq_puts(s, ",fast_unmount");
611 else if (c->mount_opts.unmount_mode == 1)
612 seq_puts(s, ",norm_unmount");
613
614 if (c->mount_opts.bulk_read == 2)
615 seq_puts(s, ",bulk_read");
616 else if (c->mount_opts.bulk_read == 1)
617 seq_puts(s, ",no_bulk_read");
618
619 if (c->mount_opts.chk_data_crc == 2)
620 seq_puts(s, ",chk_data_crc");
621 else if (c->mount_opts.chk_data_crc == 1)
622 seq_puts(s, ",no_chk_data_crc");
623
624 if (c->mount_opts.override_compr) {
625 seq_printf(s, ",compr=%s",
626 ubifs_compr_name(c->mount_opts.compr_type));
627 }
628
629 return 0;
630 }
631
632 static int ubifs_sync_fs(struct super_block *sb, int wait)
633 {
634 int i, err;
635 struct ubifs_info *c = sb->s_fs_info;
636
637 /*
638 * Zero @wait is just an advisory thing to help the file system shove
639 * lots of data into the queues, and there will be the second
640 * '->sync_fs()' call, with non-zero @wait.
641 */
642 if (!wait)
643 return 0;
644
645 /*
646 * Synchronize write buffers, because 'ubifs_run_commit()' does not
647 * do this if it waits for an already running commit.
648 */
649 for (i = 0; i < c->jhead_cnt; i++) {
650 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
651 if (err)
652 return err;
653 }
654
655 /*
656 * Strictly speaking, it is not necessary to commit the journal here,
657 * synchronizing write-buffers would be enough. But committing makes
658 * UBIFS free space predictions much more accurate, so we want to let
659 * the user be able to get more accurate results of 'statfs()' after
660 * they synchronize the file system.
661 */
662 err = ubifs_run_commit(c);
663 if (err)
664 return err;
665
666 return ubi_sync(c->vi.ubi_num);
667 }
668 #endif
669
670 /**
671 * init_constants_early - initialize UBIFS constants.
672 * @c: UBIFS file-system description object
673 *
674 * This function initialize UBIFS constants which do not need the superblock to
675 * be read. It also checks that the UBI volume satisfies basic UBIFS
676 * requirements. Returns zero in case of success and a negative error code in
677 * case of failure.
678 */
679 static int init_constants_early(struct ubifs_info *c)
680 {
681 if (c->vi.corrupted) {
682 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
683 c->ro_media = 1;
684 }
685
686 if (c->di.ro_mode) {
687 ubifs_msg(c, "read-only UBI device");
688 c->ro_media = 1;
689 }
690
691 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
692 ubifs_msg(c, "static UBI volume - read-only mode");
693 c->ro_media = 1;
694 }
695
696 c->leb_cnt = c->vi.size;
697 c->leb_size = c->vi.usable_leb_size;
698 c->leb_start = c->di.leb_start;
699 c->half_leb_size = c->leb_size / 2;
700 c->min_io_size = c->di.min_io_size;
701 c->min_io_shift = fls(c->min_io_size) - 1;
702 c->max_write_size = c->di.max_write_size;
703 c->max_write_shift = fls(c->max_write_size) - 1;
704
705 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
706 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
707 c->leb_size, UBIFS_MIN_LEB_SZ);
708 return -EINVAL;
709 }
710
711 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
712 ubifs_err(c, "too few LEBs (%d), min. is %d",
713 c->leb_cnt, UBIFS_MIN_LEB_CNT);
714 return -EINVAL;
715 }
716
717 if (!is_power_of_2(c->min_io_size)) {
718 ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
719 return -EINVAL;
720 }
721
722 /*
723 * Maximum write size has to be greater or equivalent to min. I/O
724 * size, and be multiple of min. I/O size.
725 */
726 if (c->max_write_size < c->min_io_size ||
727 c->max_write_size % c->min_io_size ||
728 !is_power_of_2(c->max_write_size)) {
729 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
730 c->max_write_size, c->min_io_size);
731 return -EINVAL;
732 }
733
734 /*
735 * UBIFS aligns all node to 8-byte boundary, so to make function in
736 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
737 * less than 8.
738 */
739 if (c->min_io_size < 8) {
740 c->min_io_size = 8;
741 c->min_io_shift = 3;
742 if (c->max_write_size < c->min_io_size) {
743 c->max_write_size = c->min_io_size;
744 c->max_write_shift = c->min_io_shift;
745 }
746 }
747
748 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
749 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
750
751 /*
752 * Initialize node length ranges which are mostly needed for node
753 * length validation.
754 */
755 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
756 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
757 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
758 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
759 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
760 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
761
762 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
763 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
764 c->ranges[UBIFS_ORPH_NODE].min_len =
765 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
766 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
767 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
768 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
769 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
770 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
771 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
772 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
773 /*
774 * Minimum indexing node size is amended later when superblock is
775 * read and the key length is known.
776 */
777 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
778 /*
779 * Maximum indexing node size is amended later when superblock is
780 * read and the fanout is known.
781 */
782 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
783
784 /*
785 * Initialize dead and dark LEB space watermarks. See gc.c for comments
786 * about these values.
787 */
788 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
789 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
790
791 /*
792 * Calculate how many bytes would be wasted at the end of LEB if it was
793 * fully filled with data nodes of maximum size. This is used in
794 * calculations when reporting free space.
795 */
796 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
797
798 /* Buffer size for bulk-reads */
799 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
800 if (c->max_bu_buf_len > c->leb_size)
801 c->max_bu_buf_len = c->leb_size;
802 return 0;
803 }
804
805 /**
806 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
807 * @c: UBIFS file-system description object
808 * @lnum: LEB the write-buffer was synchronized to
809 * @free: how many free bytes left in this LEB
810 * @pad: how many bytes were padded
811 *
812 * This is a callback function which is called by the I/O unit when the
813 * write-buffer is synchronized. We need this to correctly maintain space
814 * accounting in bud logical eraseblocks. This function returns zero in case of
815 * success and a negative error code in case of failure.
816 *
817 * This function actually belongs to the journal, but we keep it here because
818 * we want to keep it static.
819 */
820 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
821 {
822 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
823 }
824
825 /*
826 * init_constants_sb - initialize UBIFS constants.
827 * @c: UBIFS file-system description object
828 *
829 * This is a helper function which initializes various UBIFS constants after
830 * the superblock has been read. It also checks various UBIFS parameters and
831 * makes sure they are all right. Returns zero in case of success and a
832 * negative error code in case of failure.
833 */
834 static int init_constants_sb(struct ubifs_info *c)
835 {
836 int tmp, err;
837 long long tmp64;
838
839 c->main_bytes = (long long)c->main_lebs * c->leb_size;
840 c->max_znode_sz = sizeof(struct ubifs_znode) +
841 c->fanout * sizeof(struct ubifs_zbranch);
842
843 tmp = ubifs_idx_node_sz(c, 1);
844 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
845 c->min_idx_node_sz = ALIGN(tmp, 8);
846
847 tmp = ubifs_idx_node_sz(c, c->fanout);
848 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
849 c->max_idx_node_sz = ALIGN(tmp, 8);
850
851 /* Make sure LEB size is large enough to fit full commit */
852 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
853 tmp = ALIGN(tmp, c->min_io_size);
854 if (tmp > c->leb_size) {
855 ubifs_err(c, "too small LEB size %d, at least %d needed",
856 c->leb_size, tmp);
857 return -EINVAL;
858 }
859
860 /*
861 * Make sure that the log is large enough to fit reference nodes for
862 * all buds plus one reserved LEB.
863 */
864 tmp64 = c->max_bud_bytes + c->leb_size - 1;
865 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
866 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
867 tmp /= c->leb_size;
868 tmp += 1;
869 if (c->log_lebs < tmp) {
870 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
871 c->log_lebs, tmp);
872 return -EINVAL;
873 }
874
875 /*
876 * When budgeting we assume worst-case scenarios when the pages are not
877 * be compressed and direntries are of the maximum size.
