]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/yaffs2/yaffs_guts.c
travisci: Add support for ARC
[people/ms/u-boot.git] / fs / yaffs2 / yaffs_guts.c
1 /*
2 * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
3 *
4 * Copyright (C) 2002-2011 Aleph One Ltd.
5 * for Toby Churchill Ltd and Brightstar Engineering
6 *
7 * Created by Charles Manning <charles@aleph1.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include "yportenv.h"
15 #include "yaffs_trace.h"
16
17 #include "yaffs_guts.h"
18 #include "yaffs_getblockinfo.h"
19 #include "yaffs_tagscompat.h"
20 #include "yaffs_nand.h"
21 #include "yaffs_yaffs1.h"
22 #include "yaffs_yaffs2.h"
23 #include "yaffs_bitmap.h"
24 #include "yaffs_verify.h"
25 #include "yaffs_nand.h"
26 #include "yaffs_packedtags2.h"
27 #include "yaffs_nameval.h"
28 #include "yaffs_allocator.h"
29 #include "yaffs_attribs.h"
30 #include "yaffs_summary.h"
31
32 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */
33 #define YAFFS_GC_GOOD_ENOUGH 2
34 #define YAFFS_GC_PASSIVE_THRESHOLD 4
35
36 #include "yaffs_ecc.h"
37
38 /* Forward declarations */
39
40 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
41 const u8 *buffer, int n_bytes, int use_reserve);
42
43
44
45 /* Function to calculate chunk and offset */
46
47 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr,
48 int *chunk_out, u32 *offset_out)
49 {
50 int chunk;
51 u32 offset;
52
53 chunk = (u32) (addr >> dev->chunk_shift);
54
55 if (dev->chunk_div == 1) {
56 /* easy power of 2 case */
57 offset = (u32) (addr & dev->chunk_mask);
58 } else {
59 /* Non power-of-2 case */
60
61 loff_t chunk_base;
62
63 chunk /= dev->chunk_div;
64
65 chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk;
66 offset = (u32) (addr - chunk_base);
67 }
68
69 *chunk_out = chunk;
70 *offset_out = offset;
71 }
72
73 /* Function to return the number of shifts for a power of 2 greater than or
74 * equal to the given number
75 * Note we don't try to cater for all possible numbers and this does not have to
76 * be hellishly efficient.
77 */
78
79 static inline u32 calc_shifts_ceiling(u32 x)
80 {
81 int extra_bits;
82 int shifts;
83
84 shifts = extra_bits = 0;
85
86 while (x > 1) {
87 if (x & 1)
88 extra_bits++;
89 x >>= 1;
90 shifts++;
91 }
92
93 if (extra_bits)
94 shifts++;
95
96 return shifts;
97 }
98
99 /* Function to return the number of shifts to get a 1 in bit 0
100 */
101
102 static inline u32 calc_shifts(u32 x)
103 {
104 u32 shifts;
105
106 shifts = 0;
107
108 if (!x)
109 return 0;
110
111 while (!(x & 1)) {
112 x >>= 1;
113 shifts++;
114 }
115
116 return shifts;
117 }
118
119 /*
120 * Temporary buffer manipulations.
121 */
122
123 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev)
124 {
125 int i;
126 u8 *buf = (u8 *) 1;
127
128 memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer));
129
130 for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) {
131 dev->temp_buffer[i].in_use = 0;
132 buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
133 dev->temp_buffer[i].buffer = buf;
134 }
135
136 return buf ? YAFFS_OK : YAFFS_FAIL;
137 }
138
139 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev)
140 {
141 int i;
142
143 dev->temp_in_use++;
144 if (dev->temp_in_use > dev->max_temp)
145 dev->max_temp = dev->temp_in_use;
146
147 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
148 if (dev->temp_buffer[i].in_use == 0) {
149 dev->temp_buffer[i].in_use = 1;
150 return dev->temp_buffer[i].buffer;
151 }
152 }
153
154 yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers");
155 /*
156 * If we got here then we have to allocate an unmanaged one
157 * This is not good.
158 */
159
160 dev->unmanaged_buffer_allocs++;
161 return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS);
162
163 }
164
165 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer)
166 {
167 int i;
168
169 dev->temp_in_use--;
170
171 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
172 if (dev->temp_buffer[i].buffer == buffer) {
173 dev->temp_buffer[i].in_use = 0;
174 return;
175 }
176 }
177
178 if (buffer) {
179 /* assume it is an unmanaged one. */
180 yaffs_trace(YAFFS_TRACE_BUFFERS,
181 "Releasing unmanaged temp buffer");
182 kfree(buffer);
183 dev->unmanaged_buffer_deallocs++;
184 }
185
186 }
187
188 /*
189 * Determine if we have a managed buffer.
190 */
191 int yaffs_is_managed_tmp_buffer(struct yaffs_dev *dev, const u8 *buffer)
192 {
193 int i;
194
195 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
196 if (dev->temp_buffer[i].buffer == buffer)
197 return 1;
198 }
199
200 for (i = 0; i < dev->param.n_caches; i++) {
201 if (dev->cache[i].data == buffer)
202 return 1;
203 }
204
205 if (buffer == dev->checkpt_buffer)
206 return 1;
207
208 yaffs_trace(YAFFS_TRACE_ALWAYS,
209 "yaffs: unmaged buffer detected.");
210 return 0;
211 }
212
213 /*
214 * Functions for robustisizing TODO
215 *
216 */
217
218 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk,
219 const u8 *data,
220 const struct yaffs_ext_tags *tags)
221 {
222 }
223
224 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk,
225 const struct yaffs_ext_tags *tags)
226 {
227 }
228
229 void yaffs_handle_chunk_error(struct yaffs_dev *dev,
230 struct yaffs_block_info *bi)
231 {
232 if (!bi->gc_prioritise) {
233 bi->gc_prioritise = 1;
234 dev->has_pending_prioritised_gc = 1;
235 bi->chunk_error_strikes++;
236
237 if (bi->chunk_error_strikes > 3) {
238 bi->needs_retiring = 1; /* Too many stikes, so retire */
239 yaffs_trace(YAFFS_TRACE_ALWAYS,
240 "yaffs: Block struck out");
241
242 }
243 }
244 }
245
246 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk,
247 int erased_ok)
248 {
249 int flash_block = nand_chunk / dev->param.chunks_per_block;
250 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
251
252 yaffs_handle_chunk_error(dev, bi);
253
254 if (erased_ok) {
255 /* Was an actual write failure,
256 * so mark the block for retirement.*/
257 bi->needs_retiring = 1;
258 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
259 "**>> Block %d needs retiring", flash_block);
260 }
261
262 /* Delete the chunk */
263 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
264 yaffs_skip_rest_of_block(dev);
265 }
266
267 /*
268 * Verification code
269 */
270
271 /*
272 * Simple hash function. Needs to have a reasonable spread
273 */
274
275 static inline int yaffs_hash_fn(int n)
276 {
277 if (n < 0)
278 n = -n;
279 return n % YAFFS_NOBJECT_BUCKETS;
280 }
281
282 /*
283 * Access functions to useful fake objects.
284 * Note that root might have a presence in NAND if permissions are set.
285 */
286
287 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev)
288 {
289 return dev->root_dir;
290 }
291
292 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev)
293 {
294 return dev->lost_n_found;
295 }
296
297 /*
298 * Erased NAND checking functions
299 */
300
301 int yaffs_check_ff(u8 *buffer, int n_bytes)
302 {
303 /* Horrible, slow implementation */
304 while (n_bytes--) {
305 if (*buffer != 0xff)
306 return 0;
307 buffer++;
308 }
309 return 1;
310 }
311
312 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk)
313 {
314 int retval = YAFFS_OK;
315 u8 *data = yaffs_get_temp_buffer(dev);
316 struct yaffs_ext_tags tags;
317
318 yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags);
319
320 if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR)
321 retval = YAFFS_FAIL;
322
323 if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) ||
324 tags.chunk_used) {
325 yaffs_trace(YAFFS_TRACE_NANDACCESS,
326 "Chunk %d not erased", nand_chunk);
327 retval = YAFFS_FAIL;
328 }
329
330 yaffs_release_temp_buffer(dev, data);
331
332 return retval;
333
334 }
335
336 static int yaffs_verify_chunk_written(struct yaffs_dev *dev,
337 int nand_chunk,
338 const u8 *data,
339 struct yaffs_ext_tags *tags)
340 {
341 int retval = YAFFS_OK;
342 struct yaffs_ext_tags temp_tags;
343 u8 *buffer = yaffs_get_temp_buffer(dev);
344
345 yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags);
346 if (memcmp(buffer, data, dev->data_bytes_per_chunk) ||
347 temp_tags.obj_id != tags->obj_id ||
348 temp_tags.chunk_id != tags->chunk_id ||
349 temp_tags.n_bytes != tags->n_bytes)
350 retval = YAFFS_FAIL;
351
352 yaffs_release_temp_buffer(dev, buffer);
353
354 return retval;
355 }
356
357
358 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks)
359 {
360 int reserved_chunks;
361 int reserved_blocks = dev->param.n_reserved_blocks;
362 int checkpt_blocks;
363
364 checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev);
365
366 reserved_chunks =
367 (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block;
368
369 return (dev->n_free_chunks > (reserved_chunks + n_chunks));
370 }
371
372 static int yaffs_find_alloc_block(struct yaffs_dev *dev)
373 {
374 int i;
375 struct yaffs_block_info *bi;
376
377 if (dev->n_erased_blocks < 1) {
378 /* Hoosterman we've got a problem.
379 * Can't get space to gc
380 */
381 yaffs_trace(YAFFS_TRACE_ERROR,
382 "yaffs tragedy: no more erased blocks");
383
384 return -1;
385 }
386
387 /* Find an empty block. */
388
389 for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
390 dev->alloc_block_finder++;
391 if (dev->alloc_block_finder < dev->internal_start_block
392 || dev->alloc_block_finder > dev->internal_end_block) {
393 dev->alloc_block_finder = dev->internal_start_block;
394 }
395
396 bi = yaffs_get_block_info(dev, dev->alloc_block_finder);
397
398 if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) {
399 bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING;
400 dev->seq_number++;
401 bi->seq_number = dev->seq_number;
402 dev->n_erased_blocks--;
403 yaffs_trace(YAFFS_TRACE_ALLOCATE,
404 "Allocated block %d, seq %d, %d left" ,
405 dev->alloc_block_finder, dev->seq_number,
406 dev->n_erased_blocks);
407 return dev->alloc_block_finder;
408 }
409 }
410
411 yaffs_trace(YAFFS_TRACE_ALWAYS,
412 "yaffs tragedy: no more erased blocks, but there should have been %d",
413 dev->n_erased_blocks);
414
415 return -1;
416 }
417
418 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver,
419 struct yaffs_block_info **block_ptr)
420 {
421 int ret_val;
422 struct yaffs_block_info *bi;
423
424 if (dev->alloc_block < 0) {
425 /* Get next block to allocate off */
426 dev->alloc_block = yaffs_find_alloc_block(dev);
427 dev->alloc_page = 0;
428 }
429
430 if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) {
431 /* No space unless we're allowed to use the reserve. */
432 return -1;
433 }
434
435 if (dev->n_erased_blocks < dev->param.n_reserved_blocks
436 && dev->alloc_page == 0)
437 yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve");
438
439 /* Next page please.... */
440 if (dev->alloc_block >= 0) {
441 bi = yaffs_get_block_info(dev, dev->alloc_block);
442
443 ret_val = (dev->alloc_block * dev->param.chunks_per_block) +
444 dev->alloc_page;
445 bi->pages_in_use++;
446 yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page);
447
448 dev->alloc_page++;
449
450 dev->n_free_chunks--;
451
452 /* If the block is full set the state to full */
453 if (dev->alloc_page >= dev->param.chunks_per_block) {
454 bi->block_state = YAFFS_BLOCK_STATE_FULL;
455 dev->alloc_block = -1;
456 }
457
458 if (block_ptr)
459 *block_ptr = bi;
460
461 return ret_val;
462 }
463
464 yaffs_trace(YAFFS_TRACE_ERROR,
465 "!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!");
466
467 return -1;
468 }
469
470 static int yaffs_get_erased_chunks(struct yaffs_dev *dev)
471 {
472 int n;
473
474 n = dev->n_erased_blocks * dev->param.chunks_per_block;
475
476 if (dev->alloc_block > 0)
477 n += (dev->param.chunks_per_block - dev->alloc_page);
478
479 return n;
480
481 }
482
483 /*
484 * yaffs_skip_rest_of_block() skips over the rest of the allocation block
485 * if we don't want to write to it.
486 */
487 void yaffs_skip_rest_of_block(struct yaffs_dev *dev)
488 {
489 struct yaffs_block_info *bi;
490
491 if (dev->alloc_block > 0) {
492 bi = yaffs_get_block_info(dev, dev->alloc_block);
493 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) {
494 bi->block_state = YAFFS_BLOCK_STATE_FULL;
495 dev->alloc_block = -1;
496 }
497 }
498 }
499
500 static int yaffs_write_new_chunk(struct yaffs_dev *dev,
501 const u8 *data,
502 struct yaffs_ext_tags *tags, int use_reserver)
503 {
504 int attempts = 0;
505 int write_ok = 0;
506 int chunk;
507
508 yaffs2_checkpt_invalidate(dev);
509
510 do {
511 struct yaffs_block_info *bi = 0;
512 int erased_ok = 0;
513
514 chunk = yaffs_alloc_chunk(dev, use_reserver, &bi);
515 if (chunk < 0) {
516 /* no space */
517 break;
518 }
519
520 /* First check this chunk is erased, if it needs
521 * checking. The checking policy (unless forced
522 * always on) is as follows:
523 *
524 * Check the first page we try to write in a block.
525 * If the check passes then we don't need to check any
526 * more. If the check fails, we check again...
527 * If the block has been erased, we don't need to check.
528 *
529 * However, if the block has been prioritised for gc,
530 * then we think there might be something odd about
531 * this block and stop using it.
532 *
533 * Rationale: We should only ever see chunks that have
534 * not been erased if there was a partially written
535 * chunk due to power loss. This checking policy should
536 * catch that case with very few checks and thus save a
537 * lot of checks that are most likely not needed.
538 *
539 * Mods to the above
540 * If an erase check fails or the write fails we skip the
541 * rest of the block.
542 */
543
544 /* let's give it a try */
545 attempts++;
546
547 if (dev->param.always_check_erased)
548 bi->skip_erased_check = 0;
549
550 if (!bi->skip_erased_check) {
551 erased_ok = yaffs_check_chunk_erased(dev, chunk);
552 if (erased_ok != YAFFS_OK) {
553 yaffs_trace(YAFFS_TRACE_ERROR,
554 "**>> yaffs chunk %d was not erased",
555 chunk);
556
557 /* If not erased, delete this one,
558 * skip rest of block and
559 * try another chunk */
560 yaffs_chunk_del(dev, chunk, 1, __LINE__);
561 yaffs_skip_rest_of_block(dev);
562 continue;
563 }
564 }
565
566 write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags);
567
568 if (!bi->skip_erased_check)
569 write_ok =
570 yaffs_verify_chunk_written(dev, chunk, data, tags);
571
572 if (write_ok != YAFFS_OK) {
573 /* Clean up aborted write, skip to next block and
574 * try another chunk */
575 yaffs_handle_chunk_wr_error(dev, chunk, erased_ok);
576 continue;
577 }
578
579 bi->skip_erased_check = 1;
580
581 /* Copy the data into the robustification buffer */
582 yaffs_handle_chunk_wr_ok(dev, chunk, data, tags);
583
584 } while (write_ok != YAFFS_OK &&
585 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts));
586
587 if (!write_ok)
588 chunk = -1;
589
590 if (attempts > 1) {
591 yaffs_trace(YAFFS_TRACE_ERROR,
592 "**>> yaffs write required %d attempts",
593 attempts);
594 dev->n_retried_writes += (attempts - 1);
595 }
596
597 return chunk;
598 }
599
600 /*
601 * Block retiring for handling a broken block.
602 */
603
604 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block)
605 {
606 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
607
608 yaffs2_checkpt_invalidate(dev);
609
610 yaffs2_clear_oldest_dirty_seq(dev, bi);
611
612 if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) {
613 if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) {
614 yaffs_trace(YAFFS_TRACE_ALWAYS,
615 "yaffs: Failed to mark bad and erase block %d",
616 flash_block);
617 } else {
618 struct yaffs_ext_tags tags;
619 int chunk_id =
620 flash_block * dev->param.chunks_per_block;
621
622 u8 *buffer = yaffs_get_temp_buffer(dev);
623
624 memset(buffer, 0xff, dev->data_bytes_per_chunk);
625 memset(&tags, 0, sizeof(tags));
626 tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK;
627 if (dev->param.write_chunk_tags_fn(dev, chunk_id -
628 dev->chunk_offset,
629 buffer,
630 &tags) != YAFFS_OK)
631 yaffs_trace(YAFFS_TRACE_ALWAYS,
632 "yaffs: Failed to write bad block marker to block %d",
633 flash_block);
634
635 yaffs_release_temp_buffer(dev, buffer);
636 }
637 }
638
639 bi->block_state = YAFFS_BLOCK_STATE_DEAD;
640 bi->gc_prioritise = 0;
641 bi->needs_retiring = 0;
642
643 dev->n_retired_blocks++;
644 }
645
646 /*---------------- Name handling functions ------------*/
647
648 static u16 yaffs_calc_name_sum(const YCHAR *name)
649 {
650 u16 sum = 0;
651 u16 i = 1;
652
653 if (!name)
654 return 0;
655
656 while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) {
657
658 /* 0x1f mask is case insensitive */
659 sum += ((*name) & 0x1f) * i;
660 i++;
661 name++;
662 }
663 return sum;
664 }
665
666 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name)
667 {
668 memset(obj->short_name, 0, sizeof(obj->short_name));
669 if (name &&
670 yaffs_strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <=
671 YAFFS_SHORT_NAME_LENGTH)
672 yaffs_strcpy(obj->short_name, name);
673 else
674 obj->short_name[0] = _Y('\0');
675 obj->sum = yaffs_calc_name_sum(name);
676 }
677
678 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj,
679 const struct yaffs_obj_hdr *oh)
680 {
681 #ifdef CONFIG_YAFFS_AUTO_UNICODE
682 YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1];
683 memset(tmp_name, 0, sizeof(tmp_name));
684 yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name,
685 YAFFS_MAX_NAME_LENGTH + 1);
686 yaffs_set_obj_name(obj, tmp_name);
687 #else
688 yaffs_set_obj_name(obj, oh->name);
689 #endif
690 }
691
692 loff_t yaffs_max_file_size(struct yaffs_dev *dev)
693 {
694 return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk;
695 }
696
697 /*-------------------- TNODES -------------------
698
699 * List of spare tnodes
700 * The list is hooked together using the first pointer
701 * in the tnode.
