]> git.ipfire.org Git - people/ms/u-boot.git/blob - lib/efi_loader/efi_memory.c
imx: hab: Check if CSF contains deprecated commands
[people/ms/u-boot.git] / lib / efi_loader / efi_memory.c
1 /*
2 * EFI application memory management
3 *
4 * Copyright (c) 2016 Alexander Graf
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <efi_loader.h>
11 #include <malloc.h>
12 #include <asm/global_data.h>
13 #include <libfdt_env.h>
14 #include <linux/list_sort.h>
15 #include <inttypes.h>
16 #include <watchdog.h>
17
18 DECLARE_GLOBAL_DATA_PTR;
19
20 struct efi_mem_list {
21 struct list_head link;
22 struct efi_mem_desc desc;
23 };
24
25 #define EFI_CARVE_NO_OVERLAP -1
26 #define EFI_CARVE_LOOP_AGAIN -2
27 #define EFI_CARVE_OVERLAPS_NONRAM -3
28
29 /* This list contains all memory map items */
30 LIST_HEAD(efi_mem);
31
32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
33 void *efi_bounce_buffer;
34 #endif
35
36 /*
37 * U-Boot services each EFI AllocatePool request as a separate
38 * (multiple) page allocation. We have to track the number of pages
39 * to be able to free the correct amount later.
40 * EFI requires 8 byte alignment for pool allocations, so we can
41 * prepend each allocation with an 64 bit header tracking the
42 * allocation size, and hand out the remainder to the caller.
43 */
44 struct efi_pool_allocation {
45 u64 num_pages;
46 char data[] __aligned(ARCH_DMA_MINALIGN);
47 };
48
49 /*
50 * Sorts the memory list from highest address to lowest address
51 *
52 * When allocating memory we should always start from the highest
53 * address chunk, so sort the memory list such that the first list
54 * iterator gets the highest address and goes lower from there.
55 */
56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
57 {
58 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
59 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
60
61 if (mema->desc.physical_start == memb->desc.physical_start)
62 return 0;
63 else if (mema->desc.physical_start < memb->desc.physical_start)
64 return 1;
65 else
66 return -1;
67 }
68
69 static void efi_mem_sort(void)
70 {
71 list_sort(NULL, &efi_mem, efi_mem_cmp);
72 }
73
74 /*
75 * Unmaps all memory occupied by the carve_desc region from the
76 * list entry pointed to by map.
77 *
78 * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
79 * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
80 * and the map contains anything but free ram.
81 * (only when overlap_only_ram is true)
82 * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
83 * again, as it has been altered
84 * Returns the number of overlapping pages. The pages are removed from
85 * the mapping list.
86 *
87 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
88 * to readd the already carved out pages to the mapping.
89 */
90 static int efi_mem_carve_out(struct efi_mem_list *map,
91 struct efi_mem_desc *carve_desc,
92 bool overlap_only_ram)
93 {
94 struct efi_mem_list *newmap;
95 struct efi_mem_desc *map_desc = &map->desc;
96 uint64_t map_start = map_desc->physical_start;
97 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
98 uint64_t carve_start = carve_desc->physical_start;
99 uint64_t carve_end = carve_start +
100 (carve_desc->num_pages << EFI_PAGE_SHIFT);
101
102 /* check whether we're overlapping */
103 if ((carve_end <= map_start) || (carve_start >= map_end))
104 return EFI_CARVE_NO_OVERLAP;
105
106 /* We're overlapping with non-RAM, warn the caller if desired */
107 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
108 return EFI_CARVE_OVERLAPS_NONRAM;
109
110 /* Sanitize carve_start and carve_end to lie within our bounds */
111 carve_start = max(carve_start, map_start);
112 carve_end = min(carve_end, map_end);
113
114 /* Carving at the beginning of our map? Just move it! */
115 if (carve_start == map_start) {
116 if (map_end == carve_end) {
117 /* Full overlap, just remove map */
118 list_del(&map->link);
119 free(map);
120 } else {
121 map->desc.physical_start = carve_end;
122 map->desc.num_pages = (map_end - carve_end)
123 >> EFI_PAGE_SHIFT;
124 }
125
126 return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
127 }
128
129 /*
130 * Overlapping maps, just split the list map at carve_start,
131 * it will get moved or removed in the next iteration.