878 *
879 * Note, data, which may be stored in inodes is budgeted separately, so
880 * it is not included into 'c->bi.inode_budget'.
881 */
882 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
883 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
884 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
885
886 /*
887 * When the amount of flash space used by buds becomes
888 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
889 * The writers are unblocked when the commit is finished. To avoid
890 * writers to be blocked UBIFS initiates background commit in advance,
891 * when number of bud bytes becomes above the limit defined below.
892 */
893 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
894
895 /*
896 * Ensure minimum journal size. All the bytes in the journal heads are
897 * considered to be used, when calculating the current journal usage.
898 * Consequently, if the journal is too small, UBIFS will treat it as
899 * always full.
900 */
901 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
902 if (c->bg_bud_bytes < tmp64)
903 c->bg_bud_bytes = tmp64;
904 if (c->max_bud_bytes < tmp64 + c->leb_size)
905 c->max_bud_bytes = tmp64 + c->leb_size;
906
907 err = ubifs_calc_lpt_geom(c);
908 if (err)
909 return err;
910
911 /* Initialize effective LEB size used in budgeting calculations */
912 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
913 return 0;
914 }
915
916 /*
917 * init_constants_master - initialize UBIFS constants.
918 * @c: UBIFS file-system description object
919 *
920 * This is a helper function which initializes various UBIFS constants after
921 * the master node has been read. It also checks various UBIFS parameters and
922 * makes sure they are all right.
923 */
924 static void init_constants_master(struct ubifs_info *c)
925 {
926 long long tmp64;
927
928 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
929 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
930
931 /*
932 * Calculate total amount of FS blocks. This number is not used
933 * internally because it does not make much sense for UBIFS, but it is
934 * necessary to report something for the 'statfs()' call.
935 *
936 * Subtract the LEB reserved for GC, the LEB which is reserved for
937 * deletions, minimum LEBs for the index, and assume only one journal
938 * head is available.
939 */
940 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
941 tmp64 *= (long long)c->leb_size - c->leb_overhead;
942 tmp64 = ubifs_reported_space(c, tmp64);
943 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
944 }
945
946 /**
947 * take_gc_lnum - reserve GC LEB.
948 * @c: UBIFS file-system description object
949 *
950 * This function ensures that the LEB reserved for garbage collection is marked
951 * as "taken" in lprops. We also have to set free space to LEB size and dirty
952 * space to zero, because lprops may contain out-of-date information if the
953 * file-system was un-mounted before it has been committed. This function
954 * returns zero in case of success and a negative error code in case of
955 * failure.
956 */
957 static int take_gc_lnum(struct ubifs_info *c)
958 {
959 int err;
960
961 if (c->gc_lnum == -1) {
962 ubifs_err(c, "no LEB for GC");
963 return -EINVAL;
964 }
965
966 /* And we have to tell lprops that this LEB is taken */
967 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
968 LPROPS_TAKEN, 0, 0);
969 return err;
970 }
971
972 /**
973 * alloc_wbufs - allocate write-buffers.
974 * @c: UBIFS file-system description object
975 *
976 * This helper function allocates and initializes UBIFS write-buffers. Returns
977 * zero in case of success and %-ENOMEM in case of failure.
978 */
979 static int alloc_wbufs(struct ubifs_info *c)
980 {
981 int i, err;
982
983 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
984 GFP_KERNEL);
985 if (!c->jheads)
986 return -ENOMEM;
987
988 /* Initialize journal heads */
989 for (i = 0; i < c->jhead_cnt; i++) {
990 INIT_LIST_HEAD(&c->jheads[i].buds_list);
991 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
992 if (err)
993 return err;
994
995 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
996 c->jheads[i].wbuf.jhead = i;
997 c->jheads[i].grouped = 1;
998 }
999
1000 /*
1001 * Garbage Collector head does not need to be synchronized by timer.
1002 * Also GC head nodes are not grouped.
1003 */
1004 c->jheads[GCHD].wbuf.no_timer = 1;
1005 c->jheads[GCHD].grouped = 0;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * free_wbufs - free write-buffers.
1012 * @c: UBIFS file-system description object
1013 */
1014 static void free_wbufs(struct ubifs_info *c)
1015 {
1016 int i;
1017
1018 if (c->jheads) {
1019 for (i = 0; i < c->jhead_cnt; i++) {
1020 kfree(c->jheads[i].wbuf.buf);
1021 kfree(c->jheads[i].wbuf.inodes);
1022 }
1023 kfree(c->jheads);
1024 c->jheads = NULL;
1025 }
1026 }
1027
1028 /**
1029 * free_orphans - free orphans.
1030 * @c: UBIFS file-system description object
1031 */
1032 static void free_orphans(struct ubifs_info *c)
1033 {
1034 struct ubifs_orphan *orph;
1035
1036 while (c->orph_dnext) {
1037 orph = c->orph_dnext;
1038 c->orph_dnext = orph->dnext;
1039 list_del(&orph->list);
1040 kfree(orph);
1041 }
1042
1043 while (!list_empty(&c->orph_list)) {
1044 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1045 list_del(&orph->list);
1046 kfree(orph);
1047 ubifs_err(c, "orphan list not empty at unmount");
1048 }
1049
1050 vfree(c->orph_buf);
1051 c->orph_buf = NULL;
1052 }
1053
1054 /**
1055 * free_buds - free per-bud objects.
1056 * @c: UBIFS file-system description object
1057 */
1058 static void free_buds(struct ubifs_info *c)
1059 {
1060 struct ubifs_bud *bud, *n;
1061
1062 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063 kfree(bud);
1064 }
1065
1066 /**
1067 * check_volume_empty - check if the UBI volume is empty.
1068 * @c: UBIFS file-system description object
1069 *
1070 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1071 * mapped or not. The result of checking is stored in the @c->empty variable.
1072 * Returns zero in case of success and a negative error code in case of
1073 * failure.
1074 */
1075 static int check_volume_empty(struct ubifs_info *c)
1076 {
1077 int lnum, err;
1078
1079 c->empty = 1;
1080 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1081 err = ubifs_is_mapped(c, lnum);
1082 if (unlikely(err < 0))
1083 return err;
1084 if (err == 1) {
1085 c->empty = 0;
1086 break;
1087 }
1088
1089 cond_resched();
1090 }
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * UBIFS mount options.
1097 *
1098 * Opt_fast_unmount: do not run a journal commit before un-mounting
1099 * Opt_norm_unmount: run a journal commit before un-mounting
1100 * Opt_bulk_read: enable bulk-reads
1101 * Opt_no_bulk_read: disable bulk-reads
1102 * Opt_chk_data_crc: check CRCs when reading data nodes
1103 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1104 * Opt_override_compr: override default compressor
1105 * Opt_err: just end of array marker
1106 */
1107 enum {
1108 Opt_fast_unmount,
1109 Opt_norm_unmount,
1110 Opt_bulk_read,
1111 Opt_no_bulk_read,
1112 Opt_chk_data_crc,
1113 Opt_no_chk_data_crc,
1114 Opt_override_compr,
1115 Opt_err,
1116 };
1117
1118 #ifndef __UBOOT__
1119 static const match_table_t tokens = {
1120 {Opt_fast_unmount, "fast_unmount"},
1121 {Opt_norm_unmount, "norm_unmount"},
1122 {Opt_bulk_read, "bulk_read"},
1123 {Opt_no_bulk_read, "no_bulk_read"},
1124 {Opt_chk_data_crc, "chk_data_crc"},
1125 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1126 {Opt_override_compr, "compr=%s"},
1127 {Opt_err, NULL},
1128 };
1129
1130 /**
1131 * parse_standard_option - parse a standard mount option.
1132 * @option: the option to parse
1133 *
1134 * Normally, standard mount options like "sync" are passed to file-systems as
1135 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1136 * be present in the options string. This function tries to deal with this
1137 * situation and parse standard options. Returns 0 if the option was not
1138 * recognized, and the corresponding integer flag if it was.