702 */
703
704 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev)
705 {
706 struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev);
707
708 if (tn) {
709 memset(tn, 0, dev->tnode_size);
710 dev->n_tnodes++;
711 }
712
713 dev->checkpoint_blocks_required = 0; /* force recalculation */
714
715 return tn;
716 }
717
718 /* FreeTnode frees up a tnode and puts it back on the free list */
719 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn)
720 {
721 yaffs_free_raw_tnode(dev, tn);
722 dev->n_tnodes--;
723 dev->checkpoint_blocks_required = 0; /* force recalculation */
724 }
725
726 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev)
727 {
728 yaffs_deinit_raw_tnodes_and_objs(dev);
729 dev->n_obj = 0;
730 dev->n_tnodes = 0;
731 }
732
733 void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn,
734 unsigned pos, unsigned val)
735 {
736 u32 *map = (u32 *) tn;
737 u32 bit_in_map;
738 u32 bit_in_word;
739 u32 word_in_map;
740 u32 mask;
741
742 pos &= YAFFS_TNODES_LEVEL0_MASK;
743 val >>= dev->chunk_grp_bits;
744
745 bit_in_map = pos * dev->tnode_width;
746 word_in_map = bit_in_map / 32;
747 bit_in_word = bit_in_map & (32 - 1);
748
749 mask = dev->tnode_mask << bit_in_word;
750
751 map[word_in_map] &= ~mask;
752 map[word_in_map] |= (mask & (val << bit_in_word));
753
754 if (dev->tnode_width > (32 - bit_in_word)) {
755 bit_in_word = (32 - bit_in_word);
756 word_in_map++;
757 mask =
758 dev->tnode_mask >> bit_in_word;
759 map[word_in_map] &= ~mask;
760 map[word_in_map] |= (mask & (val >> bit_in_word));
761 }
762 }
763
764 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn,
765 unsigned pos)
766 {
767 u32 *map = (u32 *) tn;
768 u32 bit_in_map;
769 u32 bit_in_word;
770 u32 word_in_map;
771 u32 val;
772
773 pos &= YAFFS_TNODES_LEVEL0_MASK;
774
775 bit_in_map = pos * dev->tnode_width;
776 word_in_map = bit_in_map / 32;
777 bit_in_word = bit_in_map & (32 - 1);
778
779 val = map[word_in_map] >> bit_in_word;
780
781 if (dev->tnode_width > (32 - bit_in_word)) {
782 bit_in_word = (32 - bit_in_word);
783 word_in_map++;
784 val |= (map[word_in_map] << bit_in_word);
785 }
786
787 val &= dev->tnode_mask;
788 val <<= dev->chunk_grp_bits;
789
790 return val;
791 }
792
793 /* ------------------- End of individual tnode manipulation -----------------*/
794
795 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------
796 * The look up tree is represented by the top tnode and the number of top_level
797 * in the tree. 0 means only the level 0 tnode is in the tree.
798 */
799
800 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */
801 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev,
802 struct yaffs_file_var *file_struct,
803 u32 chunk_id)
804 {
805 struct yaffs_tnode *tn = file_struct->top;
806 u32 i;
807 int required_depth;
808 int level = file_struct->top_level;
809
810 /* Check sane level and chunk Id */
811 if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL)
812 return NULL;
813
814 if (chunk_id > YAFFS_MAX_CHUNK_ID)
815 return NULL;
816
817 /* First check we're tall enough (ie enough top_level) */
818
819 i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
820 required_depth = 0;
821 while (i) {
822 i >>= YAFFS_TNODES_INTERNAL_BITS;
823 required_depth++;
824 }
825
826 if (required_depth > file_struct->top_level)
827 return NULL; /* Not tall enough, so we can't find it */
828
829 /* Traverse down to level 0 */
830 while (level > 0 && tn) {
831 tn = tn->internal[(chunk_id >>
832 (YAFFS_TNODES_LEVEL0_BITS +
833 (level - 1) *
834 YAFFS_TNODES_INTERNAL_BITS)) &
835 YAFFS_TNODES_INTERNAL_MASK];
836 level--;
837 }
838
839 return tn;
840 }
841
842 /* add_find_tnode_0 finds the level 0 tnode if it exists,
843 * otherwise first expands the tree.
844 * This happens in two steps:
845 * 1. If the tree isn't tall enough, then make it taller.
846 * 2. Scan down the tree towards the level 0 tnode adding tnodes if required.
847 *
848 * Used when modifying the tree.
849 *
850 * If the tn argument is NULL, then a fresh tnode will be added otherwise the
851 * specified tn will be plugged into the ttree.
852 */
853
854 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev,
855 struct yaffs_file_var *file_struct,
856 u32 chunk_id,
857 struct yaffs_tnode *passed_tn)
858 {
859 int required_depth;
860 int i;
861 int l;
862 struct yaffs_tnode *tn;
863 u32 x;
864
865 /* Check sane level and page Id */
866 if (file_struct->top_level < 0 ||
867 file_struct->top_level > YAFFS_TNODES_MAX_LEVEL)
868 return NULL;
869
870 if (chunk_id > YAFFS_MAX_CHUNK_ID)
871 return NULL;
872
873 /* First check we're tall enough (ie enough top_level) */
874
875 x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
876 required_depth = 0;
877 while (x) {
878 x >>= YAFFS_TNODES_INTERNAL_BITS;
879 required_depth++;
880 }
881
882 if (required_depth > file_struct->top_level) {
883 /* Not tall enough, gotta make the tree taller */
884 for (i = file_struct->top_level; i < required_depth; i++) {
885
886 tn = yaffs_get_tnode(dev);
887
888 if (tn) {
889 tn->internal[0] = file_struct->top;
890 file_struct->top = tn;
891 file_struct->top_level++;
892 } else {
893 yaffs_trace(YAFFS_TRACE_ERROR,
894 "yaffs: no more tnodes");
895 return NULL;
896 }
897 }
898 }
899
900 /* Traverse down to level 0, adding anything we need */
901
902 l = file_struct->top_level;
903 tn = file_struct->top;
904
905 if (l > 0) {
906 while (l > 0 && tn) {
907 x = (chunk_id >>
908 (YAFFS_TNODES_LEVEL0_BITS +
909 (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) &
910 YAFFS_TNODES_INTERNAL_MASK;
911
912 if ((l > 1) && !tn->internal[x]) {
913 /* Add missing non-level-zero tnode */
914 tn->internal[x] = yaffs_get_tnode(dev);
915 if (!tn->internal[x])
916 return NULL;
917 } else if (l == 1) {
918 /* Looking from level 1 at level 0 */
919 if (passed_tn) {
920 /* If we already have one, release it */
921 if (tn->internal[x])
922 yaffs_free_tnode(dev,
923 tn->internal[x]);
924 tn->internal[x] = passed_tn;
925
926 } else if (!tn->internal[x]) {
927 /* Don't have one, none passed in */
928 tn->internal[x] = yaffs_get_tnode(dev);
929 if (!tn->internal[x])
930 return NULL;
931 }
932 }
933
934 tn = tn->internal[x];
935 l--;
936 }
937 } else {
938 /* top is level 0 */
939 if (passed_tn) {
940 memcpy(tn, passed_tn,
941 (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8);
942 yaffs_free_tnode(dev, passed_tn);
943 }
944 }
945
946 return tn;
947 }
948
949 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id,
950 int chunk_obj)
951 {
952 return (tags->chunk_id == chunk_obj &&
953 tags->obj_id == obj_id &&
954 !tags->is_deleted) ? 1 : 0;
955
956 }
957
958 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk,
959 struct yaffs_ext_tags *tags, int obj_id,
960 int inode_chunk)
961 {
962 int j;
963
964 for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) {
965 if (yaffs_check_chunk_bit
966 (dev, the_chunk / dev->param.chunks_per_block,
967 the_chunk % dev->param.chunks_per_block)) {
968
969 if (dev->chunk_grp_size == 1)
970 return the_chunk;
971 else {
972 yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL,
973 tags);
974 if (yaffs_tags_match(tags,
975 obj_id, inode_chunk)) {
976 /* found it; */
977 return the_chunk;
978 }
979 }
980 }
981 the_chunk++;
982 }
983 return -1;
984 }
985
986 static int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
987 struct yaffs_ext_tags *tags)
988 {
989 /*Get the Tnode, then get the level 0 offset chunk offset */
990 struct yaffs_tnode *tn;
991 int the_chunk = -1;
992 struct yaffs_ext_tags local_tags;
993 int ret_val = -1;
994 struct yaffs_dev *dev = in->my_dev;
995
996 if (!tags) {
997 /* Passed a NULL, so use our own tags space */
998 tags = &local_tags;
999 }
1000
1001 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1002
1003 if (!tn)
1004 return ret_val;
1005
1006 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1007
1008 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1009 inode_chunk);
1010 return ret_val;
1011 }
1012
1013 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk,
1014 struct yaffs_ext_tags *tags)
1015 {
1016 /* Get the Tnode, then get the level 0 offset chunk offset */
1017 struct yaffs_tnode *tn;
1018 int the_chunk = -1;
1019 struct yaffs_ext_tags local_tags;
1020 struct yaffs_dev *dev = in->my_dev;
1021 int ret_val = -1;
1022
1023 if (!tags) {
1024 /* Passed a NULL, so use our own tags space */
1025 tags = &local_tags;
1026 }
1027
1028 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1029
1030 if (!tn)
1031 return ret_val;
1032
1033 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1034
1035 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1036 inode_chunk);
1037
1038 /* Delete the entry in the filestructure (if found) */
1039 if (ret_val != -1)
1040 yaffs_load_tnode_0(dev, tn, inode_chunk, 0);
1041
1042 return ret_val;
1043 }
1044
1045 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
1046 int nand_chunk, int in_scan)
1047 {
1048 /* NB in_scan is zero unless scanning.
1049 * For forward scanning, in_scan is > 0;
1050 * for backward scanning in_scan is < 0
1051 *
1052 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there.
1053 */
1054
1055 struct yaffs_tnode *tn;
1056 struct yaffs_dev *dev = in->my_dev;
1057 int existing_cunk;
1058 struct yaffs_ext_tags existing_tags;
1059 struct yaffs_ext_tags new_tags;
1060 unsigned existing_serial, new_serial;
1061
1062 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) {
1063 /* Just ignore an attempt at putting a chunk into a non-file
1064 * during scanning.
1065 * If it is not during Scanning then something went wrong!
1066 */
1067 if (!in_scan) {
1068 yaffs_trace(YAFFS_TRACE_ERROR,
1069 "yaffs tragedy:attempt to put data chunk into a non-file"
1070 );
1071 BUG();
1072 }
1073
1074 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1075 return YAFFS_OK;
1076 }
1077
1078 tn = yaffs_add_find_tnode_0(dev,
1079 &in->variant.file_variant,
1080 inode_chunk, NULL);
1081 if (!tn)
1082 return YAFFS_FAIL;
1083
1084 if (!nand_chunk)
1085 /* Dummy insert, bail now */
1086 return YAFFS_OK;
1087
1088 existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk);
1089
1090 if (in_scan != 0) {
1091 /* If we're scanning then we need to test for duplicates
1092 * NB This does not need to be efficient since it should only
1093 * happen when the power fails during a write, then only one
1094 * chunk should ever be affected.
1095 *
1096 * Correction for YAFFS2: This could happen quite a lot and we
1097 * need to think about efficiency! TODO
1098 * Update: For backward scanning we don't need to re-read tags
1099 * so this is quite cheap.
1100 */
1101
1102 if (existing_cunk > 0) {
1103 /* NB Right now existing chunk will not be real
1104 * chunk_id if the chunk group size > 1
1105 * thus we have to do a FindChunkInFile to get the
1106 * real chunk id.
1107 *
1108 * We have a duplicate now we need to decide which
1109 * one to use:
1110 *
1111 * Backwards scanning YAFFS2: The old one is what
1112 * we use, dump the new one.
1113 * YAFFS1: Get both sets of tags and compare serial
1114 * numbers.
1115 */
1116
1117 if (in_scan > 0) {
1118 /* Only do this for forward scanning */
1119 yaffs_rd_chunk_tags_nand(dev,
1120 nand_chunk,
1121 NULL, &new_tags);
1122
1123 /* Do a proper find */
1124 existing_cunk =
1125 yaffs_find_chunk_in_file(in, inode_chunk,
1126 &existing_tags);
1127 }
1128
1129 if (existing_cunk <= 0) {
1130 /*Hoosterman - how did this happen? */
1131
1132 yaffs_trace(YAFFS_TRACE_ERROR,
1133 "yaffs tragedy: existing chunk < 0 in scan"
1134 );
1135
1136 }
1137
1138 /* NB The deleted flags should be false, otherwise
1139 * the chunks will not be loaded during a scan
1140 */
1141
1142 if (in_scan > 0) {
1143 new_serial = new_tags.serial_number;
1144 existing_serial = existing_tags.serial_number;
1145 }
1146
1147 if ((in_scan > 0) &&
1148 (existing_cunk <= 0 ||
1149 ((existing_serial + 1) & 3) == new_serial)) {
1150 /* Forward scanning.
1151 * Use new
1152 * Delete the old one and drop through to
1153 * update the tnode
1154 */
1155 yaffs_chunk_del(dev, existing_cunk, 1,
1156 __LINE__);
1157 } else {
1158 /* Backward scanning or we want to use the
1159 * existing one
1160 * Delete the new one and return early so that
1161 * the tnode isn't changed
1162 */
1163 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1164 return YAFFS_OK;
1165 }
1166 }
1167
1168 }
1169
1170 if (existing_cunk == 0)
1171 in->n_data_chunks++;
1172
1173 yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk);
1174
1175 return YAFFS_OK;
1176 }
1177
1178 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk)
1179 {
1180 struct yaffs_block_info *the_block;
1181 unsigned block_no;
1182
1183 yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk);
1184
1185 block_no = chunk / dev->param.chunks_per_block;
1186 the_block = yaffs_get_block_info(dev, block_no);
1187 if (the_block) {
1188 the_block->soft_del_pages++;
1189 dev->n_free_chunks++;
1190 yaffs2_update_oldest_dirty_seq(dev, block_no, the_block);
1191 }
1192 }
1193
1194 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all
1195 * the chunks in the file.
1196 * All soft deleting does is increment the block's softdelete count and pulls
1197 * the chunk out of the tnode.
1198 * Thus, essentially this is the same as DeleteWorker except that the chunks
1199 * are soft deleted.
1200 */
1201
1202 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn,
1203 u32 level, int chunk_offset)
1204 {
1205 int i;
1206 int the_chunk;
1207 int all_done = 1;
1208 struct yaffs_dev *dev = in->my_dev;
1209
1210 if (!tn)
1211 return 1;
1212
1213 if (level > 0) {
1214 for (i = YAFFS_NTNODES_INTERNAL - 1;
1215 all_done && i >= 0;
1216 i--) {
1217 if (tn->internal[i]) {
1218 all_done =
1219 yaffs_soft_del_worker(in,
1220 tn->internal[i],
1221 level - 1,
1222 (chunk_offset <<
1223 YAFFS_TNODES_INTERNAL_BITS)
1224 + i);
1225 if (all_done) {
1226 yaffs_free_tnode(dev,
1227 tn->internal[i]);
1228 tn->internal[i] = NULL;
1229 } else {
1230 /* Can this happen? */
1231 }
1232 }
1233 }
1234 return (all_done) ? 1 : 0;
1235 }
1236
1237 /* level 0 */
1238 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) {
1239 the_chunk = yaffs_get_group_base(dev, tn, i);
1240 if (the_chunk) {
1241 yaffs_soft_del_chunk(dev, the_chunk);
1242 yaffs_load_tnode_0(dev, tn, i, 0);
1243 }
1244 }
1245 return 1;
1246 }
1247
1248 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj)
1249 {
1250 struct yaffs_dev *dev = obj->my_dev;
1251 struct yaffs_obj *parent;
1252
1253 yaffs_verify_obj_in_dir(obj);
1254 parent = obj->parent;
1255
1256 yaffs_verify_dir(parent);
1257
1258 if (dev && dev->param.remove_obj_fn)
1259 dev->param.remove_obj_fn(obj);
1260
1261 list_del_init(&obj->siblings);
1262 obj->parent = NULL;
1263
1264 yaffs_verify_dir(parent);
1265 }
1266
1267 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj)
1268 {
1269 if (!directory) {
1270 yaffs_trace(YAFFS_TRACE_ALWAYS,
1271 "tragedy: Trying to add an object to a null pointer directory"
1272 );
1273 BUG();
1274 return;
1275 }
1276 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1277 yaffs_trace(YAFFS_TRACE_ALWAYS,
1278 "tragedy: Trying to add an object to a non-directory"
1279 );
1280 BUG();
1281 }
1282
1283 if (obj->siblings.prev == NULL) {
1284 /* Not initialised */
1285 BUG();
1286 }
1287
1288 yaffs_verify_dir(directory);
1289
1290 yaffs_remove_obj_from_dir(obj);
1291
1292 /* Now add it */
1293 list_add(&obj->siblings, &directory->variant.dir_variant.children);
1294 obj->parent = directory;
1295
1296 if (directory == obj->my_dev->unlinked_dir
1297 || directory == obj->my_dev->del_dir) {
1298 obj->unlinked = 1;
1299 obj->my_dev->n_unlinked_files++;
1300 obj->rename_allowed = 0;
1301 }
1302
1303 yaffs_verify_dir(directory);
1304 yaffs_verify_obj_in_dir(obj);
1305 }
1306
1307 static int yaffs_change_obj_name(struct yaffs_obj *obj,
1308 struct yaffs_obj *new_dir,
1309 const YCHAR *new_name, int force, int shadows)
1310 {
1311 int unlink_op;
1312 int del_op;
1313 struct yaffs_obj *existing_target;
1314
1315 if (new_dir == NULL)
1316 new_dir = obj->parent; /* use the old directory */
1317
1318 if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1319 yaffs_trace(YAFFS_TRACE_ALWAYS,
1320 "tragedy: yaffs_change_obj_name: new_dir is not a directory"
1321 );
1322 BUG();
1323 }
1324
1325 unlink_op = (new_dir == obj->my_dev->unlinked_dir);
1326 del_op = (new_dir == obj->my_dev->del_dir);
1327
1328 existing_target = yaffs_find_by_name(new_dir, new_name);
1329
1330 /* If the object is a file going into the unlinked directory,
1331 * then it is OK to just stuff it in since duplicate names are OK.
1332 * else only proceed if the new name does not exist and we're putting
1333 * it into a directory.
1334 */
1335 if (!(unlink_op || del_op || force ||
1336 shadows > 0 || !existing_target) ||
1337 new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
1338 return YAFFS_FAIL;
1339
1340 yaffs_set_obj_name(obj, new_name);
1341 obj->dirty = 1;
1342 yaffs_add_obj_to_dir(new_dir, obj);
1343
1344 if (unlink_op)
1345 obj->unlinked = 1;
1346
1347 /* If it is a deletion then we mark it as a shrink for gc */
1348 if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0)
1349 return YAFFS_OK;
1350
1351 return YAFFS_FAIL;
1352 }
1353
1354 /*------------------------ Short Operations Cache ------------------------------
1355 * In many situations where there is no high level buffering a lot of
1356 * reads might be short sequential reads, and a lot of writes may be short
1357 * sequential writes. eg. scanning/writing a jpeg file.
1358 * In these cases, a short read/write cache can provide a huge perfomance
1359 * benefit with dumb-as-a-rock code.
1360 * In Linux, the page cache provides read buffering and the short op cache
1361 * provides write buffering.
1362 *
1363 * There are a small number (~10) of cache chunks per device so that we don't
1364 * need a very intelligent search.