132 *
133 * [ map_desc |__carve_start__| newmap ]
134 */
135
136 /* Create a new map from [ carve_start ... map_end ] */
137 newmap = calloc(1, sizeof(*newmap));
138 newmap->desc = map->desc;
139 newmap->desc.physical_start = carve_start;
140 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
141 /* Insert before current entry (descending address order) */
142 list_add_tail(&newmap->link, &map->link);
143
144 /* Shrink the map to [ map_start ... carve_start ] */
145 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
146
147 return EFI_CARVE_LOOP_AGAIN;
148 }
149
150 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
151 bool overlap_only_ram)
152 {
153 struct list_head *lhandle;
154 struct efi_mem_list *newlist;
155 bool carve_again;
156 uint64_t carved_pages = 0;
157
158 debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
159 start, pages, memory_type, overlap_only_ram ? "yes" : "no");
160
161 if (!pages)
162 return start;
163
164 newlist = calloc(1, sizeof(*newlist));
165 newlist->desc.type = memory_type;
166 newlist->desc.physical_start = start;
167 newlist->desc.virtual_start = start;
168 newlist->desc.num_pages = pages;
169
170 switch (memory_type) {
171 case EFI_RUNTIME_SERVICES_CODE:
172 case EFI_RUNTIME_SERVICES_DATA:
173 newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
174 (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
175 break;
176 case EFI_MMAP_IO:
177 newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
178 break;
179 default:
180 newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
181 break;
182 }
183
184 /* Add our new map */
185 do {
186 carve_again = false;
187 list_for_each(lhandle, &efi_mem) {
188 struct efi_mem_list *lmem;
189 int r;
190
191 lmem = list_entry(lhandle, struct efi_mem_list, link);
192 r = efi_mem_carve_out(lmem, &newlist->desc,
193 overlap_only_ram);
194 switch (r) {
195 case EFI_CARVE_OVERLAPS_NONRAM:
196 /*
197 * The user requested to only have RAM overlaps,
198 * but we hit a non-RAM region. Error out.
199 */
200 return 0;
201 case EFI_CARVE_NO_OVERLAP:
202 /* Just ignore this list entry */
203 break;
204 case EFI_CARVE_LOOP_AGAIN:
205 /*
206 * We split an entry, but need to loop through
207 * the list again to actually carve it.
208 */
209 carve_again = true;
210 break;
211 default:
212 /* We carved a number of pages */
213 carved_pages += r;
214 carve_again = true;
215 break;
216 }
217
218 if (carve_again) {
219 /* The list changed, we need to start over */
220 break;
221 }
222 }
223 } while (carve_again);
224
225 if (overlap_only_ram && (carved_pages != pages)) {
226 /*
227 * The payload wanted to have RAM overlaps, but we overlapped
228 * with an unallocated region. Error out.
229 */
230 return 0;
231 }
232
233 /* Add our new map */
234 list_add_tail(&newlist->link, &efi_mem);
235
236 /* And make sure memory is listed in descending order */
237 efi_mem_sort();
238
239 return start;
240 }
241
242 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
243 {
244 struct list_head *lhandle;
245
246 list_for_each(lhandle, &efi_mem) {
247 struct efi_mem_list *lmem = list_entry(lhandle,
248 struct efi_mem_list, link);
249 struct efi_mem_desc *desc = &lmem->desc;
250 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
251 uint64_t desc_end = desc->physical_start + desc_len;
252 uint64_t curmax = min(max_addr, desc_end);
253 uint64_t ret = curmax - len;
254
255 /* We only take memory from free RAM */
256 if (desc->type != EFI_CONVENTIONAL_MEMORY)
257 continue;
258
259 /* Out of bounds for max_addr */
260 if ((ret + len) > max_addr)
261 continue;
262
263 /* Out of bounds for upper map limit */
264 if ((ret + len) > desc_end)
265 continue;
266
267 /* Out of bounds for lower map limit */
268 if (ret < desc->physical_start)
269 continue;
270
271 /* Return the highest address in this map within bounds */
272 return ret;
273 }
274
275 return 0;
276 }
277
278 /*
279 * Allocate memory pages.
280 *
281 * @type type of allocation to be performed
282 * @memory_type usage type of the allocated memory
283 * @pages number of pages to be allocated
284 * @memory allocated memory
285 * @return status code
286 */
287 efi_status_t efi_allocate_pages(int type, int memory_type,
288 efi_uintn_t pages, uint64_t *memory)
289 {
290 u64 len = pages << EFI_PAGE_SHIFT;
291 efi_status_t r = EFI_SUCCESS;
292 uint64_t addr;
293
294 switch (type) {
295 case 0:
296 /* Any page */
297 addr = efi_find_free_memory(len, gd->start_addr_sp);
298 if (!addr) {
299 r = EFI_NOT_FOUND;
300 break;
301 }
302 break;
303 case 1:
304 /* Max address */
305 addr = efi_find_free_memory(len, *memory);
306 if (!addr) {
307 r = EFI_NOT_FOUND;
308 break;
309 }
310 break;
311 case 2:
312 /* Exact address, reserve it. The addr is already in *memory. */
313 addr = *memory;
314 break;
315 default:
316 /* UEFI doesn't specify other allocation types */
317 r = EFI_INVALID_PARAMETER;
318 break;
319 }
320
321 if (r == EFI_SUCCESS) {
322 uint64_t ret;
323
324 /* Reserve that map in our memory maps */
325 ret = efi_add_memory_map(addr, pages, memory_type, true);
326 if (ret == addr) {
327 *memory = addr;
328 } else {
329 /* Map would overlap, bail out */
330 r = EFI_OUT_OF_RESOURCES;
331 }
332 }
333
334 return r;
335 }
336
337 void *efi_alloc(uint64_t len, int memory_type)
338 {
339 uint64_t ret = 0;
340 uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
341 efi_status_t r;
342
343 r = efi_allocate_pages(0, memory_type, pages, &ret);
344 if (r == EFI_SUCCESS)
345 return (void*)(uintptr_t)ret;
346
347 return NULL;
348 }
349
350 /*
351 * Free memory pages.