1139 *
1140 * UBIFS is only interested in the "sync" option, so do not check for anything
1141 * else.
1142 */
1143 static int parse_standard_option(const char *option)
1144 {
1145
1146 pr_notice("UBIFS: parse %s\n", option);
1147 if (!strcmp(option, "sync"))
1148 return MS_SYNCHRONOUS;
1149 return 0;
1150 }
1151
1152 /**
1153 * ubifs_parse_options - parse mount parameters.
1154 * @c: UBIFS file-system description object
1155 * @options: parameters to parse
1156 * @is_remount: non-zero if this is FS re-mount
1157 *
1158 * This function parses UBIFS mount options and returns zero in case success
1159 * and a negative error code in case of failure.
1160 */
1161 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162 int is_remount)
1163 {
1164 char *p;
1165 substring_t args[MAX_OPT_ARGS];
1166
1167 if (!options)
1168 return 0;
1169
1170 while ((p = strsep(&options, ","))) {
1171 int token;
1172
1173 if (!*p)
1174 continue;
1175
1176 token = match_token(p, tokens, args);
1177 switch (token) {
1178 /*
1179 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180 * We accept them in order to be backward-compatible. But this
1181 * should be removed at some point.
1182 */
1183 case Opt_fast_unmount:
1184 c->mount_opts.unmount_mode = 2;
1185 break;
1186 case Opt_norm_unmount:
1187 c->mount_opts.unmount_mode = 1;
1188 break;
1189 case Opt_bulk_read:
1190 c->mount_opts.bulk_read = 2;
1191 c->bulk_read = 1;
1192 break;
1193 case Opt_no_bulk_read:
1194 c->mount_opts.bulk_read = 1;
1195 c->bulk_read = 0;
1196 break;
1197 case Opt_chk_data_crc:
1198 c->mount_opts.chk_data_crc = 2;
1199 c->no_chk_data_crc = 0;
1200 break;
1201 case Opt_no_chk_data_crc:
1202 c->mount_opts.chk_data_crc = 1;
1203 c->no_chk_data_crc = 1;
1204 break;
1205 case Opt_override_compr:
1206 {
1207 char *name = match_strdup(&args[0]);
1208
1209 if (!name)
1210 return -ENOMEM;
1211 if (!strcmp(name, "none"))
1212 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213 else if (!strcmp(name, "lzo"))
1214 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215 else if (!strcmp(name, "zlib"))
1216 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217 else {
1218 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1219 kfree(name);
1220 return -EINVAL;
1221 }
1222 kfree(name);
1223 c->mount_opts.override_compr = 1;
1224 c->default_compr = c->mount_opts.compr_type;
1225 break;
1226 }
1227 default:
1228 {
1229 unsigned long flag;
1230 struct super_block *sb = c->vfs_sb;
1231
1232 flag = parse_standard_option(p);
1233 if (!flag) {
1234 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1235 p);
1236 return -EINVAL;
1237 }
1238 sb->s_flags |= flag;
1239 break;
1240 }
1241 }
1242 }
1243
1244 return 0;
1245 }
1246 #endif
1247
1248 /**
1249 * destroy_journal - destroy journal data structures.
1250 * @c: UBIFS file-system description object
1251 *
1252 * This function destroys journal data structures including those that may have
1253 * been created by recovery functions.
1254 */
1255 static void destroy_journal(struct ubifs_info *c)
1256 {
1257 while (!list_empty(&c->unclean_leb_list)) {
1258 struct ubifs_unclean_leb *ucleb;
1259
1260 ucleb = list_entry(c->unclean_leb_list.next,
1261 struct ubifs_unclean_leb, list);
1262 list_del(&ucleb->list);
1263 kfree(ucleb);
1264 }
1265 while (!list_empty(&c->old_buds)) {
1266 struct ubifs_bud *bud;
1267
1268 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1269 list_del(&bud->list);
1270 kfree(bud);
1271 }
1272 ubifs_destroy_idx_gc(c);
1273 ubifs_destroy_size_tree(c);
1274 ubifs_tnc_close(c);
1275 free_buds(c);
1276 }
1277
1278 /**
1279 * bu_init - initialize bulk-read information.
1280 * @c: UBIFS file-system description object
1281 */
1282 static void bu_init(struct ubifs_info *c)
1283 {
1284 ubifs_assert(c->bulk_read == 1);
1285
1286 if (c->bu.buf)
1287 return; /* Already initialized */
1288
1289 again:
1290 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291 if (!c->bu.buf) {
1292 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294 goto again;
1295 }
1296
1297 /* Just disable bulk-read */
1298 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1299 c->max_bu_buf_len);
1300 c->mount_opts.bulk_read = 1;
1301 c->bulk_read = 0;
1302 return;
1303 }
1304 }
1305
1306 #ifndef __UBOOT__
1307 /**
1308 * check_free_space - check if there is enough free space to mount.
1309 * @c: UBIFS file-system description object
1310 *
1311 * This function makes sure UBIFS has enough free space to be mounted in
1312 * read/write mode. UBIFS must always have some free space to allow deletions.
1313 */
1314 static int check_free_space(struct ubifs_info *c)
1315 {
1316 ubifs_assert(c->dark_wm > 0);
1317 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318 ubifs_err(c, "insufficient free space to mount in R/W mode");
1319 ubifs_dump_budg(c, &c->bi);
1320 ubifs_dump_lprops(c);
1321 return -ENOSPC;
1322 }
1323 return 0;
1324 }
1325 #endif
1326
1327 /**
1328 * mount_ubifs - mount UBIFS file-system.
1329 * @c: UBIFS file-system description object
1330 *
1331 * This function mounts UBIFS file system. Returns zero in case of success and
1332 * a negative error code in case of failure.
1333 */
1334 static int mount_ubifs(struct ubifs_info *c)
1335 {
1336 int err;
1337 long long x, y;
1338 size_t sz;
1339
1340 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1341 /* Suppress error messages while probing if MS_SILENT is set */
1342 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1343 #ifdef __UBOOT__
1344 if (!c->ro_mount) {
1345 printf("UBIFS: only ro mode in U-Boot allowed.\n");
1346 return -EACCES;
1347 }
1348 #endif
1349
1350 err = init_constants_early(c);
1351 if (err)
1352 return err;
1353
1354 err = ubifs_debugging_init(c);
1355 if (err)
1356 return err;
1357
1358 err = check_volume_empty(c);
1359 if (err)
1360 goto out_free;
1361
1362 if (c->empty && (c->ro_mount || c->ro_media)) {
1363 /*
1364 * This UBI volume is empty, and read-only, or the file system
1365 * is mounted read-only - we cannot format it.
1366 */
1367 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1368 c->ro_media ? "UBI volume" : "mount");
1369 err = -EROFS;
1370 goto out_free;
1371 }
1372
1373 if (c->ro_media && !c->ro_mount) {
1374 ubifs_err(c, "cannot mount read-write - read-only media");
1375 err = -EROFS;
1376 goto out_free;
1377 }
1378
1379 /*
1380 * The requirement for the buffer is that it should fit indexing B-tree
1381 * height amount of integers. We assume the height if the TNC tree will
1382 * never exceed 64.
1383 */
1384 err = -ENOMEM;
1385 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1386 if (!c->bottom_up_buf)
1387 goto out_free;
1388
1389 c->sbuf = vmalloc(c->leb_size);
1390 if (!c->sbuf)
1391 goto out_free;
1392
1393 #ifndef __UBOOT__
1394 if (!c->ro_mount) {
1395 c->ileb_buf = vmalloc(c->leb_size);
1396 if (!c->ileb_buf)
1397 goto out_free;
1398 }
1399 #endif
1400
1401 if (c->bulk_read == 1)
1402 bu_init(c);
1403
1404 #ifndef __UBOOT__
1405 if (!c->ro_mount) {
1406 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1407 GFP_KERNEL);
1408 if (!c->write_reserve_buf)
1409 goto out_free;
1410 }
1411 #endif
1412
1413 c->mounting = 1;
1414
1415 err = ubifs_read_superblock(c);
1416 if (err)
1417 goto out_free;
1418
1419 c->probing = 0;
1420
1421 /*
1422 * Make sure the compressor which is set as default in the superblock
1423 * or overridden by mount options is actually compiled in.