1365 */
1366
1367 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj)
1368 {
1369 struct yaffs_dev *dev = obj->my_dev;
1370 int i;
1371 struct yaffs_cache *cache;
1372 int n_caches = obj->my_dev->param.n_caches;
1373
1374 for (i = 0; i < n_caches; i++) {
1375 cache = &dev->cache[i];
1376 if (cache->object == obj && cache->dirty)
1377 return 1;
1378 }
1379
1380 return 0;
1381 }
1382
1383 static void yaffs_flush_file_cache(struct yaffs_obj *obj)
1384 {
1385 struct yaffs_dev *dev = obj->my_dev;
1386 int lowest = -99; /* Stop compiler whining. */
1387 int i;
1388 struct yaffs_cache *cache;
1389 int chunk_written = 0;
1390 int n_caches = obj->my_dev->param.n_caches;
1391
1392 if (n_caches < 1)
1393 return;
1394 do {
1395 cache = NULL;
1396
1397 /* Find the lowest dirty chunk for this object */
1398 for (i = 0; i < n_caches; i++) {
1399 if (dev->cache[i].object == obj &&
1400 dev->cache[i].dirty) {
1401 if (!cache ||
1402 dev->cache[i].chunk_id < lowest) {
1403 cache = &dev->cache[i];
1404 lowest = cache->chunk_id;
1405 }
1406 }
1407 }
1408
1409 if (cache && !cache->locked) {
1410 /* Write it out and free it up */
1411 chunk_written =
1412 yaffs_wr_data_obj(cache->object,
1413 cache->chunk_id,
1414 cache->data,
1415 cache->n_bytes, 1);
1416 cache->dirty = 0;
1417 cache->object = NULL;
1418 }
1419 } while (cache && chunk_written > 0);
1420
1421 if (cache)
1422 /* Hoosterman, disk full while writing cache out. */
1423 yaffs_trace(YAFFS_TRACE_ERROR,
1424 "yaffs tragedy: no space during cache write");
1425 }
1426
1427 /*yaffs_flush_whole_cache(dev)
1428 *
1429 *
1430 */
1431
1432 void yaffs_flush_whole_cache(struct yaffs_dev *dev)
1433 {
1434 struct yaffs_obj *obj;
1435 int n_caches = dev->param.n_caches;
1436 int i;
1437
1438 /* Find a dirty object in the cache and flush it...
1439 * until there are no further dirty objects.
1440 */
1441 do {
1442 obj = NULL;
1443 for (i = 0; i < n_caches && !obj; i++) {
1444 if (dev->cache[i].object && dev->cache[i].dirty)
1445 obj = dev->cache[i].object;
1446 }
1447 if (obj)
1448 yaffs_flush_file_cache(obj);
1449 } while (obj);
1450
1451 }
1452
1453 /* Grab us a cache chunk for use.
1454 * First look for an empty one.
1455 * Then look for the least recently used non-dirty one.
1456 * Then look for the least recently used dirty one...., flush and look again.
1457 */
1458 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev)
1459 {
1460 int i;
1461
1462 if (dev->param.n_caches > 0) {
1463 for (i = 0; i < dev->param.n_caches; i++) {
1464 if (!dev->cache[i].object)
1465 return &dev->cache[i];
1466 }
1467 }
1468 return NULL;
1469 }
1470
1471 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev)
1472 {
1473 struct yaffs_cache *cache;
1474 struct yaffs_obj *the_obj;
1475 int usage;
1476 int i;
1477
1478 if (dev->param.n_caches < 1)
1479 return NULL;
1480
1481 /* Try find a non-dirty one... */
1482
1483 cache = yaffs_grab_chunk_worker(dev);
1484
1485 if (!cache) {
1486 /* They were all dirty, find the LRU object and flush
1487 * its cache, then find again.
1488 * NB what's here is not very accurate,
1489 * we actually flush the object with the LRU chunk.
1490 */
1491
1492 /* With locking we can't assume we can use entry zero,
1493 * Set the_obj to a valid pointer for Coverity. */
1494 the_obj = dev->cache[0].object;
1495 usage = -1;
1496 cache = NULL;
1497
1498 for (i = 0; i < dev->param.n_caches; i++) {
1499 if (dev->cache[i].object &&
1500 !dev->cache[i].locked &&
1501 (dev->cache[i].last_use < usage ||
1502 !cache)) {
1503 usage = dev->cache[i].last_use;
1504 the_obj = dev->cache[i].object;
1505 cache = &dev->cache[i];
1506 }
1507 }
1508
1509 if (!cache || cache->dirty) {
1510 /* Flush and try again */
1511 yaffs_flush_file_cache(the_obj);
1512 cache = yaffs_grab_chunk_worker(dev);
1513 }
1514 }
1515 return cache;
1516 }
1517
1518 /* Find a cached chunk */
1519 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj,
1520 int chunk_id)
1521 {
1522 struct yaffs_dev *dev = obj->my_dev;
1523 int i;
1524
1525 if (dev->param.n_caches < 1)
1526 return NULL;
1527
1528 for (i = 0; i < dev->param.n_caches; i++) {
1529 if (dev->cache[i].object == obj &&
1530 dev->cache[i].chunk_id == chunk_id) {
1531 dev->cache_hits++;
1532
1533 return &dev->cache[i];
1534 }
1535 }
1536 return NULL;
1537 }
1538
1539 /* Mark the chunk for the least recently used algorithym */
1540 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache,
1541 int is_write)
1542 {
1543 int i;
1544
1545 if (dev->param.n_caches < 1)
1546 return;
1547
1548 if (dev->cache_last_use < 0 ||
1549 dev->cache_last_use > 100000000) {
1550 /* Reset the cache usages */
1551 for (i = 1; i < dev->param.n_caches; i++)
1552 dev->cache[i].last_use = 0;
1553
1554 dev->cache_last_use = 0;
1555 }
1556 dev->cache_last_use++;
1557 cache->last_use = dev->cache_last_use;
1558
1559 if (is_write)
1560 cache->dirty = 1;
1561 }
1562
1563 /* Invalidate a single cache page.
1564 * Do this when a whole page gets written,
1565 * ie the short cache for this page is no longer valid.
1566 */
1567 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id)
1568 {
1569 struct yaffs_cache *cache;
1570
1571 if (object->my_dev->param.n_caches > 0) {
1572 cache = yaffs_find_chunk_cache(object, chunk_id);
1573
1574 if (cache)
1575 cache->object = NULL;
1576 }
1577 }
1578
1579 /* Invalidate all the cache pages associated with this object
1580 * Do this whenever ther file is deleted or resized.
1581 */
1582 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in)
1583 {
1584 int i;
1585 struct yaffs_dev *dev = in->my_dev;
1586
1587 if (dev->param.n_caches > 0) {
1588 /* Invalidate it. */
1589 for (i = 0; i < dev->param.n_caches; i++) {
1590 if (dev->cache[i].object == in)
1591 dev->cache[i].object = NULL;
1592 }
1593 }
1594 }
1595
1596 static void yaffs_unhash_obj(struct yaffs_obj *obj)
1597 {
1598 int bucket;
1599 struct yaffs_dev *dev = obj->my_dev;
1600
1601 /* If it is still linked into the bucket list, free from the list */
1602 if (!list_empty(&obj->hash_link)) {
1603 list_del_init(&obj->hash_link);
1604 bucket = yaffs_hash_fn(obj->obj_id);
1605 dev->obj_bucket[bucket].count--;
1606 }
1607 }
1608
1609 /* FreeObject frees up a Object and puts it back on the free list */
1610 static void yaffs_free_obj(struct yaffs_obj *obj)
1611 {
1612 struct yaffs_dev *dev;
1613
1614 if (!obj) {
1615 BUG();
1616 return;
1617 }
1618 dev = obj->my_dev;
1619 yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p",
1620 obj, obj->my_inode);
1621 if (obj->parent)
1622 BUG();
1623 if (!list_empty(&obj->siblings))
1624 BUG();
1625
1626 if (obj->my_inode) {
1627 /* We're still hooked up to a cached inode.
1628 * Don't delete now, but mark for later deletion
1629 */
1630 obj->defered_free = 1;
1631 return;
1632 }
1633
1634 yaffs_unhash_obj(obj);
1635
1636 yaffs_free_raw_obj(dev, obj);
1637 dev->n_obj--;
1638 dev->checkpoint_blocks_required = 0; /* force recalculation */
1639 }
1640
1641 void yaffs_handle_defered_free(struct yaffs_obj *obj)
1642 {
1643 if (obj->defered_free)
1644 yaffs_free_obj(obj);
1645 }
1646
1647 static int yaffs_generic_obj_del(struct yaffs_obj *in)
1648 {
1649 /* Iinvalidate the file's data in the cache, without flushing. */
1650 yaffs_invalidate_whole_cache(in);
1651
1652 if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) {
1653 /* Move to unlinked directory so we have a deletion record */
1654 yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0,
1655 0);
1656 }
1657
1658 yaffs_remove_obj_from_dir(in);
1659 yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__);
1660 in->hdr_chunk = 0;
1661
1662 yaffs_free_obj(in);
1663 return YAFFS_OK;
1664
1665 }
1666
1667 static void yaffs_soft_del_file(struct yaffs_obj *obj)
1668 {
1669 if (!obj->deleted ||
1670 obj->variant_type != YAFFS_OBJECT_TYPE_FILE ||
1671 obj->soft_del)
1672 return;
1673
1674 if (obj->n_data_chunks <= 0) {
1675 /* Empty file with no duplicate object headers,
1676 * just delete it immediately */
1677 yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top);
1678 obj->variant.file_variant.top = NULL;
1679 yaffs_trace(YAFFS_TRACE_TRACING,
1680 "yaffs: Deleting empty file %d",
1681 obj->obj_id);
1682 yaffs_generic_obj_del(obj);
1683 } else {
1684 yaffs_soft_del_worker(obj,
1685 obj->variant.file_variant.top,
1686 obj->variant.
1687 file_variant.top_level, 0);
1688 obj->soft_del = 1;
1689 }
1690 }
1691
1692 /* Pruning removes any part of the file structure tree that is beyond the
1693 * bounds of the file (ie that does not point to chunks).
1694 *
1695 * A file should only get pruned when its size is reduced.
1696 *
1697 * Before pruning, the chunks must be pulled from the tree and the
1698 * level 0 tnode entries must be zeroed out.
1699 * Could also use this for file deletion, but that's probably better handled
1700 * by a special case.
1701 *
1702 * This function is recursive. For levels > 0 the function is called again on
1703 * any sub-tree. For level == 0 we just check if the sub-tree has data.
1704 * If there is no data in a subtree then it is pruned.
1705 */
1706
1707 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev,
1708 struct yaffs_tnode *tn, u32 level,
1709 int del0)
1710 {
1711 int i;
1712 int has_data;
1713
1714 if (!tn)
1715 return tn;
1716
1717 has_data = 0;
1718
1719 if (level > 0) {
1720 for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) {
1721 if (tn->internal[i]) {
1722 tn->internal[i] =
1723 yaffs_prune_worker(dev,
1724 tn->internal[i],
1725 level - 1,
1726 (i == 0) ? del0 : 1);
1727 }
1728
1729 if (tn->internal[i])
1730 has_data++;
1731 }
1732 } else {
1733 int tnode_size_u32 = dev->tnode_size / sizeof(u32);
1734 u32 *map = (u32 *) tn;
1735
1736 for (i = 0; !has_data && i < tnode_size_u32; i++) {
1737 if (map[i])
1738 has_data++;
1739 }
1740 }
1741
1742 if (has_data == 0 && del0) {
1743 /* Free and return NULL */
1744 yaffs_free_tnode(dev, tn);
1745 tn = NULL;
1746 }
1747 return tn;
1748 }
1749
1750 static int yaffs_prune_tree(struct yaffs_dev *dev,
1751 struct yaffs_file_var *file_struct)
1752 {
1753 int i;
1754 int has_data;
1755 int done = 0;
1756 struct yaffs_tnode *tn;
1757
1758 if (file_struct->top_level < 1)
1759 return YAFFS_OK;
1760
1761 file_struct->top =
1762 yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0);
1763
1764 /* Now we have a tree with all the non-zero branches NULL but
1765 * the height is the same as it was.
1766 * Let's see if we can trim internal tnodes to shorten the tree.
1767 * We can do this if only the 0th element in the tnode is in use
1768 * (ie all the non-zero are NULL)
1769 */
1770
1771 while (file_struct->top_level && !done) {
1772 tn = file_struct->top;
1773
1774 has_data = 0;
1775 for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) {
1776 if (tn->internal[i])
1777 has_data++;
1778 }
1779
1780 if (!has_data) {
1781 file_struct->top = tn->internal[0];
1782 file_struct->top_level--;
1783 yaffs_free_tnode(dev, tn);
1784 } else {
1785 done = 1;
1786 }
1787 }
1788
1789 return YAFFS_OK;
1790 }
1791
1792 /*-------------------- End of File Structure functions.-------------------*/
1793
1794 /* alloc_empty_obj gets us a clean Object.*/
1795 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev)
1796 {
1797 struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev);
1798
1799 if (!obj)
1800 return obj;
1801
1802 dev->n_obj++;
1803
1804 /* Now sweeten it up... */
1805
1806 memset(obj, 0, sizeof(struct yaffs_obj));
1807 obj->being_created = 1;
1808
1809 obj->my_dev = dev;
1810 obj->hdr_chunk = 0;
1811 obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN;
1812 INIT_LIST_HEAD(&(obj->hard_links));
1813 INIT_LIST_HEAD(&(obj->hash_link));
1814 INIT_LIST_HEAD(&obj->siblings);
1815
1816 /* Now make the directory sane */
1817 if (dev->root_dir) {
1818 obj->parent = dev->root_dir;
1819 list_add(&(obj->siblings),
1820 &dev->root_dir->variant.dir_variant.children);
1821 }
1822
1823 /* Add it to the lost and found directory.
1824 * NB Can't put root or lost-n-found in lost-n-found so
1825 * check if lost-n-found exists first
1826 */
1827 if (dev->lost_n_found)
1828 yaffs_add_obj_to_dir(dev->lost_n_found, obj);
1829
1830 obj->being_created = 0;
1831
1832 dev->checkpoint_blocks_required = 0; /* force recalculation */
1833
1834 return obj;
1835 }
1836
1837 static int yaffs_find_nice_bucket(struct yaffs_dev *dev)
1838 {
1839 int i;
1840 int l = 999;
1841 int lowest = 999999;
1842
1843 /* Search for the shortest list or one that
1844 * isn't too long.
1845 */
1846
1847 for (i = 0; i < 10 && lowest > 4; i++) {
1848 dev->bucket_finder++;
1849 dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS;
1850 if (dev->obj_bucket[dev->bucket_finder].count < lowest) {
1851 lowest = dev->obj_bucket[dev->bucket_finder].count;
1852 l = dev->bucket_finder;
1853 }
1854 }
1855
1856 return l;
1857 }
1858
1859 static int yaffs_new_obj_id(struct yaffs_dev *dev)
1860 {
1861 int bucket = yaffs_find_nice_bucket(dev);
1862 int found = 0;
1863 struct list_head *i;
1864 u32 n = (u32) bucket;
1865
1866 /* Now find an object value that has not already been taken
1867 * by scanning the list.
1868 */
1869
1870 while (!found) {
1871 found = 1;
1872 n += YAFFS_NOBJECT_BUCKETS;
1873 if (1 || dev->obj_bucket[bucket].count > 0) {
1874 list_for_each(i, &dev->obj_bucket[bucket].list) {
1875 /* If there is already one in the list */
1876 if (i && list_entry(i, struct yaffs_obj,
1877 hash_link)->obj_id == n) {
1878 found = 0;
1879 }
1880 }
1881 }
1882 }
1883 return n;
1884 }
1885
1886 static void yaffs_hash_obj(struct yaffs_obj *in)
1887 {
1888 int bucket = yaffs_hash_fn(in->obj_id);
1889 struct yaffs_dev *dev = in->my_dev;
1890
1891 list_add(&in->hash_link, &dev->obj_bucket[bucket].list);
1892 dev->obj_bucket[bucket].count++;
1893 }
1894
1895 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number)
1896 {
1897 int bucket = yaffs_hash_fn(number);
1898 struct list_head *i;
1899 struct yaffs_obj *in;
1900
1901 list_for_each(i, &dev->obj_bucket[bucket].list) {
1902 /* Look if it is in the list */
1903 in = list_entry(i, struct yaffs_obj, hash_link);
1904 if (in->obj_id == number) {
1905 /* Don't show if it is defered free */
1906 if (in->defered_free)
1907 return NULL;
1908 return in;
1909 }
1910 }
1911
1912 return NULL;
1913 }
1914
1915 struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number,
1916 enum yaffs_obj_type type)
1917 {
1918 struct yaffs_obj *the_obj = NULL;
1919 struct yaffs_tnode *tn = NULL;
1920
1921 if (number < 0)
1922 number = yaffs_new_obj_id(dev);
1923
1924 if (type == YAFFS_OBJECT_TYPE_FILE) {
1925 tn = yaffs_get_tnode(dev);
1926 if (!tn)
1927 return NULL;
1928 }
1929
1930 the_obj = yaffs_alloc_empty_obj(dev);
1931 if (!the_obj) {
1932 if (tn)
1933 yaffs_free_tnode(dev, tn);
1934 return NULL;
1935 }
1936
1937 the_obj->fake = 0;
1938 the_obj->rename_allowed = 1;
1939 the_obj->unlink_allowed = 1;
1940 the_obj->obj_id = number;
1941 yaffs_hash_obj(the_obj);
1942 the_obj->variant_type = type;
1943 yaffs_load_current_time(the_obj, 1, 1);
1944
1945 switch (type) {
1946 case YAFFS_OBJECT_TYPE_FILE:
1947 the_obj->variant.file_variant.file_size = 0;
1948 the_obj->variant.file_variant.scanned_size = 0;
1949 the_obj->variant.file_variant.shrink_size =
1950 yaffs_max_file_size(dev);
1951 the_obj->variant.file_variant.top_level = 0;
1952 the_obj->variant.file_variant.top = tn;
1953 break;
1954 case YAFFS_OBJECT_TYPE_DIRECTORY:
1955 INIT_LIST_HEAD(&the_obj->variant.dir_variant.children);
1956 INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty);
1957 break;
1958 case YAFFS_OBJECT_TYPE_SYMLINK:
1959 case YAFFS_OBJECT_TYPE_HARDLINK:
1960 case YAFFS_OBJECT_TYPE_SPECIAL:
1961 /* No action required */
1962 break;
1963 case YAFFS_OBJECT_TYPE_UNKNOWN:
1964 /* todo this should not happen */
1965 break;
1966 }
1967 return the_obj;
1968 }
1969
1970 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev,
1971 int number, u32 mode)
1972 {
1973
1974 struct yaffs_obj *obj =
1975 yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY);
1976
1977 if (!obj)
1978 return NULL;
1979
1980 obj->fake = 1; /* it is fake so it might not use NAND */
1981 obj->rename_allowed = 0;
1982 obj->unlink_allowed = 0;
1983 obj->deleted = 0;
1984 obj->unlinked = 0;
1985 obj->yst_mode = mode;
1986 obj->my_dev = dev;
1987 obj->hdr_chunk = 0; /* Not a valid chunk. */
1988 return obj;
1989
1990 }
1991
1992
1993 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev)
1994 {
1995 int i;
1996
1997 dev->n_obj = 0;
1998 dev->n_tnodes = 0;
1999 yaffs_init_raw_tnodes_and_objs(dev);
2000
2001 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
2002 INIT_LIST_HEAD(&dev->obj_bucket[i].list);
2003 dev->obj_bucket[i].count = 0;
2004 }
2005 }
2006
2007 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev,
2008 int number,
2009 enum yaffs_obj_type type)
2010 {
2011 struct yaffs_obj *the_obj = NULL;
2012
2013 if (number > 0)
2014 the_obj = yaffs_find_by_number(dev, number);
2015
2016 if (!the_obj)
2017 the_obj = yaffs_new_obj(dev, number, type);
2018
2019 return the_obj;
2020
2021 }
2022
2023 YCHAR *yaffs_clone_str(const YCHAR *str)
2024 {
2025 YCHAR *new_str = NULL;
2026 int len;
2027
2028 if (!str)
2029 str = _Y("");
2030
2031 len = yaffs_strnlen(str, YAFFS_MAX_ALIAS_LENGTH);
2032 new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS);
2033 if (new_str) {
2034 yaffs_strncpy(new_str, str, len);
2035 new_str[len] = 0;
2036 }
2037 return new_str;
2038
2039 }
2040 /*
2041 *yaffs_update_parent() handles fixing a directories mtime and ctime when a new
2042 * link (ie. name) is created or deleted in the directory.