352 *
353 * @memory start of the memory area to be freed
354 * @pages number of pages to be freed
355 * @return status code
356 */
357 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
358 {
359 uint64_t r = 0;
360
361 r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
362 /* Merging of adjacent free regions is missing */
363
364 if (r == memory)
365 return EFI_SUCCESS;
366
367 return EFI_NOT_FOUND;
368 }
369
370 /*
371 * Allocate memory from pool.
372 *
373 * @pool_type type of the pool from which memory is to be allocated
374 * @size number of bytes to be allocated
375 * @buffer allocated memory
376 * @return status code
377 */
378 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
379 {
380 efi_status_t r;
381 efi_physical_addr_t t;
382 u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
383 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
384
385 if (size == 0) {
386 *buffer = NULL;
387 return EFI_SUCCESS;
388 }
389
390 r = efi_allocate_pages(0, pool_type, num_pages, &t);
391
392 if (r == EFI_SUCCESS) {
393 struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
394 alloc->num_pages = num_pages;
395 *buffer = alloc->data;
396 }
397
398 return r;
399 }
400
401 /*
402 * Free memory from pool.
403 *
404 * @buffer start of memory to be freed
405 * @return status code
406 */
407 efi_status_t efi_free_pool(void *buffer)
408 {
409 efi_status_t r;
410 struct efi_pool_allocation *alloc;
411
412 if (buffer == NULL)
413 return EFI_INVALID_PARAMETER;
414
415 alloc = container_of(buffer, struct efi_pool_allocation, data);
416 /* Sanity check, was the supplied address returned by allocate_pool */
417 assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
418
419 r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
420
421 return r;
422 }
423
424 /*
425 * Get map describing memory usage.
426 *
427 * @memory_map_size on entry the size, in bytes, of the memory map buffer,
428 * on exit the size of the copied memory map
429 * @memory_map buffer to which the memory map is written
430 * @map_key key for the memory map
431 * @descriptor_size size of an individual memory descriptor
432 * @descriptor_version version number of the memory descriptor structure
433 * @return status code
434 */
435 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
436 struct efi_mem_desc *memory_map,
437 efi_uintn_t *map_key,
438 efi_uintn_t *descriptor_size,
439 uint32_t *descriptor_version)
440 {
441 efi_uintn_t map_size = 0;
442 int map_entries = 0;
443 struct list_head *lhandle;
444 efi_uintn_t provided_map_size = *memory_map_size;
445
446 list_for_each(lhandle, &efi_mem)
447 map_entries++;
448
449 map_size = map_entries * sizeof(struct efi_mem_desc);
450
451 *memory_map_size = map_size;
452
453 if (provided_map_size < map_size)
454 return EFI_BUFFER_TOO_SMALL;
455
456 if (descriptor_size)
457 *descriptor_size = sizeof(struct efi_mem_desc);
458
459 if (descriptor_version)
460 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
461
462 /* Copy list into array */
463 if (memory_map) {
464 /* Return the list in ascending order */
465 memory_map = &memory_map[map_entries - 1];
466 list_for_each(lhandle, &efi_mem) {
467 struct efi_mem_list *lmem;
468
469 lmem = list_entry(lhandle, struct efi_mem_list, link);
470 *memory_map = lmem->desc;
471 memory_map--;
472 }
473 }
474
475 *map_key = 0;
476
477 return EFI_SUCCESS;
478 }
479
480 __weak void efi_add_known_memory(void)
481 {
482 int i;
483
484 /* Add RAM */
485 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
486 u64 ram_start = gd->bd->bi_dram[i].start;
487 u64 ram_size = gd->bd->bi_dram[i].size;
488 u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
489 u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
490
491 efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
492 false);
493 }
494 }
495
496 int efi_memory_init(void)
497 {
498 unsigned long runtime_start, runtime_end, runtime_pages;
499 unsigned long uboot_start, uboot_pages;
500 unsigned long uboot_stack_size = 16 * 1024 * 1024;
501
502 efi_add_known_memory();
503
504 /* Add U-Boot */
505 uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
506 uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
507 efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
508
509 /* Add Runtime Services */
510 runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
511 runtime_end = (ulong)&__efi_runtime_stop;
512 runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
513 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
514 efi_add_memory_map(runtime_start, runtime_pages,
515 EFI_RUNTIME_SERVICES_CODE, false);
516
517 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
518 /* Request a 32bit 64MB bounce buffer region */
519 uint64_t efi_bounce_buffer_addr = 0xffffffff;
520
521 if (efi_allocate_pages(1, EFI_LOADER_DATA,
522 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
523 &efi_bounce_buffer_addr) != EFI_SUCCESS)
524 return -1;
525
526 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
527 #endif
528
529 return 0;
530 }