1424 */
1425 if (!ubifs_compr_present(c->default_compr)) {
1426 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1427 ubifs_compr_name(c->default_compr));
1428 err = -ENOTSUPP;
1429 goto out_free;
1430 }
1431
1432 err = init_constants_sb(c);
1433 if (err)
1434 goto out_free;
1435
1436 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1437 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1438 c->cbuf = kmalloc(sz, GFP_NOFS);
1439 if (!c->cbuf) {
1440 err = -ENOMEM;
1441 goto out_free;
1442 }
1443
1444 err = alloc_wbufs(c);
1445 if (err)
1446 goto out_cbuf;
1447
1448 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1449 #ifndef __UBOOT__
1450 if (!c->ro_mount) {
1451 /* Create background thread */
1452 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1453 if (IS_ERR(c->bgt)) {
1454 err = PTR_ERR(c->bgt);
1455 c->bgt = NULL;
1456 ubifs_err(c, "cannot spawn \"%s\", error %d",
1457 c->bgt_name, err);
1458 goto out_wbufs;
1459 }
1460 wake_up_process(c->bgt);
1461 }
1462 #endif
1463
1464 err = ubifs_read_master(c);
1465 if (err)
1466 goto out_master;
1467
1468 init_constants_master(c);
1469
1470 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1471 ubifs_msg(c, "recovery needed");
1472 c->need_recovery = 1;
1473 }
1474
1475 #ifndef __UBOOT__
1476 if (c->need_recovery && !c->ro_mount) {
1477 err = ubifs_recover_inl_heads(c, c->sbuf);
1478 if (err)
1479 goto out_master;
1480 }
1481 #endif
1482
1483 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1484 if (err)
1485 goto out_master;
1486
1487 #ifndef __UBOOT__
1488 if (!c->ro_mount && c->space_fixup) {
1489 err = ubifs_fixup_free_space(c);
1490 if (err)
1491 goto out_lpt;
1492 }
1493
1494 if (!c->ro_mount && !c->need_recovery) {
1495 /*
1496 * Set the "dirty" flag so that if we reboot uncleanly we
1497 * will notice this immediately on the next mount.
1498 */
1499 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1500 err = ubifs_write_master(c);
1501 if (err)
1502 goto out_lpt;
1503 }
1504 #endif
1505
1506 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1507 if (err)
1508 goto out_lpt;
1509
1510 err = ubifs_replay_journal(c);
1511 if (err)
1512 goto out_journal;
1513
1514 /* Calculate 'min_idx_lebs' after journal replay */
1515 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1516
1517 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1518 if (err)
1519 goto out_orphans;
1520
1521 if (!c->ro_mount) {
1522 #ifndef __UBOOT__
1523 int lnum;
1524
1525 err = check_free_space(c);
1526 if (err)
1527 goto out_orphans;
1528
1529 /* Check for enough log space */
1530 lnum = c->lhead_lnum + 1;
1531 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1532 lnum = UBIFS_LOG_LNUM;
1533 if (lnum == c->ltail_lnum) {
1534 err = ubifs_consolidate_log(c);
1535 if (err)
1536 goto out_orphans;
1537 }
1538
1539 if (c->need_recovery) {
1540 err = ubifs_recover_size(c);
1541 if (err)
1542 goto out_orphans;
1543 err = ubifs_rcvry_gc_commit(c);
1544 if (err)
1545 goto out_orphans;
1546 } else {
1547 err = take_gc_lnum(c);
1548 if (err)
1549 goto out_orphans;
1550
1551 /*
1552 * GC LEB may contain garbage if there was an unclean
1553 * reboot, and it should be un-mapped.
1554 */
1555 err = ubifs_leb_unmap(c, c->gc_lnum);
1556 if (err)
1557 goto out_orphans;
1558 }
1559
1560 err = dbg_check_lprops(c);
1561 if (err)
1562 goto out_orphans;
1563 #endif
1564 } else if (c->need_recovery) {
1565 err = ubifs_recover_size(c);
1566 if (err)
1567 goto out_orphans;
1568 } else {
1569 /*
1570 * Even if we mount read-only, we have to set space in GC LEB
1571 * to proper value because this affects UBIFS free space
1572 * reporting. We do not want to have a situation when
1573 * re-mounting from R/O to R/W changes amount of free space.
1574 */
1575 err = take_gc_lnum(c);
1576 if (err)
1577 goto out_orphans;
1578 }
1579
1580 #ifndef __UBOOT__
1581 spin_lock(&ubifs_infos_lock);
1582 list_add_tail(&c->infos_list, &ubifs_infos);
1583 spin_unlock(&ubifs_infos_lock);
1584 #endif
1585
1586 if (c->need_recovery) {
1587 if (c->ro_mount)
1588 ubifs_msg(c, "recovery deferred");
1589 else {
1590 c->need_recovery = 0;
1591 ubifs_msg(c, "recovery completed");
1592 /*
1593 * GC LEB has to be empty and taken at this point. But
1594 * the journal head LEBs may also be accounted as
1595 * "empty taken" if they are empty.
1596 */
1597 ubifs_assert(c->lst.taken_empty_lebs > 0);
1598 }
1599 } else
1600 ubifs_assert(c->lst.taken_empty_lebs > 0);
1601
1602 err = dbg_check_filesystem(c);
1603 if (err)
1604 goto out_infos;
1605
1606 err = dbg_debugfs_init_fs(c);
1607 if (err)
1608 goto out_infos;
1609
1610 c->mounting = 0;
1611
1612 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1613 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1614 c->ro_mount ? ", R/O mode" : "");
1615 x = (long long)c->main_lebs * c->leb_size;
1616 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1617 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1618 c->leb_size, c->leb_size >> 10, c->min_io_size,
1619 c->max_write_size);
1620 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1621 x, x >> 20, c->main_lebs,
1622 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1623 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1624 c->report_rp_size, c->report_rp_size >> 10);
1625 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1626 c->fmt_version, c->ro_compat_version,
1627 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1628 c->big_lpt ? ", big LPT model" : ", small LPT model");
1629
1630 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1631 dbg_gen("data journal heads: %d",
1632 c->jhead_cnt - NONDATA_JHEADS_CNT);
1633 dbg_gen("log LEBs: %d (%d - %d)",
1634 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1635 dbg_gen("LPT area LEBs: %d (%d - %d)",
1636 c->lpt_lebs, c->lpt_first, c->lpt_last);
1637 dbg_gen("orphan area LEBs: %d (%d - %d)",
1638 c->orph_lebs, c->orph_first, c->orph_last);
1639 dbg_gen("main area LEBs: %d (%d - %d)",
1640 c->main_lebs, c->main_first, c->leb_cnt - 1);
1641 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1642 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1643 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1644 c->bi.old_idx_sz >> 20);
1645 dbg_gen("key hash type: %d", c->key_hash_type);
1646 dbg_gen("tree fanout: %d", c->fanout);
1647 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1648 dbg_gen("max. znode size %d", c->max_znode_sz);
1649 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1650 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1651 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1652 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1653 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1654 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1655 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1656 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1657 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1658 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1659 dbg_gen("dead watermark: %d", c->dead_wm);
1660 dbg_gen("dark watermark: %d", c->dark_wm);
1661 dbg_gen("LEB overhead: %d", c->leb_overhead);
1662 x = (long long)c->main_lebs * c->dark_wm;
1663 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1664 x, x >> 10, x >> 20);
1665 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1666 c->max_bud_bytes, c->max_bud_bytes >> 10,
1667 c->max_bud_bytes >> 20);
1668 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1669 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1670 c->bg_bud_bytes >> 20);
1671 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1672 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1673 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1674 dbg_gen("commit number: %llu", c->cmt_no);
1675
1676 return 0;
1677
1678 out_infos:
1679 spin_lock(&ubifs_infos_lock);
1680 list_del(&c->infos_list);
1681 spin_unlock(&ubifs_infos_lock);
1682 out_orphans:
1683 free_orphans(c);
1684 out_journal:
1685 destroy_journal(c);
1686 out_lpt:
1687 ubifs_lpt_free(c, 0);
1688 out_master:
1689 kfree(c->mst_node);
1690 kfree(c->rcvrd_mst_node);
1691 if (c->bgt)
1692 kthread_stop(c->bgt);
1693 #ifndef __UBOOT__
1694 out_wbufs:
1695 #endif
1696 free_wbufs(c);
1697 out_cbuf:
1698 kfree(c->cbuf);
1699 out_free:
1700 kfree(c->write_reserve_buf);
1701 kfree(c->bu.buf);
1702 vfree(c->ileb_buf);
1703 vfree(c->sbuf);
1704 kfree(c->bottom_up_buf);
1705 ubifs_debugging_exit(c);
1706 return err;
1707 }
1708
1709 /**
1710 * ubifs_umount - un-mount UBIFS file-system.