2043 *
2044 * ie.
2045 * create dir/a : update dir's mtime/ctime
2046 * rm dir/a: update dir's mtime/ctime
2047 * modify dir/a: don't update dir's mtimme/ctime
2048 *
2049 * This can be handled immediately or defered. Defering helps reduce the number
2050 * of updates when many files in a directory are changed within a brief period.
2051 *
2052 * If the directory updating is defered then yaffs_update_dirty_dirs must be
2053 * called periodically.
2054 */
2055
2056 static void yaffs_update_parent(struct yaffs_obj *obj)
2057 {
2058 struct yaffs_dev *dev;
2059
2060 if (!obj)
2061 return;
2062 dev = obj->my_dev;
2063 obj->dirty = 1;
2064 yaffs_load_current_time(obj, 0, 1);
2065 if (dev->param.defered_dir_update) {
2066 struct list_head *link = &obj->variant.dir_variant.dirty;
2067
2068 if (list_empty(link)) {
2069 list_add(link, &dev->dirty_dirs);
2070 yaffs_trace(YAFFS_TRACE_BACKGROUND,
2071 "Added object %d to dirty directories",
2072 obj->obj_id);
2073 }
2074
2075 } else {
2076 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2077 }
2078 }
2079
2080 void yaffs_update_dirty_dirs(struct yaffs_dev *dev)
2081 {
2082 struct list_head *link;
2083 struct yaffs_obj *obj;
2084 struct yaffs_dir_var *d_s;
2085 union yaffs_obj_var *o_v;
2086
2087 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories");
2088
2089 while (!list_empty(&dev->dirty_dirs)) {
2090 link = dev->dirty_dirs.next;
2091 list_del_init(link);
2092
2093 d_s = list_entry(link, struct yaffs_dir_var, dirty);
2094 o_v = list_entry(d_s, union yaffs_obj_var, dir_variant);
2095 obj = list_entry(o_v, struct yaffs_obj, variant);
2096
2097 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d",
2098 obj->obj_id);
2099
2100 if (obj->dirty)
2101 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2102 }
2103 }
2104
2105 /*
2106 * Mknod (create) a new object.
2107 * equiv_obj only has meaning for a hard link;
2108 * alias_str only has meaning for a symlink.
2109 * rdev only has meaning for devices (a subset of special objects)
2110 */
2111
2112 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type,
2113 struct yaffs_obj *parent,
2114 const YCHAR *name,
2115 u32 mode,
2116 u32 uid,
2117 u32 gid,
2118 struct yaffs_obj *equiv_obj,
2119 const YCHAR *alias_str, u32 rdev)
2120 {
2121 struct yaffs_obj *in;
2122 YCHAR *str = NULL;
2123 struct yaffs_dev *dev = parent->my_dev;
2124
2125 /* Check if the entry exists.
2126 * If it does then fail the call since we don't want a dup. */
2127 if (yaffs_find_by_name(parent, name))
2128 return NULL;
2129
2130 if (type == YAFFS_OBJECT_TYPE_SYMLINK) {
2131 str = yaffs_clone_str(alias_str);
2132 if (!str)
2133 return NULL;
2134 }
2135
2136 in = yaffs_new_obj(dev, -1, type);
2137
2138 if (!in) {
2139 kfree(str);
2140 return NULL;
2141 }
2142
2143 in->hdr_chunk = 0;
2144 in->valid = 1;
2145 in->variant_type = type;
2146
2147 in->yst_mode = mode;
2148
2149 yaffs_attribs_init(in, gid, uid, rdev);
2150
2151 in->n_data_chunks = 0;
2152
2153 yaffs_set_obj_name(in, name);
2154 in->dirty = 1;
2155
2156 yaffs_add_obj_to_dir(parent, in);
2157
2158 in->my_dev = parent->my_dev;
2159
2160 switch (type) {
2161 case YAFFS_OBJECT_TYPE_SYMLINK:
2162 in->variant.symlink_variant.alias = str;
2163 break;
2164 case YAFFS_OBJECT_TYPE_HARDLINK:
2165 in->variant.hardlink_variant.equiv_obj = equiv_obj;
2166 in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id;
2167 list_add(&in->hard_links, &equiv_obj->hard_links);
2168 break;
2169 case YAFFS_OBJECT_TYPE_FILE:
2170 case YAFFS_OBJECT_TYPE_DIRECTORY:
2171 case YAFFS_OBJECT_TYPE_SPECIAL:
2172 case YAFFS_OBJECT_TYPE_UNKNOWN:
2173 /* do nothing */
2174 break;
2175 }
2176
2177 if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) {
2178 /* Could not create the object header, fail */
2179 yaffs_del_obj(in);
2180 in = NULL;
2181 }
2182
2183 if (in)
2184 yaffs_update_parent(parent);
2185
2186 return in;
2187 }
2188
2189 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent,
2190 const YCHAR *name, u32 mode, u32 uid,
2191 u32 gid)
2192 {
2193 return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode,
2194 uid, gid, NULL, NULL, 0);
2195 }
2196
2197 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name,
2198 u32 mode, u32 uid, u32 gid)
2199 {
2200 return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name,
2201 mode, uid, gid, NULL, NULL, 0);
2202 }
2203
2204 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent,
2205 const YCHAR *name, u32 mode, u32 uid,
2206 u32 gid, u32 rdev)
2207 {
2208 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode,
2209 uid, gid, NULL, NULL, rdev);
2210 }
2211
2212 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent,
2213 const YCHAR *name, u32 mode, u32 uid,
2214 u32 gid, const YCHAR *alias)
2215 {
2216 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode,
2217 uid, gid, NULL, alias, 0);
2218 }
2219
2220 /* yaffs_link_obj returns the object id of the equivalent object.*/
2221 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name,
2222 struct yaffs_obj *equiv_obj)
2223 {
2224 /* Get the real object in case we were fed a hard link obj */
2225 equiv_obj = yaffs_get_equivalent_obj(equiv_obj);
2226
2227 if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK,
2228 parent, name, 0, 0, 0,
2229 equiv_obj, NULL, 0))
2230 return equiv_obj;
2231
2232 return NULL;
2233
2234 }
2235
2236
2237
2238 /*---------------------- Block Management and Page Allocation -------------*/
2239
2240 static void yaffs_deinit_blocks(struct yaffs_dev *dev)
2241 {
2242 if (dev->block_info_alt && dev->block_info)
2243 vfree(dev->block_info);
2244 else
2245 kfree(dev->block_info);
2246
2247 dev->block_info_alt = 0;
2248
2249 dev->block_info = NULL;
2250
2251 if (dev->chunk_bits_alt && dev->chunk_bits)
2252 vfree(dev->chunk_bits);
2253 else
2254 kfree(dev->chunk_bits);
2255 dev->chunk_bits_alt = 0;
2256 dev->chunk_bits = NULL;
2257 }
2258
2259 static int yaffs_init_blocks(struct yaffs_dev *dev)
2260 {
2261 int n_blocks = dev->internal_end_block - dev->internal_start_block + 1;
2262
2263 dev->block_info = NULL;
2264 dev->chunk_bits = NULL;
2265 dev->alloc_block = -1; /* force it to get a new one */
2266
2267 /* If the first allocation strategy fails, thry the alternate one */
2268 dev->block_info =
2269 kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS);
2270 if (!dev->block_info) {
2271 dev->block_info =
2272 vmalloc(n_blocks * sizeof(struct yaffs_block_info));
2273 dev->block_info_alt = 1;
2274 } else {
2275 dev->block_info_alt = 0;
2276 }
2277
2278 if (!dev->block_info)
2279 goto alloc_error;
2280
2281 /* Set up dynamic blockinfo stuff. Round up bytes. */
2282 dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8;
2283 dev->chunk_bits =
2284 kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS);
2285 if (!dev->chunk_bits) {
2286 dev->chunk_bits =
2287 vmalloc(dev->chunk_bit_stride * n_blocks);
2288 dev->chunk_bits_alt = 1;
2289 } else {
2290 dev->chunk_bits_alt = 0;
2291 }
2292 if (!dev->chunk_bits)
2293 goto alloc_error;
2294
2295
2296 memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info));
2297 memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks);
2298 return YAFFS_OK;
2299
2300 alloc_error:
2301 yaffs_deinit_blocks(dev);
2302 return YAFFS_FAIL;
2303 }
2304
2305
2306 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no)
2307 {
2308 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no);
2309 int erased_ok = 0;
2310 int i;
2311
2312 /* If the block is still healthy erase it and mark as clean.
2313 * If the block has had a data failure, then retire it.
2314 */
2315
2316 yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE,
2317 "yaffs_block_became_dirty block %d state %d %s",
2318 block_no, bi->block_state,
2319 (bi->needs_retiring) ? "needs retiring" : "");
2320
2321 yaffs2_clear_oldest_dirty_seq(dev, bi);
2322
2323 bi->block_state = YAFFS_BLOCK_STATE_DIRTY;
2324
2325 /* If this is the block being garbage collected then stop gc'ing */
2326 if (block_no == dev->gc_block)
2327 dev->gc_block = 0;
2328
2329 /* If this block is currently the best candidate for gc
2330 * then drop as a candidate */
2331 if (block_no == dev->gc_dirtiest) {
2332 dev->gc_dirtiest = 0;
2333 dev->gc_pages_in_use = 0;
2334 }
2335
2336 if (!bi->needs_retiring) {
2337 yaffs2_checkpt_invalidate(dev);
2338 erased_ok = yaffs_erase_block(dev, block_no);
2339 if (!erased_ok) {
2340 dev->n_erase_failures++;
2341 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2342 "**>> Erasure failed %d", block_no);
2343 }
2344 }
2345
2346 /* Verify erasure if needed */
2347 if (erased_ok &&
2348 ((yaffs_trace_mask & YAFFS_TRACE_ERASE) ||
2349 !yaffs_skip_verification(dev))) {
2350 for (i = 0; i < dev->param.chunks_per_block; i++) {
2351 if (!yaffs_check_chunk_erased(dev,
2352 block_no * dev->param.chunks_per_block + i)) {
2353 yaffs_trace(YAFFS_TRACE_ERROR,
2354 ">>Block %d erasure supposedly OK, but chunk %d not erased",
2355 block_no, i);
2356 }
2357 }
2358 }
2359
2360 if (!erased_ok) {
2361 /* We lost a block of free space */
2362 dev->n_free_chunks -= dev->param.chunks_per_block;
2363 yaffs_retire_block(dev, block_no);
2364 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2365 "**>> Block %d retired", block_no);
2366 return;
2367 }
2368
2369 /* Clean it up... */
2370 bi->block_state = YAFFS_BLOCK_STATE_EMPTY;
2371 bi->seq_number = 0;
2372 dev->n_erased_blocks++;
2373 bi->pages_in_use = 0;
2374 bi->soft_del_pages = 0;
2375 bi->has_shrink_hdr = 0;
2376 bi->skip_erased_check = 1; /* Clean, so no need to check */
2377 bi->gc_prioritise = 0;
2378 bi->has_summary = 0;
2379
2380 yaffs_clear_chunk_bits(dev, block_no);
2381
2382 yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no);
2383 }
2384
2385 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev,
2386 struct yaffs_block_info *bi,
2387 int old_chunk, u8 *buffer)
2388 {
2389 int new_chunk;
2390 int mark_flash = 1;
2391 struct yaffs_ext_tags tags;
2392 struct yaffs_obj *object;
2393 int matching_chunk;
2394 int ret_val = YAFFS_OK;
2395
2396 memset(&tags, 0, sizeof(tags));
2397 yaffs_rd_chunk_tags_nand(dev, old_chunk,
2398 buffer, &tags);
2399 object = yaffs_find_by_number(dev, tags.obj_id);
2400
2401 yaffs_trace(YAFFS_TRACE_GC_DETAIL,
2402 "Collecting chunk in block %d, %d %d %d ",
2403 dev->gc_chunk, tags.obj_id,
2404 tags.chunk_id, tags.n_bytes);
2405
2406 if (object && !yaffs_skip_verification(dev)) {
2407 if (tags.chunk_id == 0)
2408 matching_chunk =
2409 object->hdr_chunk;
2410 else if (object->soft_del)
2411 /* Defeat the test */
2412 matching_chunk = old_chunk;
2413 else
2414 matching_chunk =
2415 yaffs_find_chunk_in_file
2416 (object, tags.chunk_id,
2417 NULL);
2418
2419 if (old_chunk != matching_chunk)
2420 yaffs_trace(YAFFS_TRACE_ERROR,
2421 "gc: page in gc mismatch: %d %d %d %d",
2422 old_chunk,
2423 matching_chunk,
2424 tags.obj_id,
2425 tags.chunk_id);
2426 }
2427
2428 if (!object) {
2429 yaffs_trace(YAFFS_TRACE_ERROR,
2430 "page %d in gc has no object: %d %d %d ",
2431 old_chunk,
2432 tags.obj_id, tags.chunk_id,
2433 tags.n_bytes);
2434 }
2435
2436 if (object &&
2437 object->deleted &&
2438 object->soft_del && tags.chunk_id != 0) {
2439 /* Data chunk in a soft deleted file,
2440 * throw it away.
2441 * It's a soft deleted data chunk,
2442 * No need to copy this, just forget
2443 * about it and fix up the object.
2444 */
2445
2446 /* Free chunks already includes
2447 * softdeleted chunks, how ever this
2448 * chunk is going to soon be really
2449 * deleted which will increment free
2450 * chunks. We have to decrement free
2451 * chunks so this works out properly.
2452 */
2453 dev->n_free_chunks--;
2454 bi->soft_del_pages--;
2455
2456 object->n_data_chunks--;
2457 if (object->n_data_chunks <= 0) {
2458 /* remeber to clean up obj */
2459 dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id;
2460 dev->n_clean_ups++;
2461 }
2462 mark_flash = 0;
2463 } else if (object) {
2464 /* It's either a data chunk in a live
2465 * file or an ObjectHeader, so we're
2466 * interested in it.
2467 * NB Need to keep the ObjectHeaders of
2468 * deleted files until the whole file
2469 * has been deleted off
2470 */
2471 tags.serial_number++;
2472 dev->n_gc_copies++;
2473
2474 if (tags.chunk_id == 0) {
2475 /* It is an object Id,
2476 * We need to nuke the
2477 * shrinkheader flags since its
2478 * work is done.
2479 * Also need to clean up
2480 * shadowing.
2481 */
2482 struct yaffs_obj_hdr *oh;
2483 oh = (struct yaffs_obj_hdr *) buffer;
2484
2485 oh->is_shrink = 0;
2486 tags.extra_is_shrink = 0;
2487 oh->shadows_obj = 0;
2488 oh->inband_shadowed_obj_id = 0;
2489 tags.extra_shadows = 0;
2490
2491 /* Update file size */
2492 if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) {
2493 yaffs_oh_size_load(oh,
2494 object->variant.file_variant.file_size);
2495 tags.extra_file_size =
2496 object->variant.file_variant.file_size;
2497 }
2498
2499 yaffs_verify_oh(object, oh, &tags, 1);
2500 new_chunk =
2501 yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1);
2502 } else {
2503 new_chunk =
2504 yaffs_write_new_chunk(dev, buffer, &tags, 1);
2505 }
2506
2507 if (new_chunk < 0) {
2508 ret_val = YAFFS_FAIL;
2509 } else {
2510
2511 /* Now fix up the Tnodes etc. */
2512
2513 if (tags.chunk_id == 0) {
2514 /* It's a header */
2515 object->hdr_chunk = new_chunk;
2516 object->serial = tags.serial_number;
2517 } else {
2518 /* It's a data chunk */
2519 yaffs_put_chunk_in_file(object, tags.chunk_id,
2520 new_chunk, 0);
2521 }
2522 }
2523 }
2524 if (ret_val == YAFFS_OK)
2525 yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__);
2526 return ret_val;
2527 }
2528
2529 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block)
2530 {
2531 int old_chunk;
2532 int ret_val = YAFFS_OK;
2533 int i;
2534 int is_checkpt_block;
2535 int max_copies;
2536 int chunks_before = yaffs_get_erased_chunks(dev);
2537 int chunks_after;
2538 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block);
2539
2540 is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT);
2541
2542 yaffs_trace(YAFFS_TRACE_TRACING,
2543 "Collecting block %d, in use %d, shrink %d, whole_block %d",
2544 block, bi->pages_in_use, bi->has_shrink_hdr,
2545 whole_block);
2546
2547 /*yaffs_verify_free_chunks(dev); */
2548
2549 if (bi->block_state == YAFFS_BLOCK_STATE_FULL)
2550 bi->block_state = YAFFS_BLOCK_STATE_COLLECTING;
2551
2552 bi->has_shrink_hdr = 0; /* clear the flag so that the block can erase */
2553
2554 dev->gc_disable = 1;
2555
2556 yaffs_summary_gc(dev, block);
2557
2558 if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) {
2559 yaffs_trace(YAFFS_TRACE_TRACING,
2560 "Collecting block %d that has no chunks in use",
2561 block);
2562 yaffs_block_became_dirty(dev, block);
2563 } else {
2564
2565 u8 *buffer = yaffs_get_temp_buffer(dev);
2566
2567 yaffs_verify_blk(dev, bi, block);
2568
2569 max_copies = (whole_block) ? dev->param.chunks_per_block : 5;
2570 old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk;
2571
2572 for (/* init already done */ ;
2573 ret_val == YAFFS_OK &&
2574 dev->gc_chunk < dev->param.chunks_per_block &&
2575 (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) &&
2576 max_copies > 0;
2577 dev->gc_chunk++, old_chunk++) {
2578 if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) {
2579 /* Page is in use and might need to be copied */
2580 max_copies--;
2581 ret_val = yaffs_gc_process_chunk(dev, bi,
2582 old_chunk, buffer);
2583 }
2584 }
2585 yaffs_release_temp_buffer(dev, buffer);
2586 }
2587
2588 yaffs_verify_collected_blk(dev, bi, block);
2589
2590 if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2591 /*
2592 * The gc did not complete. Set block state back to FULL
2593 * because checkpointing does not restore gc.