1711 * @c: UBIFS file-system description object
1712 *
1713 * Note, this function is called to free allocated resourced when un-mounting,
1714 * as well as free resources when an error occurred while we were half way
1715 * through mounting (error path cleanup function). So it has to make sure the
1716 * resource was actually allocated before freeing it.
1717 */
1718 #ifndef __UBOOT__
1719 static void ubifs_umount(struct ubifs_info *c)
1720 #else
1721 void ubifs_umount(struct ubifs_info *c)
1722 #endif
1723 {
1724 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1725 c->vi.vol_id);
1726
1727 dbg_debugfs_exit_fs(c);
1728 spin_lock(&ubifs_infos_lock);
1729 list_del(&c->infos_list);
1730 spin_unlock(&ubifs_infos_lock);
1731
1732 #ifndef __UBOOT__
1733 if (c->bgt)
1734 kthread_stop(c->bgt);
1735
1736 destroy_journal(c);
1737 #endif
1738 free_wbufs(c);
1739 free_orphans(c);
1740 ubifs_lpt_free(c, 0);
1741
1742 kfree(c->cbuf);
1743 kfree(c->rcvrd_mst_node);
1744 kfree(c->mst_node);
1745 kfree(c->write_reserve_buf);
1746 kfree(c->bu.buf);
1747 vfree(c->ileb_buf);
1748 vfree(c->sbuf);
1749 kfree(c->bottom_up_buf);
1750 ubifs_debugging_exit(c);
1751 #ifdef __UBOOT__
1752 /* Finally free U-Boot's global copy of superblock */
1753 if (ubifs_sb != NULL) {
1754 free(ubifs_sb->s_fs_info);
1755 free(ubifs_sb);
1756 }
1757 #endif
1758 }
1759
1760 #ifndef __UBOOT__
1761 /**
1762 * ubifs_remount_rw - re-mount in read-write mode.
1763 * @c: UBIFS file-system description object
1764 *
1765 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1766 * mode. This function allocates the needed resources and re-mounts UBIFS in
1767 * read-write mode.
1768 */
1769 static int ubifs_remount_rw(struct ubifs_info *c)
1770 {
1771 int err, lnum;
1772
1773 if (c->rw_incompat) {
1774 ubifs_err(c, "the file-system is not R/W-compatible");
1775 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1776 c->fmt_version, c->ro_compat_version,
1777 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1778 return -EROFS;
1779 }
1780
1781 mutex_lock(&c->umount_mutex);
1782 dbg_save_space_info(c);
1783 c->remounting_rw = 1;
1784 c->ro_mount = 0;
1785
1786 if (c->space_fixup) {
1787 err = ubifs_fixup_free_space(c);
1788 if (err)
1789 goto out;
1790 }
1791
1792 err = check_free_space(c);
1793 if (err)
1794 goto out;
1795
1796 if (c->old_leb_cnt != c->leb_cnt) {
1797 struct ubifs_sb_node *sup;
1798
1799 sup = ubifs_read_sb_node(c);
1800 if (IS_ERR(sup)) {
1801 err = PTR_ERR(sup);
1802 goto out;
1803 }
1804 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1805 err = ubifs_write_sb_node(c, sup);
1806 kfree(sup);
1807 if (err)
1808 goto out;
1809 }
1810
1811 if (c->need_recovery) {
1812 ubifs_msg(c, "completing deferred recovery");
1813 err = ubifs_write_rcvrd_mst_node(c);
1814 if (err)
1815 goto out;
1816 err = ubifs_recover_size(c);
1817 if (err)
1818 goto out;
1819 err = ubifs_clean_lebs(c, c->sbuf);
1820 if (err)
1821 goto out;
1822 err = ubifs_recover_inl_heads(c, c->sbuf);
1823 if (err)
1824 goto out;
1825 } else {
1826 /* A readonly mount is not allowed to have orphans */
1827 ubifs_assert(c->tot_orphans == 0);
1828 err = ubifs_clear_orphans(c);
1829 if (err)
1830 goto out;
1831 }
1832
1833 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1834 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1835 err = ubifs_write_master(c);
1836 if (err)
1837 goto out;
1838 }
1839
1840 c->ileb_buf = vmalloc(c->leb_size);
1841 if (!c->ileb_buf) {
1842 err = -ENOMEM;
1843 goto out;
1844 }
1845
1846 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1847 if (!c->write_reserve_buf) {
1848 err = -ENOMEM;
1849 goto out;
1850 }
1851
1852 err = ubifs_lpt_init(c, 0, 1);
1853 if (err)
1854 goto out;
1855
1856 /* Create background thread */
1857 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1858 if (IS_ERR(c->bgt)) {
1859 err = PTR_ERR(c->bgt);
1860 c->bgt = NULL;
1861 ubifs_err(c, "cannot spawn \"%s\", error %d",
1862 c->bgt_name, err);
1863 goto out;
1864 }
1865 wake_up_process(c->bgt);
1866
1867 c->orph_buf = vmalloc(c->leb_size);
1868 if (!c->orph_buf) {
1869 err = -ENOMEM;
1870 goto out;
1871 }
1872
1873 /* Check for enough log space */
1874 lnum = c->lhead_lnum + 1;
1875 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1876 lnum = UBIFS_LOG_LNUM;
1877 if (lnum == c->ltail_lnum) {
1878 err = ubifs_consolidate_log(c);
1879 if (err)
1880 goto out;
1881 }
1882
1883 if (c->need_recovery)
1884 err = ubifs_rcvry_gc_commit(c);
1885 else
1886 err = ubifs_leb_unmap(c, c->gc_lnum);
1887 if (err)
1888 goto out;
1889
1890 dbg_gen("re-mounted read-write");
1891 c->remounting_rw = 0;
1892
1893 if (c->need_recovery) {
1894 c->need_recovery = 0;
1895 ubifs_msg(c, "deferred recovery completed");
1896 } else {
1897 /*
1898 * Do not run the debugging space check if the were doing
1899 * recovery, because when we saved the information we had the
1900 * file-system in a state where the TNC and lprops has been
1901 * modified in memory, but all the I/O operations (including a
1902 * commit) were deferred. So the file-system was in
1903 * "non-committed" state. Now the file-system is in committed
1904 * state, and of course the amount of free space will change
1905 * because, for example, the old index size was imprecise.
1906 */
1907 err = dbg_check_space_info(c);
1908 }
1909
1910 mutex_unlock(&c->umount_mutex);
1911 return err;
1912
1913 out:
1914 c->ro_mount = 1;
1915 vfree(c->orph_buf);
1916 c->orph_buf = NULL;
1917 if (c->bgt) {
1918 kthread_stop(c->bgt);
1919 c->bgt = NULL;
1920 }
1921 free_wbufs(c);
1922 kfree(c->write_reserve_buf);
1923 c->write_reserve_buf = NULL;
1924 vfree(c->ileb_buf);
1925 c->ileb_buf = NULL;
1926 ubifs_lpt_free(c, 1);
1927 c->remounting_rw = 0;
1928 mutex_unlock(&c->umount_mutex);
1929 return err;
1930 }
1931
1932 /**
1933 * ubifs_remount_ro - re-mount in read-only mode.
1934 * @c: UBIFS file-system description object
1935 *
1936 * We assume VFS has stopped writing. Possibly the background thread could be
1937 * running a commit, however kthread_stop will wait in that case.
1938 */
1939 static void ubifs_remount_ro(struct ubifs_info *c)
1940 {
1941 int i, err;
1942
1943 ubifs_assert(!c->need_recovery);
1944 ubifs_assert(!c->ro_mount);
1945
1946 mutex_lock(&c->umount_mutex);
1947 if (c->bgt) {
1948 kthread_stop(c->bgt);
1949 c->bgt = NULL;
1950 }
1951
1952 dbg_save_space_info(c);
1953
1954 for (i = 0; i < c->jhead_cnt; i++)
1955 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1956
1957 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1958 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1959 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1960 err = ubifs_write_master(c);
1961 if (err)
1962 ubifs_ro_mode(c, err);
1963
1964 vfree(c->orph_buf);
1965 c->orph_buf = NULL;
1966 kfree(c->write_reserve_buf);
1967 c->write_reserve_buf = NULL;
1968 vfree(c->ileb_buf);
1969 c->ileb_buf = NULL;
1970 ubifs_lpt_free(c, 1);
1971 c->ro_mount = 1;
1972 err = dbg_check_space_info(c);
1973 if (err)
1974 ubifs_ro_mode(c, err);
1975 mutex_unlock(&c->umount_mutex);
1976 }
1977
1978 static void ubifs_put_super(struct super_block *sb)
1979 {
1980 int i;
1981 struct ubifs_info *c = sb->s_fs_info;
1982
1983 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1984
1985 /*
1986 * The following asserts are only valid if there has not been a failure
1987 * of the media. For example, there will be dirty inodes if we failed
1988 * to write them back because of I/O errors.
1989 */
1990 if (!c->ro_error) {
1991 ubifs_assert(c->bi.idx_growth == 0);
1992 ubifs_assert(c->bi.dd_growth == 0);
1993 ubifs_assert(c->bi.data_growth == 0);
1994 }
1995
1996 /*
1997 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1998 * and file system un-mount. Namely, it prevents the shrinker from
1999 * picking this superblock for shrinking - it will be just skipped if
2000 * the mutex is locked.
2001 */
2002 mutex_lock(&c->umount_mutex);
2003 if (!c->ro_mount) {
2004 /*
2005 * First of all kill the background thread to make sure it does
2006 * not interfere with un-mounting and freeing resources.
2007 */
2008 if (c->bgt) {
2009 kthread_stop(c->bgt);
2010 c->bgt = NULL;
2011 }
2012
2013 /*
2014 * On fatal errors c->ro_error is set to 1, in which case we do
2015 * not write the master node.
2016 */
2017 if (!c->ro_error) {
2018 int err;
2019
2020 /* Synchronize write-buffers */
2021 for (i = 0; i < c->jhead_cnt; i++)
2022 ubifs_wbuf_sync(&c->jheads[i].wbuf);
2023
2024 /*
2025 * We are being cleanly unmounted which means the
2026 * orphans were killed - indicate this in the master
2027 * node. Also save the reserved GC LEB number.
2028 */
2029 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2030 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2031 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2032 err = ubifs_write_master(c);
2033 if (err)
2034 /*
2035 * Recovery will attempt to fix the master area
2036 * next mount, so we just print a message and
2037 * continue to unmount normally.
2038 */
2039 ubifs_err(c, "failed to write master node, error %d",
2040 err);
2041 } else {
2042 #ifndef __UBOOT__
2043 for (i = 0; i < c->jhead_cnt; i++)
2044 /* Make sure write-buffer timers are canceled */
2045 hrtimer_cancel(&c->jheads[i].wbuf.timer);
2046 #endif
2047 }
2048 }
2049
2050 ubifs_umount(c);
2051 #ifndef __UBOOT__
2052 bdi_destroy(&c->bdi);
2053 #endif
2054 ubi_close_volume(c->ubi);
2055 mutex_unlock(&c->umount_mutex);
2056 }
2057 #endif
2058
2059 #ifndef __UBOOT__
2060 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2061 {
2062 int err;
2063 struct ubifs_info *c = sb->s_fs_info;
2064
2065 sync_filesystem(sb);
2066 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2067
2068 err = ubifs_parse_options(c, data, 1);
2069 if (err) {
2070 ubifs_err(c, "invalid or unknown remount parameter");
2071 return err;
2072 }
2073
2074 if (c->ro_mount && !(*flags & MS_RDONLY)) {
2075 if (c->ro_error) {
2076 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2077 return -EROFS;
2078 }
2079 if (c->ro_media) {
2080 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2081 return -EROFS;
2082 }
2083 err = ubifs_remount_rw(c);
2084 if (err)
2085 return err;
2086 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2087 if (c->ro_error) {
2088 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2089 return -EROFS;
2090 }
2091 ubifs_remount_ro(c);
2092 }
2093
2094 if (c->bulk_read == 1)
2095 bu_init(c);
2096 else {
2097 dbg_gen("disable bulk-read");
2098 kfree(c->bu.buf);
2099 c->bu.buf = NULL;
2100 }
2101
2102 ubifs_assert(c->lst.taken_empty_lebs > 0);
2103 return 0;
2104 }
2105 #endif
2106
2107 const struct super_operations ubifs_super_operations = {
2108 .alloc_inode = ubifs_alloc_inode,
2109 #ifndef __UBOOT__
2110 .destroy_inode = ubifs_destroy_inode,
2111 .put_super = ubifs_put_super,
2112 .write_inode = ubifs_write_inode,
2113 .evict_inode = ubifs_evict_inode,
2114 .statfs = ubifs_statfs,
2115 #endif
2116 .dirty_inode = ubifs_dirty_inode,
2117 #ifndef __UBOOT__
2118 .remount_fs = ubifs_remount_fs,
2119 .show_options = ubifs_show_options,
2120 .sync_fs = ubifs_sync_fs,
2121 #endif
2122 };
2123
2124 /**
2125 * open_ubi - parse UBI device name string and open the UBI device.
2126 * @name: UBI volume name
2127 * @mode: UBI volume open mode
2128 *
2129 * The primary method of mounting UBIFS is by specifying the UBI volume
2130 * character device node path. However, UBIFS may also be mounted withoug any
2131 * character device node using one of the following methods:
2132 *
2133 * o ubiX_Y - mount UBI device number X, volume Y;
2134 * o ubiY - mount UBI device number 0, volume Y;
2135 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2136 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2137 *
2138 * Alternative '!' separator may be used instead of ':' (because some shells
2139 * like busybox may interpret ':' as an NFS host name separator). This function
2140 * returns UBI volume description object in case of success and a negative
2141 * error code in case of failure.