2594 */
2595 bi->block_state = YAFFS_BLOCK_STATE_FULL;
2596 } else {
2597 /* The gc completed. */
2598 /* Do any required cleanups */
2599 for (i = 0; i < dev->n_clean_ups; i++) {
2600 /* Time to delete the file too */
2601 struct yaffs_obj *object =
2602 yaffs_find_by_number(dev, dev->gc_cleanup_list[i]);
2603 if (object) {
2604 yaffs_free_tnode(dev,
2605 object->variant.file_variant.top);
2606 object->variant.file_variant.top = NULL;
2607 yaffs_trace(YAFFS_TRACE_GC,
2608 "yaffs: About to finally delete object %d",
2609 object->obj_id);
2610 yaffs_generic_obj_del(object);
2611 object->my_dev->n_deleted_files--;
2612 }
2613
2614 }
2615 chunks_after = yaffs_get_erased_chunks(dev);
2616 if (chunks_before >= chunks_after)
2617 yaffs_trace(YAFFS_TRACE_GC,
2618 "gc did not increase free chunks before %d after %d",
2619 chunks_before, chunks_after);
2620 dev->gc_block = 0;
2621 dev->gc_chunk = 0;
2622 dev->n_clean_ups = 0;
2623 }
2624
2625 dev->gc_disable = 0;
2626
2627 return ret_val;
2628 }
2629
2630 /*
2631 * find_gc_block() selects the dirtiest block (or close enough)
2632 * for garbage collection.
2633 */
2634
2635 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev,
2636 int aggressive, int background)
2637 {
2638 int i;
2639 int iterations;
2640 unsigned selected = 0;
2641 int prioritised = 0;
2642 int prioritised_exist = 0;
2643 struct yaffs_block_info *bi;
2644 int threshold;
2645
2646 /* First let's see if we need to grab a prioritised block */
2647 if (dev->has_pending_prioritised_gc && !aggressive) {
2648 dev->gc_dirtiest = 0;
2649 bi = dev->block_info;
2650 for (i = dev->internal_start_block;
2651 i <= dev->internal_end_block && !selected; i++) {
2652
2653 if (bi->gc_prioritise) {
2654 prioritised_exist = 1;
2655 if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2656 yaffs_block_ok_for_gc(dev, bi)) {
2657 selected = i;
2658 prioritised = 1;
2659 }
2660 }
2661 bi++;
2662 }
2663
2664 /*
2665 * If there is a prioritised block and none was selected then
2666 * this happened because there is at least one old dirty block
2667 * gumming up the works. Let's gc the oldest dirty block.
2668 */
2669
2670 if (prioritised_exist &&
2671 !selected && dev->oldest_dirty_block > 0)
2672 selected = dev->oldest_dirty_block;
2673
2674 if (!prioritised_exist) /* None found, so we can clear this */
2675 dev->has_pending_prioritised_gc = 0;
2676 }
2677
2678 /* If we're doing aggressive GC then we are happy to take a less-dirty
2679 * block, and search harder.
2680 * else (leasurely gc), then we only bother to do this if the
2681 * block has only a few pages in use.
2682 */
2683
2684 if (!selected) {
2685 int pages_used;
2686 int n_blocks =
2687 dev->internal_end_block - dev->internal_start_block + 1;
2688 if (aggressive) {
2689 threshold = dev->param.chunks_per_block;
2690 iterations = n_blocks;
2691 } else {
2692 int max_threshold;
2693
2694 if (background)
2695 max_threshold = dev->param.chunks_per_block / 2;
2696 else
2697 max_threshold = dev->param.chunks_per_block / 8;
2698
2699 if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2700 max_threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2701
2702 threshold = background ? (dev->gc_not_done + 2) * 2 : 0;
2703 if (threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2704 threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2705 if (threshold > max_threshold)
2706 threshold = max_threshold;
2707
2708 iterations = n_blocks / 16 + 1;
2709 if (iterations > 100)
2710 iterations = 100;
2711 }
2712
2713 for (i = 0;
2714 i < iterations &&
2715 (dev->gc_dirtiest < 1 ||
2716 dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH);
2717 i++) {
2718 dev->gc_block_finder++;
2719 if (dev->gc_block_finder < dev->internal_start_block ||
2720 dev->gc_block_finder > dev->internal_end_block)
2721 dev->gc_block_finder =
2722 dev->internal_start_block;
2723
2724 bi = yaffs_get_block_info(dev, dev->gc_block_finder);
2725
2726 pages_used = bi->pages_in_use - bi->soft_del_pages;
2727
2728 if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2729 pages_used < dev->param.chunks_per_block &&
2730 (dev->gc_dirtiest < 1 ||
2731 pages_used < dev->gc_pages_in_use) &&
2732 yaffs_block_ok_for_gc(dev, bi)) {
2733 dev->gc_dirtiest = dev->gc_block_finder;
2734 dev->gc_pages_in_use = pages_used;
2735 }
2736 }
2737
2738 if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold)
2739 selected = dev->gc_dirtiest;
2740 }
2741
2742 /*
2743 * If nothing has been selected for a while, try the oldest dirty
2744 * because that's gumming up the works.
2745 */
2746
2747 if (!selected && dev->param.is_yaffs2 &&
2748 dev->gc_not_done >= (background ? 10 : 20)) {
2749 yaffs2_find_oldest_dirty_seq(dev);
2750 if (dev->oldest_dirty_block > 0) {
2751 selected = dev->oldest_dirty_block;
2752 dev->gc_dirtiest = selected;
2753 dev->oldest_dirty_gc_count++;
2754 bi = yaffs_get_block_info(dev, selected);
2755 dev->gc_pages_in_use =
2756 bi->pages_in_use - bi->soft_del_pages;
2757 } else {
2758 dev->gc_not_done = 0;
2759 }
2760 }
2761
2762 if (selected) {
2763 yaffs_trace(YAFFS_TRACE_GC,
2764 "GC Selected block %d with %d free, prioritised:%d",
2765 selected,
2766 dev->param.chunks_per_block - dev->gc_pages_in_use,
2767 prioritised);
2768
2769 dev->n_gc_blocks++;
2770 if (background)
2771 dev->bg_gcs++;
2772
2773 dev->gc_dirtiest = 0;
2774 dev->gc_pages_in_use = 0;
2775 dev->gc_not_done = 0;
2776 if (dev->refresh_skip > 0)
2777 dev->refresh_skip--;
2778 } else {
2779 dev->gc_not_done++;
2780 yaffs_trace(YAFFS_TRACE_GC,
2781 "GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s",
2782 dev->gc_block_finder, dev->gc_not_done, threshold,
2783 dev->gc_dirtiest, dev->gc_pages_in_use,
2784 dev->oldest_dirty_block, background ? " bg" : "");
2785 }
2786
2787 return selected;
2788 }
2789
2790 /* New garbage collector
2791 * If we're very low on erased blocks then we do aggressive garbage collection
2792 * otherwise we do "leasurely" garbage collection.
2793 * Aggressive gc looks further (whole array) and will accept less dirty blocks.
2794 * Passive gc only inspects smaller areas and only accepts more dirty blocks.
2795 *
2796 * The idea is to help clear out space in a more spread-out manner.
2797 * Dunno if it really does anything useful.
2798 */
2799 static int yaffs_check_gc(struct yaffs_dev *dev, int background)
2800 {
2801 int aggressive = 0;
2802 int gc_ok = YAFFS_OK;
2803 int max_tries = 0;
2804 int min_erased;
2805 int erased_chunks;
2806 int checkpt_block_adjust;
2807
2808 if (dev->param.gc_control && (dev->param.gc_control(dev) & 1) == 0)
2809 return YAFFS_OK;
2810
2811 if (dev->gc_disable)
2812 /* Bail out so we don't get recursive gc */
2813 return YAFFS_OK;
2814
2815 /* This loop should pass the first time.
2816 * Only loops here if the collection does not increase space.
2817 */
2818
2819 do {
2820 max_tries++;
2821
2822 checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev);
2823
2824 min_erased =
2825 dev->param.n_reserved_blocks + checkpt_block_adjust + 1;
2826 erased_chunks =
2827 dev->n_erased_blocks * dev->param.chunks_per_block;
2828
2829 /* If we need a block soon then do aggressive gc. */
2830 if (dev->n_erased_blocks < min_erased)
2831 aggressive = 1;
2832 else {
2833 if (!background
2834 && erased_chunks > (dev->n_free_chunks / 4))
2835 break;
2836
2837 if (dev->gc_skip > 20)
2838 dev->gc_skip = 20;
2839 if (erased_chunks < dev->n_free_chunks / 2 ||
2840 dev->gc_skip < 1 || background)
2841 aggressive = 0;
2842 else {
2843 dev->gc_skip--;
2844 break;
2845 }
2846 }
2847
2848 dev->gc_skip = 5;
2849
2850 /* If we don't already have a block being gc'd then see if we
2851 * should start another */
2852
2853 if (dev->gc_block < 1 && !aggressive) {
2854 dev->gc_block = yaffs2_find_refresh_block(dev);
2855 dev->gc_chunk = 0;
2856 dev->n_clean_ups = 0;
2857 }
2858 if (dev->gc_block < 1) {
2859 dev->gc_block =
2860 yaffs_find_gc_block(dev, aggressive, background);
2861 dev->gc_chunk = 0;
2862 dev->n_clean_ups = 0;
2863 }
2864
2865 if (dev->gc_block > 0) {
2866 dev->all_gcs++;
2867 if (!aggressive)
2868 dev->passive_gc_count++;
2869
2870 yaffs_trace(YAFFS_TRACE_GC,
2871 "yaffs: GC n_erased_blocks %d aggressive %d",
2872 dev->n_erased_blocks, aggressive);
2873
2874 gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive);
2875 }
2876
2877 if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) &&
2878 dev->gc_block > 0) {
2879 yaffs_trace(YAFFS_TRACE_GC,
2880 "yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d",
2881 dev->n_erased_blocks, max_tries,
2882 dev->gc_block);
2883 }
2884 } while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) &&
2885 (dev->gc_block > 0) && (max_tries < 2));
2886
2887 return aggressive ? gc_ok : YAFFS_OK;
2888 }
2889
2890 /*
2891 * yaffs_bg_gc()
2892 * Garbage collects. Intended to be called from a background thread.
2893 * Returns non-zero if at least half the free chunks are erased.
2894 */
2895 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency)
2896 {
2897 int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block;
2898
2899 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency);
2900
2901 yaffs_check_gc(dev, 1);
2902 return erased_chunks > dev->n_free_chunks / 2;
2903 }
2904
2905 /*-------------------- Data file manipulation -----------------*/
2906
2907 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer)
2908 {
2909 int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL);
2910
2911 if (nand_chunk >= 0)
2912 return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk,
2913 buffer, NULL);
2914 else {
2915 yaffs_trace(YAFFS_TRACE_NANDACCESS,
2916 "Chunk %d not found zero instead",
2917 nand_chunk);
2918 /* get sane (zero) data if you read a hole */
2919 memset(buffer, 0, in->my_dev->data_bytes_per_chunk);
2920 return 0;
2921 }
2922
2923 }
2924
2925 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash,
2926 int lyn)
2927 {
2928 int block;
2929 int page;
2930 struct yaffs_ext_tags tags;
2931 struct yaffs_block_info *bi;
2932
2933 if (chunk_id <= 0)
2934 return;
2935
2936 dev->n_deletions++;
2937 block = chunk_id / dev->param.chunks_per_block;
2938 page = chunk_id % dev->param.chunks_per_block;
2939
2940 if (!yaffs_check_chunk_bit(dev, block, page))
2941 yaffs_trace(YAFFS_TRACE_VERIFY,
2942 "Deleting invalid chunk %d", chunk_id);
2943
2944 bi = yaffs_get_block_info(dev, block);
2945
2946 yaffs2_update_oldest_dirty_seq(dev, block, bi);
2947
2948 yaffs_trace(YAFFS_TRACE_DELETION,
2949 "line %d delete of chunk %d",
2950 lyn, chunk_id);
2951
2952 if (!dev->param.is_yaffs2 && mark_flash &&
2953 bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) {
2954
2955 memset(&tags, 0, sizeof(tags));
2956 tags.is_deleted = 1;
2957 yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags);
2958 yaffs_handle_chunk_update(dev, chunk_id, &tags);
2959 } else {
2960 dev->n_unmarked_deletions++;
2961 }
2962
2963 /* Pull out of the management area.
2964 * If the whole block became dirty, this will kick off an erasure.
2965 */
2966 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING ||
2967 bi->block_state == YAFFS_BLOCK_STATE_FULL ||
2968 bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN ||
2969 bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2970 dev->n_free_chunks++;
2971 yaffs_clear_chunk_bit(dev, block, page);
2972 bi->pages_in_use--;
2973
2974 if (bi->pages_in_use == 0 &&
2975 !bi->has_shrink_hdr &&
2976 bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING &&
2977 bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) {
2978 yaffs_block_became_dirty(dev, block);
2979 }
2980 }
2981 }
2982
2983 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
2984 const u8 *buffer, int n_bytes, int use_reserve)
2985 {
2986 /* Find old chunk Need to do this to get serial number
2987 * Write new one and patch into tree.
2988 * Invalidate old tags.
2989 */
2990
2991 int prev_chunk_id;
2992 struct yaffs_ext_tags prev_tags;
2993 int new_chunk_id;
2994 struct yaffs_ext_tags new_tags;
2995 struct yaffs_dev *dev = in->my_dev;
2996
2997 yaffs_check_gc(dev, 0);
2998
2999 /* Get the previous chunk at this location in the file if it exists.
3000 * If it does not exist then put a zero into the tree. This creates
3001 * the tnode now, rather than later when it is harder to clean up.
3002 */
3003 prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags);
3004 if (prev_chunk_id < 1 &&
3005 !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0))
3006 return 0;
3007
3008 /* Set up new tags */
3009 memset(&new_tags, 0, sizeof(new_tags));
3010
3011 new_tags.chunk_id = inode_chunk;
3012 new_tags.obj_id = in->obj_id;
3013 new_tags.serial_number =
3014 (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1;
3015 new_tags.n_bytes = n_bytes;
3016
3017 if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) {
3018 yaffs_trace(YAFFS_TRACE_ERROR,
3019 "Writing %d bytes to chunk!!!!!!!!!",
3020 n_bytes);
3021 BUG();
3022 }
3023
3024 new_chunk_id =
3025 yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve);
3026
3027 if (new_chunk_id > 0) {
3028 yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0);
3029
3030 if (prev_chunk_id > 0)
3031 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3032
3033 yaffs_verify_file_sane(in);
3034 }
3035 return new_chunk_id;
3036
3037 }
3038
3039
3040
3041 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set,
3042 const YCHAR *name, const void *value, int size,
3043 int flags)
3044 {
3045 struct yaffs_xattr_mod xmod;
3046 int result;
3047
3048 xmod.set = set;
3049 xmod.name = name;
3050 xmod.data = value;
3051 xmod.size = size;
3052 xmod.flags = flags;
3053 xmod.result = -ENOSPC;
3054
3055 result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod);
3056
3057 if (result > 0)
3058 return xmod.result;
3059 else
3060 return -ENOSPC;
3061 }
3062
3063 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer,
3064 struct yaffs_xattr_mod *xmod)
3065 {
3066 int retval = 0;
3067 int x_offs = sizeof(struct yaffs_obj_hdr);
3068 struct yaffs_dev *dev = obj->my_dev;
3069 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3070 char *x_buffer = buffer + x_offs;
3071
3072 if (xmod->set)
3073 retval =
3074 nval_set(x_buffer, x_size, xmod->name, xmod->data,
3075 xmod->size, xmod->flags);
3076 else
3077 retval = nval_del(x_buffer, x_size, xmod->name);
3078
3079 obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3080 obj->xattr_known = 1;
3081 xmod->result = retval;
3082
3083 return retval;
3084 }
3085
3086 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name,
3087 void *value, int size)
3088 {
3089 char *buffer = NULL;
3090 int result;
3091 struct yaffs_ext_tags tags;
3092 struct yaffs_dev *dev = obj->my_dev;
3093 int x_offs = sizeof(struct yaffs_obj_hdr);
3094 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3095 char *x_buffer;
3096 int retval = 0;
3097
3098 if (obj->hdr_chunk < 1)
3099 return -ENODATA;
3100
3101 /* If we know that the object has no xattribs then don't do all the
3102 * reading and parsing.
3103 */
3104 if (obj->xattr_known && !obj->has_xattr) {
3105 if (name)
3106 return -ENODATA;
3107 else
3108 return 0;
3109 }
3110
3111 buffer = (char *)yaffs_get_temp_buffer(dev);
3112 if (!buffer)
3113 return -ENOMEM;
3114
3115 result =
3116 yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags);
3117
3118 if (result != YAFFS_OK)
3119 retval = -ENOENT;
3120 else {
3121 x_buffer = buffer + x_offs;
3122
3123 if (!obj->xattr_known) {
3124 obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3125 obj->xattr_known = 1;
3126 }
3127
3128 if (name)
3129 retval = nval_get(x_buffer, x_size, name, value, size);
3130 else
3131 retval = nval_list(x_buffer, x_size, value, size);
3132 }
3133 yaffs_release_temp_buffer(dev, (u8 *) buffer);
3134 return retval;
3135 }
3136
3137 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name,
3138 const void *value, int size, int flags)
3139 {
3140 return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags);
3141 }
3142
3143 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name)
3144 {
3145 return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0);
3146 }
3147
3148 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value,
3149 int size)
3150 {
3151 return yaffs_do_xattrib_fetch(obj, name, value, size);
3152 }
3153
3154 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size)
3155 {
3156 return yaffs_do_xattrib_fetch(obj, NULL, buffer, size);
3157 }
3158
3159 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in)
3160 {
3161 u8 *buf;
3162 struct yaffs_obj_hdr *oh;
3163 struct yaffs_dev *dev;
3164 struct yaffs_ext_tags tags;
3165
3166 if (!in || !in->lazy_loaded || in->hdr_chunk < 1)
3167 return;
3168
3169 dev = in->my_dev;
3170 in->lazy_loaded = 0;
3171 buf = yaffs_get_temp_buffer(dev);
3172
3173 yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags);
3174 oh = (struct yaffs_obj_hdr *)buf;
3175
3176 in->yst_mode = oh->yst_mode;
3177 yaffs_load_attribs(in, oh);
3178 yaffs_set_obj_name_from_oh(in, oh);
3179
3180 if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
3181 in->variant.symlink_variant.alias =
3182 yaffs_clone_str(oh->alias);
3183 }
3184 yaffs_release_temp_buffer(dev, buf);
3185 }
3186
3187 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name,
3188 const YCHAR *oh_name, int buff_size)
3189 {
3190 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3191 if (dev->param.auto_unicode) {
3192 if (*oh_name) {
3193 /* It is an ASCII name, do an ASCII to
3194 * unicode conversion */
3195 const char *ascii_oh_name = (const char *)oh_name;
3196 int n = buff_size - 1;
3197 while (n > 0 && *ascii_oh_name) {
3198 *name = *ascii_oh_name;
3199 name++;
3200 ascii_oh_name++;
3201 n--;
3202 }
3203 } else {
3204 yaffs_strncpy(name, oh_name + 1, buff_size - 1);
3205 }
3206
3207 return;
3208 }
3209 #endif
3210
3211 yaffs_strncpy(name, oh_name, buff_size - 1);
3212 }
3213
3214 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name,
3215 const YCHAR *name)
3216 {
3217 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3218 int is_ascii;
3219 YCHAR *w;
3220
3221 if (dev->param.auto_unicode) {
3222
3223 is_ascii = 1;
3224 w = name;
3225
3226 /* Figure out if the name will fit in ascii character set */
3227 while (is_ascii && *w) {
3228 if ((*w) & 0xff00)
3229 is_ascii = 0;
3230 w++;
3231 }
3232
3233 if (is_ascii) {
3234 /* It is an ASCII name, so convert unicode to ascii */
3235 char *ascii_oh_name = (char *)oh_name;
3236 int n = YAFFS_MAX_NAME_LENGTH - 1;
3237 while (n > 0 && *name) {
3238 *ascii_oh_name = *name;
3239 name++;
3240 ascii_oh_name++;
3241 n--;
3242 }
3243 } else {
3244 /* Unicode name, so save starting at the second YCHAR */
3245 *oh_name = 0;
3246 yaffs_strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2);
3247 }
3248
3249 return;
3250 }
3251 #endif
3252
3253 yaffs_strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1);
3254 }
3255
3256 /* UpdateObjectHeader updates the header on NAND for an object.
3257 * If name is not NULL, then that new name is used.
3258 */
3259 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force,
3260 int is_shrink, int shadows, struct yaffs_xattr_mod *xmod)
3261 {
3262
3263 struct yaffs_block_info *bi;
3264 struct yaffs_dev *dev = in->my_dev;
3265 int prev_chunk_id;
3266 int ret_val = 0;
3267 int new_chunk_id;
3268 struct yaffs_ext_tags new_tags;
3269 struct yaffs_ext_tags old_tags;
3270 const YCHAR *alias = NULL;
3271 u8 *buffer = NULL;
3272 YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1];
3273 struct yaffs_obj_hdr *oh = NULL;
3274 loff_t file_size = 0;
3275
3276 yaffs_strcpy(old_name, _Y("silly old name"));
3277
3278 if (in->fake && in != dev->root_dir && !force && !xmod)
3279 return ret_val;
3280
3281 yaffs_check_gc(dev, 0);
3282 yaffs_check_obj_details_loaded(in);
3283
3284 buffer = yaffs_get_temp_buffer(in->my_dev);
3285 oh = (struct yaffs_obj_hdr *)buffer;
3286
3287 prev_chunk_id = in->hdr_chunk;
3288
3289 if (prev_chunk_id > 0) {
3290 yaffs_rd_chunk_tags_nand(dev, prev_chunk_id,
3291 buffer, &old_tags);
3292
3293 yaffs_verify_oh(in, oh, &old_tags, 0);
3294 memcpy(old_name, oh->name, sizeof(oh->name));
3295 memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr));
3296 } else {
3297 memset(buffer, 0xff, dev->data_bytes_per_chunk);
3298 }
3299
3300 oh->type = in->variant_type;
3301 oh->yst_mode = in->yst_mode;
3302 oh->shadows_obj = oh->inband_shadowed_obj_id = shadows;
3303
3304 yaffs_load_attribs_oh(oh, in);
3305
3306 if (in->parent)
3307 oh->parent_obj_id = in->parent->obj_id;
3308 else
3309 oh->parent_obj_id = 0;
3310
3311 if (name && *name) {
3312 memset(oh->name, 0, sizeof(oh->name));
3313 yaffs_load_oh_from_name(dev, oh->name, name);
3314 } else if (prev_chunk_id > 0) {
3315 memcpy(oh->name, old_name, sizeof(oh->name));
3316 } else {
3317 memset(oh->name, 0, sizeof(oh->name));
3318 }
3319
3320 oh->is_shrink = is_shrink;
3321
3322 switch (in->variant_type) {
3323 case YAFFS_OBJECT_TYPE_UNKNOWN:
3324 /* Should not happen */
3325 break;
3326 case YAFFS_OBJECT_TYPE_FILE:
3327 if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED &&
3328 oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED)
3329 file_size = in->variant.file_variant.file_size;
3330 yaffs_oh_size_load(oh, file_size);
3331 break;
3332 case YAFFS_OBJECT_TYPE_HARDLINK:
3333 oh->equiv_id = in->variant.hardlink_variant.equiv_id;
3334 break;
3335 case YAFFS_OBJECT_TYPE_SPECIAL:
3336 /* Do nothing */
3337 break;
3338 case YAFFS_OBJECT_TYPE_DIRECTORY:
3339 /* Do nothing */
3340 break;
3341 case YAFFS_OBJECT_TYPE_SYMLINK:
3342 alias = in->variant.symlink_variant.alias;
3343 if (!alias)
3344 alias = _Y("no alias");
3345 yaffs_strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH);
3346 oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0;
3347 break;
3348 }
3349
3350 /* process any xattrib modifications */
3351 if (xmod)
3352 yaffs_apply_xattrib_mod(in, (char *)buffer, xmod);
3353
3354 /* Tags */
3355 memset(&new_tags, 0, sizeof(new_tags));
3356 in->serial++;
3357 new_tags.chunk_id = 0;
3358 new_tags.obj_id = in->obj_id;
3359 new_tags.serial_number = in->serial;
3360
3361 /* Add extra info for file header */
3362 new_tags.extra_available = 1;
3363 new_tags.extra_parent_id = oh->parent_obj_id;
3364 new_tags.extra_file_size = file_size;
3365 new_tags.extra_is_shrink = oh->is_shrink;
3366 new_tags.extra_equiv_id = oh->equiv_id;
3367 new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0;
3368 new_tags.extra_obj_type = in->variant_type;
3369 yaffs_verify_oh(in, oh, &new_tags, 1);
3370
3371 /* Create new chunk in NAND */
3372 new_chunk_id =
3373 yaffs_write_new_chunk(dev, buffer, &new_tags,
3374 (prev_chunk_id > 0) ? 1 : 0);
3375
3376 if (buffer)
3377 yaffs_release_temp_buffer(dev, buffer);
3378
3379 if (new_chunk_id < 0)
3380 return new_chunk_id;
3381
3382 in->hdr_chunk = new_chunk_id;
3383
3384 if (prev_chunk_id > 0)
3385 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3386
3387 if (!yaffs_obj_cache_dirty(in))
3388 in->dirty = 0;
3389
3390 /* If this was a shrink, then mark the block
3391 * that the chunk lives on */
3392 if (is_shrink) {
3393 bi = yaffs_get_block_info(in->my_dev,
3394 new_chunk_id /
3395 in->my_dev->param.chunks_per_block);
3396 bi->has_shrink_hdr = 1;
3397 }
3398
3399
3400 return new_chunk_id;
3401 }
3402
3403 /*--------------------- File read/write ------------------------
3404 * Read and write have very similar structures.
3405 * In general the read/write has three parts to it
3406 * An incomplete chunk to start with (if the read/write is not chunk-aligned)
3407 * Some complete chunks
3408 * An incomplete chunk to end off with
3409 *
3410 * Curve-balls: the first chunk might also be the last chunk.
3411 */
3412
3413 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes)
3414 {
3415 int chunk;
3416 u32 start;
3417 int n_copy;
3418 int n = n_bytes;
3419 int n_done = 0;
3420 struct yaffs_cache *cache;
3421 struct yaffs_dev *dev;
3422
3423 dev = in->my_dev;
3424
3425 while (n > 0) {
3426 yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3427 chunk++;
3428
3429 /* OK now check for the curveball where the start and end are in
3430 * the same chunk.
3431 */
3432 if ((start + n) < dev->data_bytes_per_chunk)
3433 n_copy = n;
3434 else
3435 n_copy = dev->data_bytes_per_chunk - start;
3436
3437 cache = yaffs_find_chunk_cache(in, chunk);
3438
3439 /* If the chunk is already in the cache or it is less than
3440 * a whole chunk or we're using inband tags then use the cache
3441 * (if there is caching) else bypass the cache.
3442 */
3443 if (cache || n_copy != dev->data_bytes_per_chunk ||
3444 dev->param.inband_tags) {
3445 if (dev->param.n_caches > 0) {
3446
3447 /* If we can't find the data in the cache,
3448 * then load it up. */
3449
3450 if (!cache) {
3451 cache =
3452 yaffs_grab_chunk_cache(in->my_dev);
3453 cache->object = in;
3454 cache->chunk_id = chunk;
3455 cache->dirty = 0;
3456 cache->locked = 0;
3457 yaffs_rd_data_obj(in, chunk,
3458 cache->data);
3459 cache->n_bytes = 0;
3460 }
3461
3462 yaffs_use_cache(dev, cache, 0);
3463
3464 cache->locked = 1;
3465
3466 memcpy(buffer, &cache->data[start], n_copy);
3467
3468 cache->locked = 0;
3469 } else {
3470 /* Read into the local buffer then copy.. */
3471
3472 u8 *local_buffer =
3473 yaffs_get_temp_buffer(dev);
3474 yaffs_rd_data_obj(in, chunk, local_buffer);
3475
3476 memcpy(buffer, &local_buffer[start], n_copy);
3477
3478 yaffs_release_temp_buffer(dev, local_buffer);
3479 }
3480 } else {
3481 /* A full chunk. Read directly into the buffer. */
3482 yaffs_rd_data_obj(in, chunk, buffer);
3483 }
3484 n -= n_copy;
3485 offset += n_copy;
3486 buffer += n_copy;
3487 n_done += n_copy;
3488 }
3489 return n_done;
3490 }
3491
3492 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3493 int n_bytes, int write_through)
3494 {
3495
3496 int chunk;
3497 u32 start;
3498 int n_copy;
3499 int n = n_bytes;
3500 int n_done = 0;
3501 int n_writeback;
3502 loff_t start_write = offset;
3503 int chunk_written = 0;
3504 u32 n_bytes_read;
3505 loff_t chunk_start;
3506 struct yaffs_dev *dev;
3507
3508 dev = in->my_dev;
3509
3510 while (n > 0 && chunk_written >= 0) {
3511 yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3512
3513 if (((loff_t)chunk) *
3514 dev->data_bytes_per_chunk + start != offset ||
3515 start >= dev->data_bytes_per_chunk) {
3516 yaffs_trace(YAFFS_TRACE_ERROR,
3517 "AddrToChunk of offset %lld gives chunk %d start %d",
3518 offset, chunk, start);
3519 }
3520 chunk++; /* File pos to chunk in file offset */
3521
3522 /* OK now check for the curveball where the start and end are in
3523 * the same chunk.
3524 */
3525
3526 if ((start + n) < dev->data_bytes_per_chunk) {
3527 n_copy = n;
3528
3529 /* Now calculate how many bytes to write back....
3530 * If we're overwriting and not writing to then end of
3531 * file then we need to write back as much as was there
3532 * before.
3533 */
3534
3535 chunk_start = (((loff_t)(chunk - 1)) *
3536 dev->data_bytes_per_chunk);
3537
3538 if (chunk_start > in->variant.file_variant.file_size)
3539 n_bytes_read = 0; /* Past end of file */
3540 else
3541 n_bytes_read =
3542 in->variant.file_variant.file_size -
3543 chunk_start;
3544
3545 if (n_bytes_read > dev->data_bytes_per_chunk)
3546 n_bytes_read = dev->data_bytes_per_chunk;
3547
3548 n_writeback =
3549 (n_bytes_read >
3550 (start + n)) ? n_bytes_read : (start + n);
3551
3552 if (n_writeback < 0 ||
3553 n_writeback > dev->data_bytes_per_chunk)
3554 BUG();
3555
3556 } else {
3557 n_copy = dev->data_bytes_per_chunk - start;
3558 n_writeback = dev->data_bytes_per_chunk;
3559 }
3560
3561 if (n_copy != dev->data_bytes_per_chunk ||
3562 dev->param.inband_tags) {
3563 /* An incomplete start or end chunk (or maybe both
3564 * start and end chunk), or we're using inband tags,
3565 * so we want to use the cache buffers.
3566 */
3567 if (dev->param.n_caches > 0) {
3568 struct yaffs_cache *cache;
3569
3570 /* If we can't find the data in the cache, then
3571 * load the cache */
3572 cache = yaffs_find_chunk_cache(in, chunk);
3573
3574 if (!cache &&
3575 yaffs_check_alloc_available(dev, 1)) {
3576 cache = yaffs_grab_chunk_cache(dev);
3577 cache->object = in;
3578 cache->chunk_id = chunk;
3579 cache->dirty = 0;
3580 cache->locked = 0;
3581 yaffs_rd_data_obj(in, chunk,
3582 cache->data);
3583 } else if (cache &&
3584 !cache->dirty &&
3585 !yaffs_check_alloc_available(dev,
3586 1)) {
3587 /* Drop the cache if it was a read cache
3588 * item and no space check has been made
3589 * for it.
3590 */
3591 cache = NULL;
3592 }
3593
3594 if (cache) {
3595 yaffs_use_cache(dev, cache, 1);
3596 cache->locked = 1;
3597
3598 memcpy(&cache->data[start], buffer,
3599 n_copy);
3600
3601 cache->locked = 0;
3602 cache->n_bytes = n_writeback;
3603
3604 if (write_through) {
3605 chunk_written =
3606 yaffs_wr_data_obj
3607 (cache->object,
3608 cache->chunk_id,
3609 cache->data,
3610 cache->n_bytes, 1);
3611 cache->dirty = 0;
3612 }
3613 } else {
3614 chunk_written = -1; /* fail write */
3615 }
3616 } else {
3617 /* An incomplete start or end chunk (or maybe
3618 * both start and end chunk). Read into the
3619 * local buffer then copy over and write back.
3620 */
3621
3622 u8 *local_buffer = yaffs_get_temp_buffer(dev);
3623
3624 yaffs_rd_data_obj(in, chunk, local_buffer);
3625 memcpy(&local_buffer[start], buffer, n_copy);
3626
3627 chunk_written =
3628 yaffs_wr_data_obj(in, chunk,
3629 local_buffer,
3630 n_writeback, 0);
3631
3632 yaffs_release_temp_buffer(dev, local_buffer);
3633 }
3634 } else {
3635 /* A full chunk. Write directly from the buffer. */
3636
3637 chunk_written =
3638 yaffs_wr_data_obj(in, chunk, buffer,
3639 dev->data_bytes_per_chunk, 0);
3640
3641 /* Since we've overwritten the cached data,
3642 * we better invalidate it. */
3643 yaffs_invalidate_chunk_cache(in, chunk);
3644 }
3645
3646 if (chunk_written >= 0) {
3647 n -= n_copy;
3648 offset += n_copy;
3649 buffer += n_copy;
3650 n_done += n_copy;
3651 }
3652 }
3653
3654 /* Update file object */
3655
3656 if ((start_write + n_done) > in->variant.file_variant.file_size)
3657 in->variant.file_variant.file_size = (start_write + n_done);
3658
3659 in->dirty = 1;
3660 return n_done;
3661 }
3662
3663 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3664 int n_bytes, int write_through)
3665 {
3666 yaffs2_handle_hole(in, offset);
3667 return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through);
3668 }
3669
3670 /* ---------------------- File resizing stuff ------------------ */
3671
3672 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size)
3673 {
3674
3675 struct yaffs_dev *dev = in->my_dev;
3676 loff_t old_size = in->variant.file_variant.file_size;
3677 int i;
3678 int chunk_id;
3679 u32 dummy;
3680 int last_del;
3681 int start_del;
3682
3683 if (old_size > 0)
3684 yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy);
3685 else
3686 last_del = 0;
3687
3688 yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1,
3689 &start_del, &dummy);
3690 last_del++;
3691 start_del++;
3692
3693 /* Delete backwards so that we don't end up with holes if
3694 * power is lost part-way through the operation.
3695 */
3696 for (i = last_del; i >= start_del; i--) {
3697 /* NB this could be optimised somewhat,
3698 * eg. could retrieve the tags and write them without
3699 * using yaffs_chunk_del
3700 */
3701
3702 chunk_id = yaffs_find_del_file_chunk(in, i, NULL);
3703
3704 if (chunk_id < 1)
3705 continue;
3706
3707 if (chunk_id <
3708 (dev->internal_start_block * dev->param.chunks_per_block) ||
3709 chunk_id >=
3710 ((dev->internal_end_block + 1) *
3711 dev->param.chunks_per_block)) {
3712 yaffs_trace(YAFFS_TRACE_ALWAYS,
3713 "Found daft chunk_id %d for %d",
3714 chunk_id, i);
3715 } else {
3716 in->n_data_chunks--;
3717 yaffs_chunk_del(dev, chunk_id, 1, __LINE__);
3718 }
3719 }
3720 }
3721
3722 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size)
3723 {
3724 int new_full;
3725 u32 new_partial;
3726 struct yaffs_dev *dev = obj->my_dev;
3727
3728 yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial);
3729
3730 yaffs_prune_chunks(obj, new_size);
3731
3732 if (new_partial != 0) {
3733 int last_chunk = 1 + new_full;
3734 u8 *local_buffer = yaffs_get_temp_buffer(dev);
3735
3736 /* Rewrite the last chunk with its new size and zero pad */
3737 yaffs_rd_data_obj(obj, last_chunk, local_buffer);
3738 memset(local_buffer + new_partial, 0,
3739 dev->data_bytes_per_chunk - new_partial);
3740
3741 yaffs_wr_data_obj(obj, last_chunk, local_buffer,
3742 new_partial, 1);
3743
3744 yaffs_release_temp_buffer(dev, local_buffer);
3745 }
3746
3747 obj->variant.file_variant.file_size = new_size;
3748
3749 yaffs_prune_tree(dev, &obj->variant.file_variant);
3750 }
3751
3752 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size)
3753 {
3754 struct yaffs_dev *dev = in->my_dev;
3755 loff_t old_size = in->variant.file_variant.file_size;
3756
3757 yaffs_flush_file_cache(in);
3758 yaffs_invalidate_whole_cache(in);
3759
3760 yaffs_check_gc(dev, 0);
3761
3762 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE)
3763 return YAFFS_FAIL;
3764
3765 if (new_size == old_size)
3766 return YAFFS_OK;
3767
3768 if (new_size > old_size) {
3769 yaffs2_handle_hole(in, new_size);
3770 in->variant.file_variant.file_size = new_size;
3771 } else {
3772 /* new_size < old_size */
3773 yaffs_resize_file_down(in, new_size);
3774 }
3775
3776 /* Write a new object header to reflect the resize.
3777 * show we've shrunk the file, if need be
3778 * Do this only if the file is not in the deleted directories
3779 * and is not shadowed.
3780 */
3781 if (in->parent &&
3782 !in->is_shadowed &&
3783 in->parent->obj_id != YAFFS_OBJECTID_UNLINKED &&
3784 in->parent->obj_id != YAFFS_OBJECTID_DELETED)
3785 yaffs_update_oh(in, NULL, 0, 0, 0, NULL);
3786
3787 return YAFFS_OK;
3788 }
3789
3790 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync)
3791 {
3792 if (!in->dirty)
3793 return YAFFS_OK;
3794
3795 yaffs_flush_file_cache(in);
3796
3797 if (data_sync)
3798 return YAFFS_OK;
3799
3800 if (update_time)
3801 yaffs_load_current_time(in, 0, 0);
3802
3803 return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ?
3804 YAFFS_OK : YAFFS_FAIL;
3805 }
3806
3807
3808 /* yaffs_del_file deletes the whole file data
3809 * and the inode associated with the file.
3810 * It does not delete the links associated with the file.
3811 */
3812 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in)
3813 {
3814 int ret_val;
3815 int del_now = 0;
3816 struct yaffs_dev *dev = in->my_dev;
3817
3818 if (!in->my_inode)
3819 del_now = 1;
3820
3821 if (del_now) {
3822 ret_val =
3823 yaffs_change_obj_name(in, in->my_dev->del_dir,
3824 _Y("deleted"), 0, 0);
3825 yaffs_trace(YAFFS_TRACE_TRACING,
3826 "yaffs: immediate deletion of file %d",
3827 in->obj_id);
3828 in->deleted = 1;
3829 in->my_dev->n_deleted_files++;
3830 if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3831 yaffs_resize_file(in, 0);
3832 yaffs_soft_del_file(in);
3833 } else {
3834 ret_val =
3835 yaffs_change_obj_name(in, in->my_dev->unlinked_dir,
3836 _Y("unlinked"), 0, 0);
3837 }
3838 return ret_val;
3839 }
3840
3841 int yaffs_del_file(struct yaffs_obj *in)
3842 {
3843 int ret_val = YAFFS_OK;
3844 int deleted; /* Need to cache value on stack if in is freed */
3845 struct yaffs_dev *dev = in->my_dev;
3846
3847 if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3848 yaffs_resize_file(in, 0);
3849
3850 if (in->n_data_chunks > 0) {
3851 /* Use soft deletion if there is data in the file.