2142 */
2143 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2144 {
2145 #ifndef __UBOOT__
2146 struct ubi_volume_desc *ubi;
2147 #endif
2148 int dev, vol;
2149 char *endptr;
2150
2151 #ifndef __UBOOT__
2152 /* First, try to open using the device node path method */
2153 ubi = ubi_open_volume_path(name, mode);
2154 if (!IS_ERR(ubi))
2155 return ubi;
2156 #endif
2157
2158 /* Try the "nodev" method */
2159 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2160 return ERR_PTR(-EINVAL);
2161
2162 /* ubi:NAME method */
2163 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2164 return ubi_open_volume_nm(0, name + 4, mode);
2165
2166 if (!isdigit(name[3]))
2167 return ERR_PTR(-EINVAL);
2168
2169 dev = simple_strtoul(name + 3, &endptr, 0);
2170
2171 /* ubiY method */
2172 if (*endptr == '\0')
2173 return ubi_open_volume(0, dev, mode);
2174
2175 /* ubiX_Y method */
2176 if (*endptr == '_' && isdigit(endptr[1])) {
2177 vol = simple_strtoul(endptr + 1, &endptr, 0);
2178 if (*endptr != '\0')
2179 return ERR_PTR(-EINVAL);
2180 return ubi_open_volume(dev, vol, mode);
2181 }
2182
2183 /* ubiX:NAME method */
2184 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2185 return ubi_open_volume_nm(dev, ++endptr, mode);
2186
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2191 {
2192 struct ubifs_info *c;
2193
2194 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2195 if (c) {
2196 spin_lock_init(&c->cnt_lock);
2197 spin_lock_init(&c->cs_lock);
2198 spin_lock_init(&c->buds_lock);
2199 spin_lock_init(&c->space_lock);
2200 spin_lock_init(&c->orphan_lock);
2201 init_rwsem(&c->commit_sem);
2202 mutex_init(&c->lp_mutex);
2203 mutex_init(&c->tnc_mutex);
2204 mutex_init(&c->log_mutex);
2205 mutex_init(&c->umount_mutex);
2206 mutex_init(&c->bu_mutex);
2207 mutex_init(&c->write_reserve_mutex);
2208 init_waitqueue_head(&c->cmt_wq);
2209 c->buds = RB_ROOT;
2210 c->old_idx = RB_ROOT;
2211 c->size_tree = RB_ROOT;
2212 c->orph_tree = RB_ROOT;
2213 INIT_LIST_HEAD(&c->infos_list);
2214 INIT_LIST_HEAD(&c->idx_gc);
2215 INIT_LIST_HEAD(&c->replay_list);
2216 INIT_LIST_HEAD(&c->replay_buds);
2217 INIT_LIST_HEAD(&c->uncat_list);
2218 INIT_LIST_HEAD(&c->empty_list);
2219 INIT_LIST_HEAD(&c->freeable_list);
2220 INIT_LIST_HEAD(&c->frdi_idx_list);
2221 INIT_LIST_HEAD(&c->unclean_leb_list);
2222 INIT_LIST_HEAD(&c->old_buds);
2223 INIT_LIST_HEAD(&c->orph_list);
2224 INIT_LIST_HEAD(&c->orph_new);
2225 c->no_chk_data_crc = 1;
2226
2227 c->highest_inum = UBIFS_FIRST_INO;
2228 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2229
2230 ubi_get_volume_info(ubi, &c->vi);
2231 ubi_get_device_info(c->vi.ubi_num, &c->di);
2232 }
2233 return c;
2234 }
2235
2236 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2237 {
2238 struct ubifs_info *c = sb->s_fs_info;
2239 struct inode *root;
2240 int err;
2241
2242 c->vfs_sb = sb;
2243 #ifndef __UBOOT__
2244 /* Re-open the UBI device in read-write mode */
2245 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2246 #else
2247 /* U-Boot read only mode */
2248 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2249 #endif
2250
2251 if (IS_ERR(c->ubi)) {
2252 err = PTR_ERR(c->ubi);
2253 goto out;
2254 }
2255
2256 #ifndef __UBOOT__
2257 /*
2258 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2259 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2260 * which means the user would have to wait not just for their own I/O
2261 * but the read-ahead I/O as well i.e. completely pointless.
2262 *
2263 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2264 */
2265 c->bdi.name = "ubifs",
2266 c->bdi.capabilities = 0;
2267 err = bdi_init(&c->bdi);
2268 if (err)
2269 goto out_close;
2270 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2271 c->vi.ubi_num, c->vi.vol_id);
2272 if (err)
2273 goto out_bdi;
2274
2275 err = ubifs_parse_options(c, data, 0);
2276 if (err)
2277 goto out_bdi;
2278
2279 sb->s_bdi = &c->bdi;
2280 #endif
2281 sb->s_fs_info = c;
2282 sb->s_magic = UBIFS_SUPER_MAGIC;
2283 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2284 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2285 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2286 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2287 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2288 sb->s_op = &ubifs_super_operations;
2289 #ifndef __UBOOT__
2290 sb->s_xattr = ubifs_xattr_handlers;
2291 #endif
2292
2293 mutex_lock(&c->umount_mutex);
2294 err = mount_ubifs(c);
2295 if (err) {
2296 ubifs_assert(err < 0);
2297 goto out_unlock;
2298 }
2299
2300 /* Read the root inode */
2301 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2302 if (IS_ERR(root)) {
2303 err = PTR_ERR(root);
2304 goto out_umount;
2305 }
2306
2307 #ifndef __UBOOT__
2308 sb->s_root = d_make_root(root);
2309 if (!sb->s_root) {
2310 err = -ENOMEM;
2311 goto out_umount;
2312 }
2313 #else
2314 sb->s_root = NULL;
2315 #endif
2316
2317 mutex_unlock(&c->umount_mutex);
2318 return 0;
2319
2320 out_umount:
2321 ubifs_umount(c);
2322 out_unlock:
2323 mutex_unlock(&c->umount_mutex);
2324 #ifndef __UBOOT__
2325 out_bdi:
2326 bdi_destroy(&c->bdi);
2327 out_close:
2328 #endif
2329 ubi_close_volume(c->ubi);
2330 out:
2331 return err;
2332 }
2333
2334 static int sb_test(struct super_block *sb, void *data)
2335 {
2336 struct ubifs_info *c1 = data;
2337 struct ubifs_info *c = sb->s_fs_info;
2338
2339 return c->vi.cdev == c1->vi.cdev;
2340 }
2341
2342 static int sb_set(struct super_block *sb, void *data)
2343 {
2344 sb->s_fs_info = data;
2345 return set_anon_super(sb, NULL);
2346 }
2347
2348 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2349 {
2350 struct super_block *s;
2351 int err;
2352
2353 s = kzalloc(sizeof(struct super_block), GFP_USER);
2354 if (!s) {
2355 err = -ENOMEM;
2356 return ERR_PTR(err);
2357 }
2358
2359 INIT_HLIST_NODE(&s->s_instances);
2360 INIT_LIST_HEAD(&s->s_inodes);
2361 s->s_time_gran = 1000000000;
2362 s->s_flags = flags;
2363
2364 return s;
2365 }
2366
2367 /**
2368 * sget - find or create a superblock
2369 * @type: filesystem type superblock should belong to
2370 * @test: comparison callback
2371 * @set: setup callback
2372 * @flags: mount flags
2373 * @data: argument to each of them
2374 */
2375 struct super_block *sget(struct file_system_type *type,
2376 int (*test)(struct super_block *,void *),
2377 int (*set)(struct super_block *,void *),
2378 int flags,
2379 void *data)
2380 {
2381 struct super_block *s = NULL;
2382 #ifndef __UBOOT__
2383 struct super_block *old;
2384 #endif
2385 int err;
2386
2387 #ifndef __UBOOT__
2388 retry:
2389 spin_lock(&sb_lock);
2390 if (test) {
2391 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2392 if (!test(old, data))
2393 continue;
2394 if (!grab_super(old))
2395 goto retry;
2396 if (s) {
2397 up_write(&s->s_umount);
2398 destroy_super(s);
2399 s = NULL;
2400 }
2401 return old;
2402 }
2403 }
2404 #endif
2405 if (!s) {
2406 spin_unlock(&sb_lock);
2407 s = alloc_super(type, flags);
2408 if (!s)
2409 return ERR_PTR(-ENOMEM);
2410 #ifndef __UBOOT__
2411 goto retry;
2412 #endif
2413 }
2414
2415 err = set(s, data);
2416 if (err) {
2417 #ifndef __UBOOT__
2418 spin_unlock(&sb_lock);
2419 up_write(&s->s_umount);
2420 destroy_super(s);
2421 #endif
2422 return ERR_PTR(err);
2423 }
2424 s->s_type = type;
2425 #ifndef __UBOOT__
2426 strlcpy(s->s_id, type->name, sizeof(s->s_id));
2427 list_add_tail(&s->s_list, &super_blocks);
2428 #else
2429 strncpy(s->s_id, type->name, sizeof(s->s_id));
2430 #endif
2431 hlist_add_head(&s->s_instances, &type->fs_supers);
2432 #ifndef __UBOOT__
2433 spin_unlock(&sb_lock);
2434 get_filesystem(type);
2435 register_shrinker(&s->s_shrink);
2436 #endif
2437 return s;
2438 }
2439
2440 EXPORT_SYMBOL(sget);
2441
2442
2443 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2444 const char *name, void *data)
2445 {
2446 struct ubi_volume_desc *ubi;
2447 struct ubifs_info *c;
2448 struct super_block *sb;
2449 int err;
2450
2451 dbg_gen("name %s, flags %#x", name, flags);
2452
2453 /*
2454 * Get UBI device number and volume ID. Mount it read-only so far
2455 * because this might be a new mount point, and UBI allows only one
2456 * read-write user at a time.