3852 * That won't be the case if it has been resized to zero.
3853 */
3854 if (!in->unlinked)
3855 ret_val = yaffs_unlink_file_if_needed(in);
3856
3857 deleted = in->deleted;
3858
3859 if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) {
3860 in->deleted = 1;
3861 deleted = 1;
3862 in->my_dev->n_deleted_files++;
3863 yaffs_soft_del_file(in);
3864 }
3865 return deleted ? YAFFS_OK : YAFFS_FAIL;
3866 } else {
3867 /* The file has no data chunks so we toss it immediately */
3868 yaffs_free_tnode(in->my_dev, in->variant.file_variant.top);
3869 in->variant.file_variant.top = NULL;
3870 yaffs_generic_obj_del(in);
3871
3872 return YAFFS_OK;
3873 }
3874 }
3875
3876 int yaffs_is_non_empty_dir(struct yaffs_obj *obj)
3877 {
3878 return (obj &&
3879 obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) &&
3880 !(list_empty(&obj->variant.dir_variant.children));
3881 }
3882
3883 static int yaffs_del_dir(struct yaffs_obj *obj)
3884 {
3885 /* First check that the directory is empty. */
3886 if (yaffs_is_non_empty_dir(obj))
3887 return YAFFS_FAIL;
3888
3889 return yaffs_generic_obj_del(obj);
3890 }
3891
3892 static int yaffs_del_symlink(struct yaffs_obj *in)
3893 {
3894 kfree(in->variant.symlink_variant.alias);
3895 in->variant.symlink_variant.alias = NULL;
3896
3897 return yaffs_generic_obj_del(in);
3898 }
3899
3900 static int yaffs_del_link(struct yaffs_obj *in)
3901 {
3902 /* remove this hardlink from the list associated with the equivalent
3903 * object
3904 */
3905 list_del_init(&in->hard_links);
3906 return yaffs_generic_obj_del(in);
3907 }
3908
3909 int yaffs_del_obj(struct yaffs_obj *obj)
3910 {
3911 int ret_val = -1;
3912
3913 switch (obj->variant_type) {
3914 case YAFFS_OBJECT_TYPE_FILE:
3915 ret_val = yaffs_del_file(obj);
3916 break;
3917 case YAFFS_OBJECT_TYPE_DIRECTORY:
3918 if (!list_empty(&obj->variant.dir_variant.dirty)) {
3919 yaffs_trace(YAFFS_TRACE_BACKGROUND,
3920 "Remove object %d from dirty directories",
3921 obj->obj_id);
3922 list_del_init(&obj->variant.dir_variant.dirty);
3923 }
3924 return yaffs_del_dir(obj);
3925 break;
3926 case YAFFS_OBJECT_TYPE_SYMLINK:
3927 ret_val = yaffs_del_symlink(obj);
3928 break;
3929 case YAFFS_OBJECT_TYPE_HARDLINK:
3930 ret_val = yaffs_del_link(obj);
3931 break;
3932 case YAFFS_OBJECT_TYPE_SPECIAL:
3933 ret_val = yaffs_generic_obj_del(obj);
3934 break;
3935 case YAFFS_OBJECT_TYPE_UNKNOWN:
3936 ret_val = 0;
3937 break; /* should not happen. */
3938 }
3939 return ret_val;
3940 }
3941
3942 static int yaffs_unlink_worker(struct yaffs_obj *obj)
3943 {
3944 int del_now = 0;
3945
3946 if (!obj)
3947 return YAFFS_FAIL;
3948
3949 if (!obj->my_inode)
3950 del_now = 1;
3951
3952 yaffs_update_parent(obj->parent);
3953
3954 if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
3955 return yaffs_del_link(obj);
3956 } else if (!list_empty(&obj->hard_links)) {
3957 /* Curve ball: We're unlinking an object that has a hardlink.
3958 *
3959 * This problem arises because we are not strictly following
3960 * The Linux link/inode model.
3961 *
3962 * We can't really delete the object.
3963 * Instead, we do the following:
3964 * - Select a hardlink.
3965 * - Unhook it from the hard links
3966 * - Move it from its parent directory so that the rename works.
3967 * - Rename the object to the hardlink's name.
3968 * - Delete the hardlink
3969 */
3970
3971 struct yaffs_obj *hl;
3972 struct yaffs_obj *parent;
3973 int ret_val;
3974 YCHAR name[YAFFS_MAX_NAME_LENGTH + 1];
3975
3976 hl = list_entry(obj->hard_links.next, struct yaffs_obj,
3977 hard_links);
3978
3979 yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1);
3980 parent = hl->parent;
3981
3982 list_del_init(&hl->hard_links);
3983
3984 yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl);
3985
3986 ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0);
3987
3988 if (ret_val == YAFFS_OK)
3989 ret_val = yaffs_generic_obj_del(hl);
3990
3991 return ret_val;
3992
3993 } else if (del_now) {
3994 switch (obj->variant_type) {
3995 case YAFFS_OBJECT_TYPE_FILE:
3996 return yaffs_del_file(obj);
3997 break;
3998 case YAFFS_OBJECT_TYPE_DIRECTORY:
3999 list_del_init(&obj->variant.dir_variant.dirty);
4000 return yaffs_del_dir(obj);
4001 break;
4002 case YAFFS_OBJECT_TYPE_SYMLINK:
4003 return yaffs_del_symlink(obj);
4004 break;
4005 case YAFFS_OBJECT_TYPE_SPECIAL:
4006 return yaffs_generic_obj_del(obj);
4007 break;
4008 case YAFFS_OBJECT_TYPE_HARDLINK:
4009 case YAFFS_OBJECT_TYPE_UNKNOWN:
4010 default:
4011 return YAFFS_FAIL;
4012 }
4013 } else if (yaffs_is_non_empty_dir(obj)) {
4014 return YAFFS_FAIL;
4015 } else {
4016 return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir,
4017 _Y("unlinked"), 0, 0);
4018 }
4019 }
4020
4021 static int yaffs_unlink_obj(struct yaffs_obj *obj)
4022 {
4023 if (obj && obj->unlink_allowed)
4024 return yaffs_unlink_worker(obj);
4025
4026 return YAFFS_FAIL;
4027 }
4028
4029 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name)
4030 {
4031 struct yaffs_obj *obj;
4032
4033 obj = yaffs_find_by_name(dir, name);
4034 return yaffs_unlink_obj(obj);
4035 }
4036
4037 /* Note:
4038 * If old_name is NULL then we take old_dir as the object to be renamed.
4039 */
4040 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name,
4041 struct yaffs_obj *new_dir, const YCHAR *new_name)
4042 {
4043 struct yaffs_obj *obj = NULL;
4044 struct yaffs_obj *existing_target = NULL;
4045 int force = 0;
4046 int result;
4047 struct yaffs_dev *dev;
4048
4049 if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4050 BUG();
4051 return YAFFS_FAIL;
4052 }
4053 if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4054 BUG();
4055 return YAFFS_FAIL;
4056 }
4057
4058 dev = old_dir->my_dev;
4059
4060 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE
4061 /* Special case for case insemsitive systems.
4062 * While look-up is case insensitive, the name isn't.
4063 * Therefore we might want to change x.txt to X.txt
4064 */
4065 if (old_dir == new_dir &&
4066 old_name && new_name &&
4067 yaffs_strcmp(old_name, new_name) == 0)
4068 force = 1;
4069 #endif
4070
4071 if (yaffs_strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) >
4072 YAFFS_MAX_NAME_LENGTH)
4073 /* ENAMETOOLONG */
4074 return YAFFS_FAIL;
4075
4076 if (old_name)
4077 obj = yaffs_find_by_name(old_dir, old_name);
4078 else{
4079 obj = old_dir;
4080 old_dir = obj->parent;
4081 }
4082
4083 if (obj && obj->rename_allowed) {
4084 /* Now handle an existing target, if there is one */
4085 existing_target = yaffs_find_by_name(new_dir, new_name);
4086 if (yaffs_is_non_empty_dir(existing_target)) {
4087 return YAFFS_FAIL; /* ENOTEMPTY */
4088 } else if (existing_target && existing_target != obj) {
4089 /* Nuke the target first, using shadowing,
4090 * but only if it isn't the same object.
4091 *
4092 * Note we must disable gc here otherwise it can mess
4093 * up the shadowing.
4094 *
4095 */
4096 dev->gc_disable = 1;
4097 yaffs_change_obj_name(obj, new_dir, new_name, force,
4098 existing_target->obj_id);
4099 existing_target->is_shadowed = 1;
4100 yaffs_unlink_obj(existing_target);
4101 dev->gc_disable = 0;
4102 }
4103
4104 result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0);
4105
4106 yaffs_update_parent(old_dir);
4107 if (new_dir != old_dir)
4108 yaffs_update_parent(new_dir);
4109
4110 return result;
4111 }
4112 return YAFFS_FAIL;
4113 }
4114
4115 /*----------------------- Initialisation Scanning ---------------------- */
4116
4117 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id,
4118 int backward_scanning)
4119 {
4120 struct yaffs_obj *obj;
4121
4122 if (backward_scanning) {
4123 /* Handle YAFFS2 case (backward scanning)
4124 * If the shadowed object exists then ignore.
4125 */
4126 obj = yaffs_find_by_number(dev, obj_id);
4127 if (obj)
4128 return;
4129 }
4130
4131 /* Let's create it (if it does not exist) assuming it is a file so that
4132 * it can do shrinking etc.
4133 * We put it in unlinked dir to be cleaned up after the scanning
4134 */
4135 obj =
4136 yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE);
4137 if (!obj)
4138 return;
4139 obj->is_shadowed = 1;
4140 yaffs_add_obj_to_dir(dev->unlinked_dir, obj);
4141 obj->variant.file_variant.shrink_size = 0;
4142 obj->valid = 1; /* So that we don't read any other info. */
4143 }
4144
4145 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list)
4146 {
4147 struct list_head *lh;
4148 struct list_head *save;
4149 struct yaffs_obj *hl;
4150 struct yaffs_obj *in;
4151
4152 list_for_each_safe(lh, save, hard_list) {
4153 hl = list_entry(lh, struct yaffs_obj, hard_links);
4154 in = yaffs_find_by_number(dev,
4155 hl->variant.hardlink_variant.equiv_id);
4156
4157 if (in) {
4158 /* Add the hardlink pointers */
4159 hl->variant.hardlink_variant.equiv_obj = in;
4160 list_add(&hl->hard_links, &in->hard_links);
4161 } else {
4162 /* Todo Need to report/handle this better.
4163 * Got a problem... hardlink to a non-existant object
4164 */
4165 hl->variant.hardlink_variant.equiv_obj = NULL;
4166 INIT_LIST_HEAD(&hl->hard_links);
4167 }
4168 }
4169 }
4170
4171 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev)
4172 {
4173 /*
4174 * Sort out state of unlinked and deleted objects after scanning.
4175 */
4176 struct list_head *i;
4177 struct list_head *n;
4178 struct yaffs_obj *l;
4179
4180 if (dev->read_only)
4181 return;
4182
4183 /* Soft delete all the unlinked files */
4184 list_for_each_safe(i, n,
4185 &dev->unlinked_dir->variant.dir_variant.children) {
4186 l = list_entry(i, struct yaffs_obj, siblings);
4187 yaffs_del_obj(l);
4188 }
4189
4190 list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) {
4191 l = list_entry(i, struct yaffs_obj, siblings);
4192 yaffs_del_obj(l);
4193 }
4194 }
4195
4196 /*
4197 * This code iterates through all the objects making sure that they are rooted.
4198 * Any unrooted objects are re-rooted in lost+found.
4199 * An object needs to be in one of:
4200 * - Directly under deleted, unlinked
4201 * - Directly or indirectly under root.
4202 *
4203 * Note:
4204 * This code assumes that we don't ever change the current relationships
4205 * between directories:
4206 * root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL
4207 * lost-n-found->parent == root_dir
4208 *
4209 * This fixes the problem where directories might have inadvertently been
4210 * deleted leaving the object "hanging" without being rooted in the
4211 * directory tree.
4212 */
4213
4214 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj)
4215 {
4216 return (obj == dev->del_dir ||
4217 obj == dev->unlinked_dir || obj == dev->root_dir);
4218 }
4219
4220 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev)
4221 {
4222 struct yaffs_obj *obj;
4223 struct yaffs_obj *parent;
4224 int i;
4225 struct list_head *lh;
4226 struct list_head *n;
4227 int depth_limit;
4228 int hanging;
4229
4230 if (dev->read_only)
4231 return;
4232
4233 /* Iterate through the objects in each hash entry,
4234 * looking at each object.
4235 * Make sure it is rooted.
4236 */
4237
4238 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
4239 list_for_each_safe(lh, n, &dev->obj_bucket[i].list) {
4240 obj = list_entry(lh, struct yaffs_obj, hash_link);
4241 parent = obj->parent;
4242
4243 if (yaffs_has_null_parent(dev, obj)) {
4244 /* These directories are not hanging */
4245 hanging = 0;
4246 } else if (!parent ||
4247 parent->variant_type !=
4248 YAFFS_OBJECT_TYPE_DIRECTORY) {
4249 hanging = 1;
4250 } else if (yaffs_has_null_parent(dev, parent)) {
4251 hanging = 0;
4252 } else {
4253 /*
4254 * Need to follow the parent chain to
4255 * see if it is hanging.
4256 */
4257 hanging = 0;
4258 depth_limit = 100;
4259
4260 while (parent != dev->root_dir &&
4261 parent->parent &&
4262 parent->parent->variant_type ==
4263 YAFFS_OBJECT_TYPE_DIRECTORY &&
4264 depth_limit > 0) {
4265 parent = parent->parent;
4266 depth_limit--;
4267 }
4268 if (parent != dev->root_dir)
4269 hanging = 1;
4270 }
4271 if (hanging) {
4272 yaffs_trace(YAFFS_TRACE_SCAN,
4273 "Hanging object %d moved to lost and found",
4274 obj->obj_id);
4275 yaffs_add_obj_to_dir(dev->lost_n_found, obj);
4276 }
4277 }
4278 }
4279 }
4280
4281 /*
4282 * Delete directory contents for cleaning up lost and found.
4283 */
4284 static void yaffs_del_dir_contents(struct yaffs_obj *dir)
4285 {
4286 struct yaffs_obj *obj;
4287 struct list_head *lh;
4288 struct list_head *n;
4289
4290 if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
4291 BUG();
4292
4293 list_for_each_safe(lh, n, &dir->variant.dir_variant.children) {
4294 obj = list_entry(lh, struct yaffs_obj, siblings);
4295 if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY)
4296 yaffs_del_dir_contents(obj);
4297 yaffs_trace(YAFFS_TRACE_SCAN,
4298 "Deleting lost_found object %d",
4299 obj->obj_id);
4300 yaffs_unlink_obj(obj);
4301 }
4302 }
4303
4304 static void yaffs_empty_l_n_f(struct yaffs_dev *dev)
4305 {
4306 yaffs_del_dir_contents(dev->lost_n_found);
4307 }
4308
4309
4310 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory,
4311 const YCHAR *name)
4312 {
4313 int sum;
4314 struct list_head *i;
4315 YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1];
4316 struct yaffs_obj *l;
4317
4318 if (!name)
4319 return NULL;
4320
4321 if (!directory) {
4322 yaffs_trace(YAFFS_TRACE_ALWAYS,
4323 "tragedy: yaffs_find_by_name: null pointer directory"
4324 );
4325 BUG();
4326 return NULL;
4327 }
4328 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4329 yaffs_trace(YAFFS_TRACE_ALWAYS,
4330 "tragedy: yaffs_find_by_name: non-directory"
4331 );
4332 BUG();
4333 }
4334
4335 sum = yaffs_calc_name_sum(name);
4336
4337 list_for_each(i, &directory->variant.dir_variant.children) {
4338 l = list_entry(i, struct yaffs_obj, siblings);
4339
4340 if (l->parent != directory)
4341 BUG();
4342
4343 yaffs_check_obj_details_loaded(l);
4344
4345 /* Special case for lost-n-found */
4346 if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4347 if (!yaffs_strcmp(name, YAFFS_LOSTNFOUND_NAME))
4348 return l;
4349 } else if (l->sum == sum || l->hdr_chunk <= 0) {
4350 /* LostnFound chunk called Objxxx
4351 * Do a real check
4352 */
4353 yaffs_get_obj_name(l, buffer,
4354 YAFFS_MAX_NAME_LENGTH + 1);
4355 if (!yaffs_strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH))
4356 return l;
4357 }
4358 }
4359 return NULL;
4360 }
4361
4362 /* GetEquivalentObject dereferences any hard links to get to the
4363 * actual object.
4364 */
4365
4366 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj)
4367 {
4368 if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
4369 obj = obj->variant.hardlink_variant.equiv_obj;
4370 yaffs_check_obj_details_loaded(obj);
4371 }
4372 return obj;
4373 }
4374
4375 /*
4376 * A note or two on object names.
4377 * * If the object name is missing, we then make one up in the form objnnn
4378 *
4379 * * ASCII names are stored in the object header's name field from byte zero
4380 * * Unicode names are historically stored starting from byte zero.
4381 *
4382 * Then there are automatic Unicode names...
4383 * The purpose of these is to save names in a way that can be read as
4384 * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII
4385 * system to share files.
4386 *
4387 * These automatic unicode are stored slightly differently...
4388 * - If the name can fit in the ASCII character space then they are saved as
4389 * ascii names as per above.
4390 * - If the name needs Unicode then the name is saved in Unicode
4391 * starting at oh->name[1].