2457 */
2458 ubi = open_ubi(name, UBI_READONLY);
2459 if (IS_ERR(ubi)) {
2460 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2461 current->pid, name, (int)PTR_ERR(ubi));
2462 return ERR_CAST(ubi);
2463 }
2464
2465 c = alloc_ubifs_info(ubi);
2466 if (!c) {
2467 err = -ENOMEM;
2468 goto out_close;
2469 }
2470
2471 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2472
2473 sb = sget(fs_type, sb_test, sb_set, flags, c);
2474 if (IS_ERR(sb)) {
2475 err = PTR_ERR(sb);
2476 kfree(c);
2477 goto out_close;
2478 }
2479
2480 if (sb->s_root) {
2481 struct ubifs_info *c1 = sb->s_fs_info;
2482 kfree(c);
2483 /* A new mount point for already mounted UBIFS */
2484 dbg_gen("this ubi volume is already mounted");
2485 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2486 err = -EBUSY;
2487 goto out_deact;
2488 }
2489 } else {
2490 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2491 if (err)
2492 goto out_deact;
2493 /* We do not support atime */
2494 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2495 }
2496
2497 /* 'fill_super()' opens ubi again so we must close it here */
2498 ubi_close_volume(ubi);
2499
2500 #ifdef __UBOOT__
2501 ubifs_sb = sb;
2502 return 0;
2503 #else
2504 return dget(sb->s_root);
2505 #endif
2506
2507 out_deact:
2508 #ifndef __UBOOT__
2509 deactivate_locked_super(sb);
2510 #endif
2511 out_close:
2512 ubi_close_volume(ubi);
2513 return ERR_PTR(err);
2514 }
2515
2516 static void kill_ubifs_super(struct super_block *s)
2517 {
2518 struct ubifs_info *c = s->s_fs_info;
2519 #ifndef __UBOOT__
2520 kill_anon_super(s);
2521 #endif
2522 kfree(c);
2523 }
2524
2525 static struct file_system_type ubifs_fs_type = {
2526 .name = "ubifs",
2527 .owner = THIS_MODULE,
2528 .mount = ubifs_mount,
2529 .kill_sb = kill_ubifs_super,
2530 };
2531 #ifndef __UBOOT__
2532 MODULE_ALIAS_FS("ubifs");
2533
2534 /*
2535 * Inode slab cache constructor.
2536 */
2537 static void inode_slab_ctor(void *obj)
2538 {
2539 struct ubifs_inode *ui = obj;
2540 inode_init_once(&ui->vfs_inode);
2541 }
2542
2543 static int __init ubifs_init(void)
2544 #else
2545 int ubifs_init(void)
2546 #endif
2547 {
2548 int err;
2549
2550 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2551
2552 /* Make sure node sizes are 8-byte aligned */
2553 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2554 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2555 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2556 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2557 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2558 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2559 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2560 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2561 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2562 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2563 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2564
2565 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2566 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2567 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2568 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2569 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2570 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2571
2572 /* Check min. node size */
2573 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2574 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2575 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2576 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2577
2578 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2579 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2581 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2582
2583 /* Defined node sizes */
2584 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2585 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2586 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2587 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2588
2589 /*
2590 * We use 2 bit wide bit-fields to store compression type, which should
2591 * be amended if more compressors are added. The bit-fields are:
2592 * @compr_type in 'struct ubifs_inode', @default_compr in
2593 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2594 */
2595 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2596
2597 /*
2598 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2599 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2600 */
2601 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2602 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2603 current->pid, (unsigned int)PAGE_CACHE_SIZE);
2604 return -EINVAL;
2605 }
2606
2607 #ifndef __UBOOT__
2608 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2609 sizeof(struct ubifs_inode), 0,
2610 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2611 &inode_slab_ctor);
2612 if (!ubifs_inode_slab)
2613 return -ENOMEM;
2614
2615 err = register_shrinker(&ubifs_shrinker_info);
2616 if (err)
2617 goto out_slab;
2618 #endif
2619
2620 err = ubifs_compressors_init();
2621 if (err)
2622 goto out_shrinker;
2623
2624 #ifndef __UBOOT__
2625 err = dbg_debugfs_init();
2626 if (err)
2627 goto out_compr;
2628
2629 err = register_filesystem(&ubifs_fs_type);
2630 if (err) {
2631 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2632 current->pid, err);
2633 goto out_dbg;
2634 }
2635 #endif
2636 return 0;
2637
2638 #ifndef __UBOOT__
2639 out_dbg:
2640 dbg_debugfs_exit();
2641 out_compr:
2642 ubifs_compressors_exit();
2643 #endif
2644 out_shrinker:
2645 #ifndef __UBOOT__
2646 unregister_shrinker(&ubifs_shrinker_info);
2647 out_slab:
2648 #endif
2649 kmem_cache_destroy(ubifs_inode_slab);
2650 return err;
2651 }
2652 /* late_initcall to let compressors initialize first */
2653 late_initcall(ubifs_init);
2654
2655 #ifndef __UBOOT__
2656 static void __exit ubifs_exit(void)
2657 {
2658 ubifs_assert(list_empty(&ubifs_infos));
2659 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2660
2661 dbg_debugfs_exit();
2662 ubifs_compressors_exit();
2663 unregister_shrinker(&ubifs_shrinker_info);
2664
2665 /*
2666 * Make sure all delayed rcu free inodes are flushed before we
2667 * destroy cache.
2668 */
2669 rcu_barrier();
2670 kmem_cache_destroy(ubifs_inode_slab);
2671 unregister_filesystem(&ubifs_fs_type);
2672 }
2673 module_exit(ubifs_exit);
2674
2675 MODULE_LICENSE("GPL");
2676 MODULE_VERSION(__stringify(UBIFS_VERSION));
2677 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2678 MODULE_DESCRIPTION("UBIFS - UBI File System");
2679 #else
2680 int uboot_ubifs_mount(char *vol_name)
2681 {
2682 struct dentry *ret;
2683 int flags;
2684
2685 /*
2686 * First unmount if allready mounted
2687 */
2688 if (ubifs_sb)
2689 ubifs_umount(ubifs_sb->s_fs_info);
2690
2691 /*
2692 * Mount in read-only mode
2693 */
2694 flags = MS_RDONLY;
2695 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2696 if (IS_ERR(ret)) {
2697 printf("Error reading superblock on volume '%s' " \
2698 "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2699 return -1;
2700 }
2701
2702 return 0;
2703 }
2704 #endif