4392
4393 */
4394 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
4395 int buffer_size)
4396 {
4397 /* Create an object name if we could not find one. */
4398 if (yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) {
4399 YCHAR local_name[20];
4400 YCHAR num_string[20];
4401 YCHAR *x = &num_string[19];
4402 unsigned v = obj->obj_id;
4403 num_string[19] = 0;
4404 while (v > 0) {
4405 x--;
4406 *x = '0' + (v % 10);
4407 v /= 10;
4408 }
4409 /* make up a name */
4410 yaffs_strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX);
4411 yaffs_strcat(local_name, x);
4412 yaffs_strncpy(name, local_name, buffer_size - 1);
4413 }
4414 }
4415
4416 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size)
4417 {
4418 memset(name, 0, buffer_size * sizeof(YCHAR));
4419 yaffs_check_obj_details_loaded(obj);
4420 if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4421 yaffs_strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1);
4422 } else if (obj->short_name[0]) {
4423 yaffs_strcpy(name, obj->short_name);
4424 } else if (obj->hdr_chunk > 0) {
4425 u8 *buffer = yaffs_get_temp_buffer(obj->my_dev);
4426
4427 struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer;
4428
4429 memset(buffer, 0, obj->my_dev->data_bytes_per_chunk);
4430
4431 if (obj->hdr_chunk > 0) {
4432 yaffs_rd_chunk_tags_nand(obj->my_dev,
4433 obj->hdr_chunk,
4434 buffer, NULL);
4435 }
4436 yaffs_load_name_from_oh(obj->my_dev, name, oh->name,
4437 buffer_size);
4438
4439 yaffs_release_temp_buffer(obj->my_dev, buffer);
4440 }
4441
4442 yaffs_fix_null_name(obj, name, buffer_size);
4443
4444 return yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH);
4445 }
4446
4447 loff_t yaffs_get_obj_length(struct yaffs_obj *obj)
4448 {
4449 /* Dereference any hard linking */
4450 obj = yaffs_get_equivalent_obj(obj);
4451
4452 if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE)
4453 return obj->variant.file_variant.file_size;
4454 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
4455 if (!obj->variant.symlink_variant.alias)
4456 return 0;
4457 return yaffs_strnlen(obj->variant.symlink_variant.alias,
4458 YAFFS_MAX_ALIAS_LENGTH);
4459 } else {
4460 /* Only a directory should drop through to here */
4461 return obj->my_dev->data_bytes_per_chunk;
4462 }
4463 }
4464
4465 int yaffs_get_obj_link_count(struct yaffs_obj *obj)
4466 {
4467 int count = 0;
4468 struct list_head *i;
4469
4470 if (!obj->unlinked)
4471 count++; /* the object itself */
4472
4473 list_for_each(i, &obj->hard_links)
4474 count++; /* add the hard links; */
4475
4476 return count;
4477 }
4478
4479 int yaffs_get_obj_inode(struct yaffs_obj *obj)
4480 {
4481 obj = yaffs_get_equivalent_obj(obj);
4482
4483 return obj->obj_id;
4484 }
4485
4486 unsigned yaffs_get_obj_type(struct yaffs_obj *obj)
4487 {
4488 obj = yaffs_get_equivalent_obj(obj);
4489
4490 switch (obj->variant_type) {
4491 case YAFFS_OBJECT_TYPE_FILE:
4492 return DT_REG;
4493 break;
4494 case YAFFS_OBJECT_TYPE_DIRECTORY:
4495 return DT_DIR;
4496 break;
4497 case YAFFS_OBJECT_TYPE_SYMLINK:
4498 return DT_LNK;
4499 break;
4500 case YAFFS_OBJECT_TYPE_HARDLINK:
4501 return DT_REG;
4502 break;
4503 case YAFFS_OBJECT_TYPE_SPECIAL:
4504 if (S_ISFIFO(obj->yst_mode))
4505 return DT_FIFO;
4506 if (S_ISCHR(obj->yst_mode))
4507 return DT_CHR;
4508 if (S_ISBLK(obj->yst_mode))
4509 return DT_BLK;
4510 if (S_ISSOCK(obj->yst_mode))
4511 return DT_SOCK;
4512 return DT_REG;
4513 break;
4514 default:
4515 return DT_REG;
4516 break;
4517 }
4518 }
4519
4520 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj)
4521 {
4522 obj = yaffs_get_equivalent_obj(obj);
4523 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK)
4524 return yaffs_clone_str(obj->variant.symlink_variant.alias);
4525 else
4526 return yaffs_clone_str(_Y(""));
4527 }
4528
4529 /*--------------------------- Initialisation code -------------------------- */
4530
4531 static int yaffs_check_dev_fns(const struct yaffs_dev *dev)
4532 {
4533 /* Common functions, gotta have */
4534 if (!dev->param.erase_fn || !dev->param.initialise_flash_fn)
4535 return 0;
4536
4537 /* Can use the "with tags" style interface for yaffs1 or yaffs2 */
4538 if (dev->param.write_chunk_tags_fn &&
4539 dev->param.read_chunk_tags_fn &&
4540 !dev->param.write_chunk_fn &&
4541 !dev->param.read_chunk_fn &&
4542 dev->param.bad_block_fn && dev->param.query_block_fn)
4543 return 1;
4544
4545 /* Can use the "spare" style interface for yaffs1 */
4546 if (!dev->param.is_yaffs2 &&
4547 !dev->param.write_chunk_tags_fn &&
4548 !dev->param.read_chunk_tags_fn &&
4549 dev->param.write_chunk_fn &&
4550 dev->param.read_chunk_fn &&
4551 !dev->param.bad_block_fn && !dev->param.query_block_fn)
4552 return 1;
4553
4554 return 0; /* bad */
4555 }
4556
4557 static int yaffs_create_initial_dir(struct yaffs_dev *dev)
4558 {
4559 /* Initialise the unlinked, deleted, root and lost+found directories */
4560 dev->lost_n_found = dev->root_dir = NULL;
4561 dev->unlinked_dir = dev->del_dir = NULL;
4562 dev->unlinked_dir =
4563 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR);
4564 dev->del_dir =
4565 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR);
4566 dev->root_dir =
4567 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT,
4568 YAFFS_ROOT_MODE | S_IFDIR);
4569 dev->lost_n_found =
4570 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND,
4571 YAFFS_LOSTNFOUND_MODE | S_IFDIR);
4572
4573 if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir
4574 && dev->del_dir) {
4575 yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found);
4576 return YAFFS_OK;
4577 }
4578 return YAFFS_FAIL;
4579 }
4580
4581 int yaffs_guts_initialise(struct yaffs_dev *dev)
4582 {
4583 int init_failed = 0;
4584 unsigned x;
4585 int bits;
4586
4587 yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise()");
4588
4589 /* Check stuff that must be set */
4590
4591 if (!dev) {
4592 yaffs_trace(YAFFS_TRACE_ALWAYS,
4593 "yaffs: Need a device"
4594 );
4595 return YAFFS_FAIL;
4596 }
4597
4598 if (dev->is_mounted) {
4599 yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted");
4600 return YAFFS_FAIL;
4601 }
4602
4603 dev->internal_start_block = dev->param.start_block;
4604 dev->internal_end_block = dev->param.end_block;
4605 dev->block_offset = 0;
4606 dev->chunk_offset = 0;
4607 dev->n_free_chunks = 0;
4608
4609 dev->gc_block = 0;
4610
4611 if (dev->param.start_block == 0) {
4612 dev->internal_start_block = dev->param.start_block + 1;
4613 dev->internal_end_block = dev->param.end_block + 1;
4614 dev->block_offset = 1;
4615 dev->chunk_offset = dev->param.chunks_per_block;
4616 }
4617
4618 /* Check geometry parameters. */
4619
4620 if ((!dev->param.inband_tags && dev->param.is_yaffs2 &&
4621 dev->param.total_bytes_per_chunk < 1024) ||
4622 (!dev->param.is_yaffs2 &&
4623 dev->param.total_bytes_per_chunk < 512) ||
4624 (dev->param.inband_tags && !dev->param.is_yaffs2) ||
4625 dev->param.chunks_per_block < 2 ||
4626 dev->param.n_reserved_blocks < 2 ||
4627 dev->internal_start_block <= 0 ||
4628 dev->internal_end_block <= 0 ||
4629 dev->internal_end_block <=
4630 (dev->internal_start_block + dev->param.n_reserved_blocks + 2)
4631 ) {
4632 /* otherwise it is too small */
4633 yaffs_trace(YAFFS_TRACE_ALWAYS,
4634 "NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ",
4635 dev->param.total_bytes_per_chunk,
4636 dev->param.is_yaffs2 ? "2" : "",
4637 dev->param.inband_tags);
4638 return YAFFS_FAIL;
4639 }
4640
4641 if (yaffs_init_nand(dev) != YAFFS_OK) {
4642 yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed");
4643 return YAFFS_FAIL;
4644 }
4645
4646 /* Sort out space for inband tags, if required */
4647 if (dev->param.inband_tags)
4648 dev->data_bytes_per_chunk =
4649 dev->param.total_bytes_per_chunk -
4650 sizeof(struct yaffs_packed_tags2_tags_only);
4651 else
4652 dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk;
4653
4654 /* Got the right mix of functions? */
4655 if (!yaffs_check_dev_fns(dev)) {
4656 /* Function missing */
4657 yaffs_trace(YAFFS_TRACE_ALWAYS,
4658 "device function(s) missing or wrong");
4659
4660 return YAFFS_FAIL;
4661 }
4662
4663 /* Finished with most checks. Further checks happen later on too. */
4664
4665 dev->is_mounted = 1;
4666
4667 /* OK now calculate a few things for the device */
4668
4669 /*
4670 * Calculate all the chunk size manipulation numbers:
4671 */
4672 x = dev->data_bytes_per_chunk;
4673 /* We always use dev->chunk_shift and dev->chunk_div */
4674 dev->chunk_shift = calc_shifts(x);
4675 x >>= dev->chunk_shift;
4676 dev->chunk_div = x;
4677 /* We only use chunk mask if chunk_div is 1 */
4678 dev->chunk_mask = (1 << dev->chunk_shift) - 1;
4679
4680 /*
4681 * Calculate chunk_grp_bits.
4682 * We need to find the next power of 2 > than internal_end_block
4683 */
4684
4685 x = dev->param.chunks_per_block * (dev->internal_end_block + 1);
4686
4687 bits = calc_shifts_ceiling(x);
4688
4689 /* Set up tnode width if wide tnodes are enabled. */
4690 if (!dev->param.wide_tnodes_disabled) {
4691 /* bits must be even so that we end up with 32-bit words */
4692 if (bits & 1)
4693 bits++;
4694 if (bits < 16)
4695 dev->tnode_width = 16;
4696 else
4697 dev->tnode_width = bits;
4698 } else {
4699 dev->tnode_width = 16;
4700 }
4701
4702 dev->tnode_mask = (1 << dev->tnode_width) - 1;
4703
4704 /* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled),
4705 * so if the bitwidth of the
4706 * chunk range we're using is greater than 16 we need
4707 * to figure out chunk shift and chunk_grp_size
4708 */
4709
4710 if (bits <= dev->tnode_width)
4711 dev->chunk_grp_bits = 0;
4712 else
4713 dev->chunk_grp_bits = bits - dev->tnode_width;
4714
4715 dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8;
4716 if (dev->tnode_size < sizeof(struct yaffs_tnode))
4717 dev->tnode_size = sizeof(struct yaffs_tnode);
4718
4719 dev->chunk_grp_size = 1 << dev->chunk_grp_bits;
4720
4721 if (dev->param.chunks_per_block < dev->chunk_grp_size) {
4722 /* We have a problem because the soft delete won't work if
4723 * the chunk group size > chunks per block.
4724 * This can be remedied by using larger "virtual blocks".
4725 */
4726 yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large");
4727
4728 return YAFFS_FAIL;
4729 }
4730
4731 /* Finished verifying the device, continue with initialisation */
4732
4733 /* More device initialisation */
4734 dev->all_gcs = 0;
4735 dev->passive_gc_count = 0;
4736 dev->oldest_dirty_gc_count = 0;
4737 dev->bg_gcs = 0;
4738 dev->gc_block_finder = 0;
4739 dev->buffered_block = -1;
4740 dev->doing_buffered_block_rewrite = 0;
4741 dev->n_deleted_files = 0;
4742 dev->n_bg_deletions = 0;
4743 dev->n_unlinked_files = 0;
4744 dev->n_ecc_fixed = 0;
4745 dev->n_ecc_unfixed = 0;
4746 dev->n_tags_ecc_fixed = 0;
4747 dev->n_tags_ecc_unfixed = 0;
4748 dev->n_erase_failures = 0;
4749 dev->n_erased_blocks = 0;
4750 dev->gc_disable = 0;
4751 dev->has_pending_prioritised_gc = 1;
4752 /* Assume the worst for now, will get fixed on first GC */
4753 INIT_LIST_HEAD(&dev->dirty_dirs);
4754 dev->oldest_dirty_seq = 0;
4755 dev->oldest_dirty_block = 0;
4756
4757 /* Initialise temporary buffers and caches. */
4758 if (!yaffs_init_tmp_buffers(dev))
4759 init_failed = 1;
4760
4761 dev->cache = NULL;
4762 dev->gc_cleanup_list = NULL;
4763
4764 if (!init_failed && dev->param.n_caches > 0) {
4765 int i;
4766 void *buf;
4767 int cache_bytes =
4768 dev->param.n_caches * sizeof(struct yaffs_cache);
4769
4770 if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES)
4771 dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES;
4772
4773 dev->cache = kmalloc(cache_bytes, GFP_NOFS);
4774
4775 buf = (u8 *) dev->cache;
4776
4777 if (dev->cache)
4778 memset(dev->cache, 0, cache_bytes);
4779
4780 for (i = 0; i < dev->param.n_caches && buf; i++) {
4781 dev->cache[i].object = NULL;
4782 dev->cache[i].last_use = 0;
4783 dev->cache[i].dirty = 0;
4784 dev->cache[i].data = buf =
4785 kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
4786 }
4787 if (!buf)
4788 init_failed = 1;
4789
4790 dev->cache_last_use = 0;
4791 }
4792
4793 dev->cache_hits = 0;
4794
4795 if (!init_failed) {
4796 dev->gc_cleanup_list =
4797 kmalloc(dev->param.chunks_per_block * sizeof(u32),
4798 GFP_NOFS);
4799 if (!dev->gc_cleanup_list)
4800 init_failed = 1;
4801 }
4802
4803 if (dev->param.is_yaffs2)
4804 dev->param.use_header_file_size = 1;
4805
4806 if (!init_failed && !yaffs_init_blocks(dev))
4807 init_failed = 1;
4808
4809 yaffs_init_tnodes_and_objs(dev);
4810
4811 if (!init_failed && !yaffs_create_initial_dir(dev))
4812 init_failed = 1;
4813
4814 if (!init_failed && dev->param.is_yaffs2 &&
4815 !dev->param.disable_summary &&
4816 !yaffs_summary_init(dev))
4817 init_failed = 1;
4818
4819 if (!init_failed) {
4820 /* Now scan the flash. */
4821 if (dev->param.is_yaffs2) {
4822 if (yaffs2_checkpt_restore(dev)) {
4823 yaffs_check_obj_details_loaded(dev->root_dir);
4824 yaffs_trace(YAFFS_TRACE_CHECKPOINT |
4825 YAFFS_TRACE_MOUNT,
4826 "yaffs: restored from checkpoint"
4827 );
4828 } else {
4829
4830 /* Clean up the mess caused by an aborted
4831 * checkpoint load then scan backwards.
4832 */
4833 yaffs_deinit_blocks(dev);
4834
4835 yaffs_deinit_tnodes_and_objs(dev);
4836
4837 dev->n_erased_blocks = 0;
4838 dev->n_free_chunks = 0;
4839 dev->alloc_block = -1;
4840 dev->alloc_page = -1;
4841 dev->n_deleted_files = 0;
4842 dev->n_unlinked_files = 0;
4843 dev->n_bg_deletions = 0;
4844
4845 if (!init_failed && !yaffs_init_blocks(dev))
4846 init_failed = 1;
4847
4848 yaffs_init_tnodes_and_objs(dev);
4849
4850 if (!init_failed
4851 && !yaffs_create_initial_dir(dev))
4852 init_failed = 1;
4853
4854 if (!init_failed && !yaffs2_scan_backwards(dev))
4855 init_failed = 1;
4856 }
4857 } else if (!yaffs1_scan(dev)) {
4858 init_failed = 1;
4859 }
4860
4861 yaffs_strip_deleted_objs(dev);
4862 yaffs_fix_hanging_objs(dev);
4863 if (dev->param.empty_lost_n_found)
4864 yaffs_empty_l_n_f(dev);
4865 }
4866
4867 if (init_failed) {
4868 /* Clean up the mess */
4869 yaffs_trace(YAFFS_TRACE_TRACING,
4870 "yaffs: yaffs_guts_initialise() aborted.");
4871
4872 yaffs_deinitialise(dev);
4873 return YAFFS_FAIL;
4874 }
4875
4876 /* Zero out stats */
4877 dev->n_page_reads = 0;
4878 dev->n_page_writes = 0;
4879 dev->n_erasures = 0;
4880 dev->n_gc_copies = 0;
4881 dev->n_retried_writes = 0;
4882
4883 dev->n_retired_blocks = 0;
4884
4885 yaffs_verify_free_chunks(dev);
4886 yaffs_verify_blocks(dev);
4887
4888 /* Clean up any aborted checkpoint data */
4889 if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0)
4890 yaffs2_checkpt_invalidate(dev);
4891
4892 yaffs_trace(YAFFS_TRACE_TRACING,
4893 "yaffs: yaffs_guts_initialise() done.");
4894 return YAFFS_OK;
4895 }
4896
4897 void yaffs_deinitialise(struct yaffs_dev *dev)
4898 {
4899 if (dev->is_mounted) {
4900 int i;
4901
4902 yaffs_deinit_blocks(dev);
4903 yaffs_deinit_tnodes_and_objs(dev);
4904 yaffs_summary_deinit(dev);
4905
4906 if (dev->param.n_caches > 0 && dev->cache) {
4907
4908 for (i = 0; i < dev->param.n_caches; i++) {
4909 kfree(dev->cache[i].data);
4910 dev->cache[i].data = NULL;
4911 }
4912
4913 kfree(dev->cache);
4914 dev->cache = NULL;
4915 }
4916
4917 kfree(dev->gc_cleanup_list);
4918
4919 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++)
4920 kfree(dev->temp_buffer[i].buffer);
4921
4922 dev->is_mounted = 0;
4923
4924 if (dev->param.deinitialise_flash_fn)
4925 dev->param.deinitialise_flash_fn(dev);
4926 }
4927 }
4928
4929 int yaffs_count_free_chunks(struct yaffs_dev *dev)
4930 {
4931 int n_free = 0;
4932 int b;
4933 struct yaffs_block_info *blk;
4934
4935 blk = dev->block_info;
4936 for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) {
4937 switch (blk->block_state) {
4938 case YAFFS_BLOCK_STATE_EMPTY:
4939 case YAFFS_BLOCK_STATE_ALLOCATING:
4940 case YAFFS_BLOCK_STATE_COLLECTING:
4941 case YAFFS_BLOCK_STATE_FULL:
4942 n_free +=
4943 (dev->param.chunks_per_block - blk->pages_in_use +
4944 blk->soft_del_pages);
4945 break;
4946 default:
4947 break;
4948 }
4949 blk++;
4950 }
4951 return n_free;
4952 }
4953
4954 int yaffs_get_n_free_chunks(struct yaffs_dev *dev)
4955 {
4956 /* This is what we report to the outside world */
4957 int n_free;
4958 int n_dirty_caches;
4959 int blocks_for_checkpt;
4960 int i;
4961
4962 n_free = dev->n_free_chunks;
4963 n_free += dev->n_deleted_files;
4964
4965 /* Now count and subtract the number of dirty chunks in the cache. */
4966
4967 for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) {
4968 if (dev->cache[i].dirty)
4969 n_dirty_caches++;
4970 }
4971
4972 n_free -= n_dirty_caches;
4973
4974 n_free -=
4975 ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block);
4976
4977 /* Now figure checkpoint space and report that... */
4978 blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev);
4979
4980 n_free -= (blocks_for_checkpt * dev->param.chunks_per_block);
4981
4982 if (n_free < 0)
4983 n_free = 0;
4984
4985 return n_free;
4986 }
4987
4988 /*\
4989 * Marshalling functions to get loff_t file sizes into aand out of
4990 * object headers.
4991 */
4992 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize)
4993 {
4994 oh->file_size_low = (fsize & 0xFFFFFFFF);
4995 oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF);
4996 }
4997
4998 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh)
4999 {
5000 loff_t retval;
5001
5002 if (~(oh->file_size_high))
5003 retval = (((loff_t) oh->file_size_high) << 32) |
5004 (((loff_t) oh->file_size_low) & 0xFFFFFFFF);
5005 else
5006 retval = (loff_t) oh->file_size_low;
5007
5008 return retval;
5009 }